Monitoring Resilience in a Rook-managed
Containerized Cloud Storage System

Louis Baumann, Stefan Benz
Abraxas, St.Gallen, Switzerland
Email: louis.baumann@abraxas.ch, stefan.benz@abraxas.ch

Abstract—Distributed cloud storage solutions are currently
gaining high momentum in industry and academia. The enter-
prise data volume growth and the recent tendency to move as
much as possible data to the cloud is strongly stimulating the
storage market growth. In this context, and as a main requirement
for cloud native applications, it is of utmost importance to
guarantee resilience of the deployed applications and the infras-
tructure. Indeed, with failures frequently occurring, a storage
system should quickly recover to guarantee service availability.
In this paper, we focus on containerized cloud storage, proposing
a resilience monitoring solution for the recently developed Rook
storage operator. While, Rook brings storage systems into a cloud-
native container platform, in this paper we design an additional
module to monitor and evaluate the resilience of the Rook-
based system. Our proposed module is validated in a production
environment, with software components generating a constant
load and a controlled removal of system elements to evaluate
the self-healing capability of the storage system. Failure recovery
time revealed to be 41 and 142 seconds on average for a 32GB
and a 215GB object storage device respectively.

Keywords—Distributed Cloud Storage, Resilience, Monitoring,
Ceph, Rook, Kubernetes, Cloud-native

I. INTRODUCTION

The interest for distributed cloud storage is growing at a
very fast pace as witnessed by its numbers in the worldwide
market. The global storage market has an annual growth of
25.8% and it is predicted to reach $74.94 billion of value in
2021 [1]. Companies and end-users interested in moving their
storage to the cloud are growing day by day. As a consequence,
the digital universe is expected to reach the impressive number
of 40,000 exabytes in 2020 with about 40% of the digital
data being stored or processed in a Cloud somewhere in
its life journey [2]. The observed evolutionary trend towards
cloud storage is also strongly motivated by the rapid volume
growth of enterprise data and unstructured data [3]. This would
have the consequence of highly increased investment and
maintenance costs when local storage is adopted. If on the one
hand storing data on the cloud comes with a lot of advantages
for the end-users, on the other hand it also introduces new
challenges for cloud storage providers.

With companies storing all or part of their data in the
cloud, it becomes of utmost importance for cloud providers
to guarantee service continuity [4]. From the cloud providers
perspective, any failure would correspond to important revenue
losses. As an example, losses were estimated at $273 million in
2007-2013, for 28 cloud service providers, given 1,600 hours

0000-0000/00$00.00 ©2019 IEEE

Leonardo Militano, Thomas Michael Bohnert
Zurich University of Applied Sciences, Switzerland

Email: leonardo.militano @ zhaw.ch, thomas.bohnert@ zhaw.ch

of disruptions [5]. Several metrics and performance indicators
can be used to measure how healthy the system is. Among the
most often talked about metrics in the cloud storage industry
is the concept of data durability, with nearly every provider
quoting some number of nines for this'. If guaranteeing
that the data is not lost is important, key requirements for
cloud native applications (CNA) running on top of a cloud
computing infrastructure services are the inherent support for
self-management, scalability and resilience [8]. Resilience can
be defined as the ability of a server, a storage system or an
entire data center to recover and to get back to an operational
status after that a failure occurs. Resilience is particularly in
focus for this paper as it is a major challenge to support the
massive migration of business services and storage to the cloud
[7]. One motivation for the high focus on resilience is that
hardware or software failures in the cloud elements may cause
severe effects on business revenues, even when the failure has
a short duration in number of hours [5]. As reported in [7], a
viable approach to guarantee or at least improve resilience is
to forecast, when possible, the threatening situations that may
cause a failure. Based on measurements and/or estimations, a
failure threat can be identified so that countermeasures can be
applied before the failure actually occurs. Moreover, it is a
requirement for cloud native applications to anticipate failures
and fluctuations in quality of both cloud resources and third-
party services for an application [8].

