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Abstract—In recent years, there is an ongoing computational
shift from the data center to the network edge. Due to the
increased hardware capabilities of devices, the edge can also
benefit from the dynamic and scalable services provided by the
virtualization technologies. In turn, the edge computing brings
low-latency and reduced network traffic, location-awareness and
local caching. However, the new capabilities unlock new chal-
lenges in terms of security, data and workload location.

In this work, we focus on the threats caused by the het-
erogeneous and distributed nature of the edge infrastructure.
We build a trusted edge based on the hardware isolation of
ARM TrustZone. Moreover, we use it as a secure foundation
to perform location-aware virtual machine deployment utilizing
the dispersed nature of the infrastructure. We measure the
performance of our solution and discuss the overall overhead
and potential improvements.

Index Terms—security, virtualization, cloud, edge computing,
geo-fencing, asset tag, Trusted Execution Environment, TEE, OP-
TEE, ARM TrustZone, VIM, Virtualized Infrastructure Man-
ager, OpenStack

I. INTRODUCTION

Nowadays, cloud computing is an established paradigm
adopted by the business, the industry and the mass users alike.
By the means of the virtualization technologies, the cloud
provides dynamic and scalable compute, network and storage
resources in the form of different services. In the meantime,
the processing capabilities of the end devices are continuously
growing, hence the ongoing shift of the computation from
the data center to the network edge equipment. The utiliza-
tion of the computing power of edge devices is a common
subject of fog, edge and multi-access edge computing [1]. In
particular, the distributed device locations closer to the users
allow for low-latency communication, reduced network traffic,
location-awareness and local caching. When such advantages
are combined with virtualization technologies, edge computing
becomes a natural part of concepts like Software-Defined
Networking (SDN), Network Functions Virtualization (NFV)
and Fifth Generation (5G) mobile networks.

As with any other new technology, edge computing brings
new challenges together with the new opportunities. Undoubt-
edly, security is among the most important ones, though
often neglected. Various surveys exist, analyzing cloud and
edge security threats in different aspects and contexts [2]–
[5]. The dispersed edge infrastructure often relies on wireless
connectivity which makes it vulnerable to man-in-the-middle
attacks. Remote or difficult to secure locations also increase

the risk of tampering or replacement, therefore, extra measures
need to be taken to verify the authenticity and integrity of the
edge devices.

Another challenge is related to the data and workload
location. In a cloud environment, the actual location of the
servers running the workloads and storing the data is known
only to the cloud owner or provider. Yet some data may be a
subject of sensitive policies which restrict its placement into
specific geographic boundaries. This is even more likely for
the edge, where the physical hosts have inherently distributed
nature. Moreover, the Quality of Service (QoS) may require
placing the workloads in close proximity to the end user,
for example, to achieve a required minimum latency of a
streaming service.

Solving all challenges of the edge computing at once is an
ambitious task, however, any of its sub-tasks is an interesting
research topic by itself. In this work, we focus on the problem
of workload location and we propose a location-aware virtual
machine (VM) deployment on the edge. We built an edge
infrastructure of trusted ARM devices, able to support hosts
authentication and integrity check as well as to securely store
geolocation information. In order to achieve completeness
of our edge computing system, we use the management
capabilities of OpenStack [6] and we integrate attestation and
geo-fencing functionality in the OpenStack Compute project.

The next sections are organized as follows. Section II gives
some background on the topics of trusted computing and geo-
fencing. The architecture and details of the proposed solution
are given in Section III followed by experimental setup and
results in Section IV. In the end, we present a short survey of
related works and give our conclusions in Sections V and VI.

II. TRUSTED COMPUTING AND GEO-FENCING
BACKGROUND

A. Trusted computing

The challenge of building a trusted virtualized infrastructure
has been a topic of many works which have identified the need
for a hardware root of trust and external attestation [7], [8].