Based on the above considerations, in this paper we design
a failure monitoring solution for a containerized distributed
cloud storage solution based on the Rook project®. In partic-
ular, we adopt a Ceph distributed storage implemented using
Rook acting as a Kubernetes operator. The objective of our
work is to implement a methodology to monitor and prove
the containerized storage system to be resilient. There are
different levels of failure, e.g., software failure, equipment
failure, power outage, and all of them have to considered,
for a system to be called resilient. We propose a solution
to monitor the storage cluster health and the infrastructure
metrics that may indicate a reduced performance and a threat
of failure. An alerting system is also designed, to inform
the system administrator about health warning or error status
in case of system misbehaviour or failures. The proposal
has been validated in the production environment running at
the company Abraxas Informatik AG®, where a Ceph [13]
storage cluster is implemented using Rook on Kubernetes [14].

Thttps://www.backblaze.com/blog/cloud-storage-durability/
2https://rook.io/
3https://www.abraxas.ch/

Through selected test scenarios we showcase whether and to
which extent the system is resilient. To this scope software
modules to provide controlled load and removal of components
are designed to verify whether the service for the end-user is
interfered. To the best of our knowledge, the proposed solution
is the first implementation of this kind for resilience monitoring
service in a containerized cloud storage system.

The remainder of the paper is organized as follows. In
Section II we browse the related work w.r.t. distributed storage
in the cloud, whereas in Section III we briefly report on the
relevant projects for this paper. In Section IV the problem
and the proposed solution is described. The validation of
the implemented proposal is reported in Section V, whereas
concluding remarks are given in Section VI.

II. RELATED WORK

Resilience is identified in [8] as the first goal to be attained
in order to achieve a functioning and available cloud native ap-
plication. This goal is typically reached with several strategies
and by using redundant resources being pursued on different
levels. However, resilience goes well beyond the borders of
cloud native applications. For instance, in [15] the focus is
on the carrier cloud and the networking aspects of 5G mobile
networks in need of high availability and system reliability.
Focus on distributed storage systems is in [10] where the
authors propose an approach to replica management to ensure
data availability and durability. Accounting for the availability
history of nodes a solution to improve replica placement
and repair is proposed, while keeping an eye on the trade-
off between data availability, load-balancing and bandwidth
consumption. In a similar context, the authors in [11] analyze
replication strategies for storage systems aggregating disks of
nodes spread across the Internet. In [12] instead, an analysis
is proposed on the Self-Monitoring, Analysis and Reporting
Technology (SMART) that modern hard disk drives support.
The basic monitoring of internal attributes for the drives
to predict impending failures is improved adopting neural
network models to better predict drive failures.

More related to the focus of our paper, a survey on
categories and techniques for cloud computing infrastructure
resilience can be found in [7]. As the paper highlights, disrup-
tions due to failures see three major components in the cloud
architecture as the origin: the servers hosting the application,
the network interconnecting them, or the the application itself.
With the advent of containerized solutions in the cloud, an
additional component has to be added to the mentioned three
components in [7], namely a container. Actually in a Kuber-
netes environment this is more precisely a pod, i.e., a group
of one or more containers (such as Docker containers), with
shared storage/network, and a specification for how to run the
containers. Indeed, recent cloud environments adopt container-
based virtualization using Docker for container packaging
and Kubernetes for multihost Docker container management.
In such a container-based environment, it is important that
Kubernetes can dynamically monitor the resource requirements
and/or usage of the running applications, and then accordingly
adjust the resource provisioned to the managed containers.
Accurately predicting a failure is a problem in itself and much
work in this area when it comes to cloud systems, e.g. [9]. The
authors show that it is not easy to even find the right indicators

for accurately predicting that something is going wrong in the
system.

As the authors in [8] state, cloud applications should
be continuously monitored to achieve resilience. Application-
specific and infrastructural metrics should be monitored to pro-
vide automated and responsive reactions to failures, minimiz-
ing human intervention. To this aim, either services from the
infrastructure provider or a third-party service can be adopted.
Both of these options would lead to vendor lock-in and are also
paid services. Ad-hoc built solutions may solve these issues,
but come at the cost of engineering work. Therefore, in [8]
it is stated that monitoring, health management, and scaling
features should be developed within the managed cloud native
applications itself, so that they naturally adapt to the dynamic
nature of the application. Based on these observations, for the
scope of our research we adopt open-source software that helps
avoiding vendor lock-in issues and additional costs.

Currently, Kubernetes provides a naive dynamic resource-
provisioning mechanism which only considers CPU utilization
and thus is not effective. In [16] a generic platform to facilitate
dynamic resource-provisioning based on Kubernetes is pro-
posed where the solution relies on the monitoring of the system
resources. The monitoring solution we propose in this paper
goes beyond the built-in mechanism provided in Kubernetes
taking into account both system resource utilization and quality
of storage metrics.

III. OVERVIEW OF ADOPTED TECHNOLOGIES

Kubernetes is a container orchestration and management
platform designed by Google [14]. It is under open source
license and is the foundation of many popular PaaS solutions
such as Openshift, CloudFoundry, Tectonic or Juju. Kubernetes
follows the controller-worker model, where a controller man-
ages Docker containers across multiple Kubernetes workers.
The controller and its controlled nodes constitute a cluster.
Kubernetes offers solutions for automated provisioning and
scaling of containers, and also orchestrating computing, net-
working, and storage infrastructure for user workloads. The
containers are isolated from each other and through the con-
solidation on operating-system-level, the overhead produced by
a hypervisor falls away. Kubernetes supports the microservice
approach in the software development and every component
of a software can be managed and scaled. Typically, an
application is divided into one or more tasks executed in one
or more containers. Each container is generally restricted in
terms of the maximum resource quantity that it can consume.

Rook is an open source cloud-native storage framework
designed to manage storage solutions, and is natively inte-
grated with cloud-native environments. Since 2018 the Cloud
Native Computing Foundation (CNCF) hosts Rook as the
first project in the cloud-native storage category. The main
objective of Rook is to bring File, Block and Object storage
systems into the Kubernetes cluster, where other applications
and services may run that are actually consuming the storage. It
runs as a Kubernetes operator, which makes storage software
a self-managing, self-scaling, and self-healing service using
Kubernetes primitives. Kubernetes applications can mount
block devices and file-systems, use the S3/Swift API for object
storage managed by the Rook operator. The operator is running

as a container, which automates configuration and monitors the
cluster to ensure the storage remains available and healthy.

Instead of building a new storage system, Rook focuses on
turning existing battle-tested storage systems into cloud-native
services on-top of Kubernetes. The initial efforts were put on
Ceph, with the Ceph Custom Resource Definitions (CRDs)
recently promoted to Beta version in the Rook v0.8 release.
However, also other storage systems have been integrated in
Rook (like Minio object storage, CockroachDB, Cassandra,
Network File System) and others are expected to come in
the near future. Noteworthy, the Rook deployment includes
several additional components that support the monitoring of
the cluster, like the Prometheus exporter and the Grafana
dashboard. These allow to display the status of the Rook cluster
and all the storage components which definitely come in handy
in the design of our proposed monitoring solution for resilience
monitoring.

Ceph is a unified, distributed storage system that offers
high performance, reliability, and scalability. It promotes self-
managing, self-healing and no single point of failure for block,
file and object storage [13]. The concept Ceph promotes is
to support primarily consistency and partition tolerance over
availability (see [6] for more details on the related CAP theo-
rem notions). This practically means that for every data write
operation an acknowledgment is sent to the client only after all
the replicas are correctly written. A key element of Ceph is the
implementation of a pseudo-random data distribution function
(CRUSH) to determine where and how to store the data on the
storage nodes. The Ceph storage cluster is made up of several
software daemons taking care of unique Ceph functions. The
main components are:

e Reliable Autonomic Distributed Object Store (RA-
DOS): responsible for storing data in the Ceph cluster in the
form of variably sized objects;