For the former, the trust into a device cannot be based
only on software, there needs to be a hardware component
which serves as a trust anchor or what is called a hardware
root of trust. Currently there are two main trends in this area,
driven by two standardization bodies: the Trusted Computing
Group (TCP) and the Global Platform (GP). The TCP define



the Trusted Platform Module (TPM) [9], a collection of
cryptographic functions often implemented by a dedicated
hardware chip outside the main processor. The GP specify the
Trusted Execution Environment (TEE) [10], this is a secure
isolated environment on the same System-on-Chip (SoC). Two
main industry technologies are implementing a TEE:

• Intel SGX or Intel Software Guard Extensions [11] is
an Intel architecture extension with protected areas of
execution in the memory, called enclaves. The developers
can specify parts of their application which run isolated
into the enclaves, protected from other applications, the
operating system (OS) or even the firmware.

• ARM TrustZone [12] provides a hardware isolation for
the parallel execution of a secure environment and a rich
OS, together with a mechanism for the context switch
between the two.

The latter is concentrated on the remote attestation of a
device as an additional measure of trust. A formal definition
of the process is given in [8] while a popular open-source
implementation is the OpenAttestation project [13].

B. Geo-fencing

The problem of location-aware workload placement and
migration can be seen as restricting the workload based on
pre-defined location requirements. In the literature, this is also
called geo-fencing. The term geo-fence has a broader sense as
a virtual perimeter for a real-world geographical area formed
by location attributes [14], [15]. The determination of the
geographical position of an object is known as geolocation. A
device geolocation can be discovered by an integrated Global
Positioning System (GPS), Radio Frequency Identification
(RFID), the device IP address or even manually provisioned.
Once the location is determined it has to be stored securely on
the device, the process is often referred to as geo-tagging. The
secure geolocation is a separate research topic which is not in
the focus of this work. Here, we concentrate on the processes
of geo-tagging and geo-fencing.

In the context of cloud and edge computing, geo-fencing
is used to set-up policies based on the geolocation attributes
provisioned to the hosts of the virtualized infrastructure [14].
Such policies can be related to government laws that restrict
the workloads to a concrete country but also can define a
secure zone for placing a critical service or can be based
on the proximity to the user and the insurance of real-time
processing.

III. TRUSTEDVIM SOLUTION

As described in the previous sections, our work has two
main goals, secure and location-aware workload execution.
The solution that we propose in order to achieve them is called
Trusted Virtualized Infrastructure Manager (TrustedVIM). As
its name suggests, it has two main functions - creating a trusted
virtualized infrastructure on one side and the infrastructure
management on the other. The first one helps us building a
secure edge on which we can safely execute VM workloads
and store essential information such as keys and tags (location,

asset identification, etc.). The management function provides
a remote attestation of the edge compute hosts and a location-
awareness during VM deployment. The main components of
the TrustedVIM architecture are shown in Figure 1.

Fig. 1. TrustedVIM Architecture

A. ARM TrustZone-based edge nodes

The key component is the edge infrastructure based on
ARM TrustZone-enabled nodes running VOSYSMonitor [16].

This mixed-critical infrastructure provides each node (host)
with an isolated environment for storing and running sensitive
data and applications. Each device has two execution environ-
ments, called Normal World and Secure World. The Normal
World hosts a rich operating system, KVM-enabled Linux in
the case of this work, where the virtualization services and the
workloads are running. Meanwhile, the Secure World provides
a secure environment for the critical tasks of the Normal World
as well as a secure storage for cryptographic keys and other
critical data. The context switch between the two worlds is
done by VOSYSMonitor - a thin monitoring software layer
developed by Virtual Open Systems.

In addition, the edge nodes make use of secure boot to prop-
agate the trust to the upper software layers. It is accomplished
by a vendor-specific mechanism relying on a hardware root of
trust and is propagated to the Linux user-space by U-Boot’s
verified boot [17]. The boot process is multi-staged and starts
from the boot read-only memory (ROM) and the first-stage
boot loader (FSBL). After the FSBL is determined as secure,
it loads the open source boot-loader U-Boot which on its turn
verifies the signature of the Linux kernel image and only then
loads the operating system.