e Object Storage Devices (OSDs): store user data in
form of objects with OSD Daemons handling the read/write
operations on the storage disks;

e Monitors (MONS): track the health of the entire cluster
by keeping a map of the cluster state. All the cluster nodes
report to monitor nodes and share information about every
change in their state;

e Librados: library to get access to RADOS, providing a
native interface to the Ceph storage cluster, and a base for other
services such as RBD, RGW, as well as the POSIX interface
for Ceph file system;

o Ceph (previously Rados) Block Device (RBD): provides
block storage, which can be mapped, formatted, and mounted
just like any other disk to the server;

o Ceph Metadata Server (MDS): keeps track of file
hierarchy and stores metadata only for CephFS;

o Ceph File System (CephFS): offers a POSIX-compliant,
distributed file system;

e Rados Gateway (RGW): offers object storage on top of
the Ceph storage and implements an S3/Swift interface;

e Manager (MGR): provides further monitoring features
and an interface for external monitoring and management.

IV. MONITORING CLOUD STORAGE FOR RESILIENCY

As introduced in Section I, resilience is of utmost im-
portance in distributed cloud storage to guarantee data dura-
bility and service availability. However, proving a service to
be resilient for every combination of software, service and
platform is not trivial. Nonetheless, a well-designed monitoring
of the provided cluster infrastructure can be of great support.
We will focus our attention on the Rook framework with a
Ceph implementation as a Kubernetes operator. We build our
monitoring solution upon the following three key elements:

1) Selection and monitoring of key metrics: We
identify a set of parameters, metrics and sampling
intervals that best fit to the scope of monitoring the
status of the different components in the deployed
Rook cluster and the underlying infrastructure;

2) Controlled system load and removal of compo-
nents: To best evaluate the resilience of a system, a
controlled load needs to be provided. In particular,
with a constant load a controlled removal of compo-
nents can be designed to evaluate the time to react
and recover from a failure in the system;

3) Health status forecasting and alerting: Provide
means to evaluate whether the functionality of the
service is not interfered with the removal of a compo-
nent and whether a noticeable change in feel occurs in
using the service for the end-user. An alerting service
will inform the system administrator in order to react
to system misbehaviour or threatening conditions for
the infrastructure.

Algorithm 1 Cluster health status control
1: procedure VERIFYCLUSTERSTATUS(M,W.E) >
M vector of metrics, W vector of warning thresholds, E
vector of error thresholds

2: status = “healthy’

3: i=0

4: while (status£’error’)&(i<length(M)) do
5: if (Mz > Wl) then

6: status = *warning’

7: send warning message about M;
8: end if

9: if (Ml > Ez) then

10: status = ’error’

11: send error message about M;

12: end if

13: i++

14: end while

15: return status

16: end procedure

As it concerns the parameters and metrics of interest for
our solution, these are derived both from the Ceph cluster
and from the infrastructure itself. A Ceph cluster can raise
several health messages, but we limit our interest to the subset
that best meet our objectives. For a detailed description of
the Ceph health messages please refer to the official Ceph
documentation [13]. The status of the Ceph cluster can change
between three different possible states, i.e., Healthy, Warning
and Error, and is determined by Ceph itself as a combination
of the health status of all the components. When the system is

not in a healthy state, an action from an administrator or from
the system itself is necessary to recover.

Besides the Ceph health messages, we consider additional
metrics for the underlying infrastructure the Rook cluster is
running on. Some of the selected metrics are already calculated
by the integrated Grafana dashboard, other metrics instead,
have to be calculated separately. The additional metrics we
consider are the following: OSD Commit Latency, OSD Apply
Latency, IOPS, CPU Usage, Cores usage, Network usage,
Disk IOPS usage, Available storage, OSD down, OSD orphan,
Monitor down, PG undersized, PG stale, PG degraded. A
weighted function of these parameters determines the infras-
tructure health status which in combination with the Ceph
health state, determines the final health state for the storage
cluster. Whenever a metric does not meet the constraints set for
a warning or an error message to be sent, an alerting message
is sent to the administrator (see Algorithm 1).

The overall health states are displayed in the Grafana
dashboard, with three different health levels for each metric.
For monitoring purposes and to produce a constant load in the
system we adopted a load generator based on fio, which is a
highly flexible tool for bench-marking I/O. All the metrics are
monitored and measured in terms of number of actions per
second. Consequently, the adopted sampling intervals are less
or equal to one second. Based on an initial health status, we
get a good overview of the cluster before running any further
tests. In particular, to run a heavy load test, the cluster should
be in healthy state, because the tests should not interfere with
the functionality of an in production storage cluster. Therefore,
a first step of our system resilience analysis is to verify the
status of the Ceph cluster and the Kubernetes infrastructure,
as described in the flow diagram in Fig. 1. Only if the status
is HEALTHY we can proceed with further tests as wished.
In the latter case, whenever any of the considered metrics
does not meet the health constraints as defined in Table I,
an alert message is sent to the system administrator using a
web-hook in order to take the required countermeasures. What
the exact countermeasures to be taken are, is not in the scope
of this paper. Our scope is indeed to provide the required
tools to demonstrate resilience and the self-healing capability
of the Rook-managed Ceph cluster, and at the same time,
quickly report to the system administrator whenever a threat or
misbehavior is recognized so that actions can be timely taken.

To demonstrate the resilience of the Ceph cluster, the
strategy we follow is to showcase that the loss of instances
does not interfere with its functionality. To this aim we define
a software element, called monkey as part of the implemented
solution, that randomly destroys a running cluster component
during its execution. The set of components out of which to
select are a Rook operator, a Rook agent, an OSD and a Ceph
monitor. As we see from the values reported in Table I the
loss of one OSD instance generates a Yellow state (which is
acceptable), but as soon as two OSD instances fail, the cluster
will change to error state. The same applies for the Ceph
monitors. The remaining Rook components instead, have no
influence on the functionality of the Ceph cluster. From our
tests the Ceph monitors restarted almost instantaneously. For
this reason, in our validation we report on the OSD case only.

b

Administrator

Produce
Start le—
reports

Get basic metrics for
Ceph cluster status

Generate a load fio
and randomly kil
Yess| one cluster

Collect Ceph
and infrastructure

Is the Ceph
cluster healthy?,

component using metrics
the monkey l
No
v
Are all
L Send alert message No. metric constraints
met?

Fig. 1. Flowchart of the proposed solution.

V. VALIDATION AND PERFORMANCE EVALUATION

To validate our proposal, we implemented a software
module in the open source programming language Go*. The
objective is to be able to test and demonstrate the resilience
of the Rook-managed storage cluster. We adopted this module
to test the solution in a production environment for a Rook-
managed Ceph cluster on Kubernetes, at the company Abraxas
Informatik AG. The implemented tool is reachable from the
outside through a REST interface and is connected to Grafana
and to the Rook cluster. The Kubernetes cluster is running on a
VMware ESXi infrastructure of virtual machines and consists
of three controller nodes and six worker nodes maintained by
Tectonic. Each of the worker nodes is equipped with one OSD
and a dedicated disk for its OSD (this means that the loss of
a node equals to the loss of an OSD). All the data and the test
disks are persisted on Ceph with this leading to a balanced
load on the Ceph components. Even if some constraints in the
performed tests derive from the underlying infrastructure of
the hosting company, we do not loose in generality in terms
of the Ceph storage cluster resilience validation and monitoring
capabilities.

In Table I we report the threshold values for the infrastruc-
ture metrics that have been adopted during validation. These
values are specifically tailored to the specific scenario under
study and derived from best practice analysis, the experience
of the hosting company and application specific values. In
Table II, the adopted validation settings are collected. The
monitoring sampling period for the selected metrics is set to 1
second and the data sampling is performed every 10 seconds
over a set of the last 30 samples. This implies that alerting
messages and consequent countermeasures for the system can
be performed every 10 seconds in the best case. These values
can be tuned differently according to the specific system under
test. However, for the reference scenario the mentioned values
revealed to be satisfactory. The metrics are aggregated mostly
in terms of mean values. Moreover, the 90-percentile and
the Population Standard Deviation are considered for what
concerns the warning state messages. This warning message is
used to inform the administrator as soon as any system metric

“https://golang.org/

1/0 Latency
450 . 12x10%

1/0 Operations Per Second

1/0 Throughput

T T T
Read (no monkey) - G - | Read (no monkey) - O - 7x10° [T Read (no monkey) - -0 -1 . b
400 - Read (w monkey) @) L] Read (w monkey) @ - Read (w monkey) - @
Write (no monkey) —-¥—1 10x10° | Write (no monkey) —-%- | 6x105 |- Write (no monkey) —-¥-1 i
350 |- Write (w monkey) —8— P i) Write (w monkey) —H— Write (w monkey) +-E}-1 ;
7 A L D105 | & b
= 300 - A 4 8x10% i . g D
z =
& 250 7 4 " . 2axa05 | @ f *
S il S 6x10° . E i
g 200 - = . = 3 < i
g P "x,ll E3x10 r ‘e ! h
3 150 B 4x10% 4 o ; 4
Z2x10° i 4
100 |- ;" 4 ¢ s
2x103 + 105 | B
50 - LT b i
ot <¢_)) i - % rmim e —————— $ﬁﬂ

L L
256 1024 5x1024 256 1024

Load [KB]

10x1024

(a) Latency

(b) IOPS

5x1024
Load [KB]

10x1024 256 1024 5x1024

Load [KB]

10x1024

(c) I/0O throughput

Fig. 2. Performance comparison for a varying load value for read/write operations and with a randomly chosen component being killed by the monkey (plots

are reported with 95% of confidence interval).

TABLE 1. SELECTED METRICS AND THRESHOLD VALUES FOR GREEN, TABLE II. MAIN VALIDATION PARAMETERS
YELLOW, RED HEALTH STATES.
[| Parameter [Value]
[Metric [Green | Yellow | Red | Data sampling period 10s
Ceph health status Healthy Warning Error Monitoring sample period 1s
OSD Commit Latency [ms] | <10 ms 10-50 ms >50 ms Network connection 10GBit/s
OSD Apply Latency [ms] <10 ms 10-50 ms >50 ms Maximum infrastructure IOPS 14000
IOPS <6000 | 6000-14000 | >14000 Type of read/write operations random
CPU Usage [%] <50% 50-85 % >85% Validation | Maximum infrastructure load 1GB
Cores Usage [%] <50% 50-80 % >80% settings Number of MONs 3
CPU Usage [%] <50% 50-80 % >80% Number of OSDs 6
Network Usage [%] <50% 50-80 % >80% OSD size 32GB / 215GB
Disk IOPS Usage [%] <50% 50-80 % >80% Storage application MongoDB
Available storage [%] <50% 50-80 % >80% Read/Write block size 4KB-10MB
OSD down 0 1 >1 Test duration per run 60s
OSD orphan 0 1 >1
Monitor down 0 1 >1
gg l:; clieersued 8 }iﬁ time, the monitoring and alerting solution is also informing
PG degraded 0 L-inf } the administrator about threatening situations. Observing the

gets near to the predefined thresholds.

Besides showcasing the resilience of the system, results are
collected for additional parameters, namely: latency, which is
the most important parameter as this influences the use of the
service [17]; I/O throughput which gives information about
how much data is processed; /OPS which tells us how many
operations are used to process the data; and recovery time as
the time between the system failure and the system being up
again after a self-healing procedure.

The first analysis we present has the objective of proving
that the removal of a single Rook component (i.e., agent,
operator) has no relevant influence on the overall performance
of the Ceph cluster. The motivation for this is that the system
is able to quickly recover when a failure occurs and therefore
is resilient. To showcase this, we run our experiments with the
proposed technique comparing the case where the monkey is
activated or not (labeled with "w monkey” and "no monkey”
respectively in Fig. 2). We tested several blocksize values in the
range [4K B — 10M B] for random read/write operation using
fio in the storage cluster. As reported in Fig. 2, we observe
that in all cases there is almost no effect on the performances
when the operator kills a randomly chosen OSD. At the same

latency plots in Fig. 2 (a), we notice that the average latency
increases with the load (in terms of block size) introduced
in the system. This behavior is equal for reading and writing
operations, with the writing operations showing an expected
higher latency value. In all of the tested cases the latency
ranges between an average value of 2.7 milliseconds for a
reading operation and 4KB blocksize and a maximum of about
389 milliseconds for a writing operation and 10MB blocksize.

When focusing on the IOPS plots in Fig. 2 (b), we observe
that in all cases the number of IOPS decreases with the increase
in terms of load. The exact values range between a maximum
of 11860 IOPS for reading when the monkey is not active
and the blocksize is set to 4KB, and a minimum of 80 IOPS
on average, for write operations when the blocksize is set to
10MB. The number of IOPS reached with write operations
is always less than when reading operations are performed
(also this is an expected result). For the reading operations a
slightly more visible influence is observed when the monkey
is ’killing” randomly chosen OSDs in the storage cluster.

If we observe the I/O throughput as reported in Fig. 2
(c), it becomes even more evident how reading operations are
performed much faster than writing operations for all values
of the blocksize. For an increasing value of the blocksize it
is interesting to observe that the throughput increases until

a sort of system saturation is reached for large blocksize
values (please note also that a larger confidence interval is
obtained in these cases as we are reaching the boundaries of
the system). In particular, for the reading operations it reaches
about S00MB/s for a blocksize of 10MB. Also for this metric,
the influence of the monkey being active is more evident for
the read operations.

In the last analysis we present, we aim at showing the
ability of the Rook-managed Ceph storage cluster in recovering
in case of failures. In particular, we report the CDF for the
time interval between the moment that the OSD is killed and
the moment where the system is back to a healthy status. In
Fig. 3 two different sizes for the OSD are considered and we
highlight the difference in the recovery time. Looking at the
90th percentile for the tested cases, we can observe that the
recovery time for the cluster is 50 seconds for the 32GB OSD
case, and a bit less than 150 seconds for the 215GB OSD case
(41 and 142 seconds on average for for all the tested cases
for the 32GB and the 215GB case respectively). Whenever, a
failure occurs an alerting message is also sent to the system
administrator so that it is informed that something happened
on the system which could have influenced the usage of the
service. As part of our future work, we plan an automatic
system reaction to the received alert messages.

Time to recovery from OSD failure

L

=)

O
32GBOSD ——
215GB OSD ——

0 20 40 60 80 100 120 140 160 180 200 220
Recovery time [s]
Fig. 3. CDF for failure recovery time when randomly killing an OSD of

either 32GB or 215GB.

VI. CONCLUSION AND FUTURE WORK

In this paper we have investigated on monitoring solutions
for resilience in containerized distributed cloud storage sys-
tems. We presented a software tool that is able to test and
monitor a Ceph cluster deployed using Rook on Kubernetes.
As we demonstrated, the tool is able to forecast failures being
about to occur and promptly alert the system administrator.
In the Rook-managed storage cluster considered in our tests,
failures could be recovered within 41/142 seconds on average
for a 32GB and a 215GB OSD respectively. To effectively
support resilience in the storage cluster a cautious monitoring
of system metrics and the forecasting of failure threats that
trigger alert messages is proposed. As failures correspond to
revenue losses for the cloud storage providers, we believe that

the proposed solution can be of high interest for the rapidly
growing cloud storage market. In our future research we will
extend our investigation for other scenarios and heavier load
values to further test the storage cluster. Moreover, we will
focus on extending the implemented tool to allow for automatic
reacting to misbehaviour or failures based on known patterns
and behaviors of the system.

REFERENCES

[11 G. Tlili, M. F. Zhani and H. Elbiaze, ”On providing deadline-aware
cloud storage services,” 21st Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN), Paris, France, 2018.

[2] J. Gantz, and D. Reinsel, The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east. IDC iView: IDC
Analyze the future, 1-16, 2012.

[3] R. Hoppli, T. M. Bohnert, and L. Militano "Hera Object Storage:
A seamless, Automated Multi-Tiering Solution on Top of Openstack
Swift”, 8th IEEE International Symposium on Cloud and Services
Computing (SC2), 2018.

[4] Z., Ou, M., Song, Z. H., Hwang, A., Yld-Jaaski, R., Wang, Y.,
Cui, and P. Hui, "Is cloud storage ready? Performance comparison
of representative IP-based storage systems”, Journal of Systems and
Software.

[5] C. Cerin, C. Coti, P. Delort, and F. Diaz, Downtime statistics of current
cloud solutions, IWGCR: The International Working Group on Cloud
Computing Resiliency, EU/USA, Tech. Rep. 001-en1-2013, Jun. 2013.

[6] E. Brewer, "CAP twelve years later: How the” rules” have changed.”
Computer 45.2, pp. 23-29, 2012.

[7] C. Colman-Meixner, C. Develder, M. Tornatore and B. Mukherjee, ”A
Survey on Resiliency Techniques in Cloud Computing Infrastructures
and Applications,” in IEEE Communications Surveys & Tutorials, 2016.

[8] G. Toffetti, S. Brunner, M. Blochlinger, J. Spillner, and T. M. Bohnert,
”Self-managing cloud-native applications: Design, implementation, and
experience”, in Future Generation Computer Systems, Vol. 72, 2017,
pp. 165-179, https://doi.org/10.1016/j.future.2016.09.002.

[91 A. Srbu, and O. Babaoglu, “"Towards Data-Driven Autonomics in
Data Centers”, in International Conference on Cloud and Autonomic
Computing, 2015.

[10] A. M. Kermarrec, E. Le Merrer, G. Straub, and A. Van Kempen,
” Availability-based methods for distributed storage systems”, in IEEE
31st Symposium on Reliable Distributed Systems (pp. 151-160), 2012.

[11] Chun, Byung-Gon and Dabek, Frank and Haeberlen, Andreas and Sit,
Emil and Weatherspoon, Hakim and Kaashoek, M Frans and Kubiatow-
icz, John and Morris, Robert Tappan, “Efficient Replica Maintenance
for Distributed Storage Systems”, in NSDI, vol. 6, 2006.

[12] Zhu, Bingpeng and Wang, Gang and Liu, Xiaoguang and Hu, Dianming
and Lin, Sheng and Ma, Jingwei, "Proactive drive failure prediction for

large scale storage systems”, in IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST), 2013.

[13] I. a. c. Red Hat, "Ceph Documentation,” 2018. [Online]. Available:
http://docs.ceph.com/docs/master/. [Accessed 26 07 2018].

[14] The Kubernetes Authors, ”What is Kubernetes?,”
The Linux Foundation, 2018. [Online]. Available:
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.
[Accessed 19 08 2018].

[15] T. Taleb, A. Ksentini, and B. Sericola. ”On service resilience in
cloud-native 5G mobile systems.” IEEE Journal on Selected Areas in
Communications 34.3 (2016): 483-496.

[16] C. C, Chang, S. R., Yang, E. H., Yeh, P, Lin, and J. Y. Jeng, A
Kubernetes-Based Monitoring Platform for Dynamic Cloud Resource
Provisioning.” GLOBECOM 2017- IEEE Global Communications Con-
ference, 2017.

[17] G. Crump "What is Latency? And How is it Different from
IOPS?.” [Online]. Available: https://storageswiss.com/2013/12/10/what-
is-latency-and-how-is-it-different-from-iops/ 2013.