B. OpenStack extensions

We supplement the management capabilities of OpenStack
with attestation extensions integrated directly into the Open-
Stack Compute (Nova) project. By doing this, we build upon
the features of a well-established open-source cloud manager
and we add the missing pieces for solving our problem. The
extensions are part of the instance (VM) scheduling process
and are responsible for the verification of the compute nodes’
authenticity and integrity and the location-awareness. On the
request of a new OpenStack instance creation, the attestation



service filters the available compute nodes by their trust state.
Only nodes that are decided to be trustworthy are passed
through and can be used as hosts for the instance placement.

Nova-scheduler is one of the internal components of Open-
Stack Nova and is part of the flow for provisioning a new
instance. By default, the nova-scheduler is configured as a
filter scheduler and implements a decision-making mechanism
selecting the host on which new instance should be created.
During this process the scheduler iterates through all compute
nodes, evaluating each against a set of filters. The list of
resulting hosts is ordered by weights and is used to select the
one that meets all VM requirements. If the scheduler cannot
find a candidate, it means that there are no appropriate hosts
where that instance can be scheduled [18].

As part of our work, we implement a custom filter, called at-
testation filter, part of the filter scheduler. It is complemented
by an attestation agent application running on each compute
node. The OpenStack Nova is configured to run the attestation
filter during the default filtering procedure. It establishes a
connection with the attestation agent and gathers information
about the trust status of the platform. Based on this data it
informs the scheduler if each of the hosts passes or not.

C. OP-TEE Secure services

Open Portable Trusted Execution Environment (OP-TEE)
is an open-source implementation of a TEE meeting the
Global Platform TEE specifications. OP-TEE is designed to
run into the Secure World in parallel with a Rich Execution
Environment (REE) which is, in this case, a Linux OS running
in the Normal World. The underlying hardware isolation is
based on ARM TrustZone [19].

We implement several services providing the security of the
edge nodes as OP-TEE trusted applications inside the Secure
world where they cannot be affected by software running in
the Normal World. We use the OP-TEE secure storage to keep
the geolocation of the edge nodes in a place where it cannot
be maliciously modified.

1) Edge node authentication: The edge nodes authentica-
tion is initiated by the OpenStack Controller and is performed
before the start of the provisioning. The Controller uses a
”Challenge-response” protocol, based on asymmetric cryptog-
raphy, to verify that the compute node is actually the one that
it is claiming to be. This is a fundamental service to avoid
man-in-the-middle attacks.

We define a secure communication protocol between the
OpenStack Controller and the edge nodes with the goals of
verifying the node authenticity, keeping the message integrity
and the communication secrecy. The OpenStack Controller
knows the public key of all the compute (edge) nodes, while
all the compute nodes know the public key of the OpenStack
Controller. Obviously, the private key is known only by the
actor itself. All keys are securely stored in OP-TEE. Thanks
to this, it is possible to exchange a packet composed of the
following elements:

• Encrypted message: granting secrecy since only the re-
ceiver can decrypt the content of the message. Moreover,
it contains a nonce that makes ineffective reply attacks.

• Signature: acting as a Message authentication code
(MAC) it guarantees the authenticity and integrity of the
packet.

By following this protocol, we achieve a secure communica-
tion secure channel that allows end-to-end encryption between
the OpenStack Controller and the OP-TEE operating system.
Even if the Linux kernel on the edge node is comprised, an
attacker cannot alter this communication channel. The only
possible attack is the interruption of the channel, but this
can be already interpreted as a ”red flag” by the OpenStack
Controller.

Fig. 2. Integrity check diagram

2) Linux kernel integrity check: Detecting all signs of
infection is a task hard to achieve. Having said that, this
implementation intends to serve as a proof of concept and
to demonstrate the feasibility of the work and measure its
performance.

In order to interfere with the execution of a VM a malicious
software (commonly referred to as malware) has to gain high
privileges. Usually, an infection of the kernel space is needed.
The main malware category that aims at this is the so-called
”rootkits”. One common technique used by rootkits is to
tamper the kernel code to perform malicious actions. A valid
countermeasure is a run-time integrity check of the kernel
code memory. Although this doesn’t prevent the execution
of a rootkit but only the detection of it, this information is
valuable to mark the infected host as not trusted and take
countermeasures. We define our main attack vector as a rootkit
and implement the Linux integrity check by monitoring two
essential tables present in the Linux kernel:

• sys call table: this table contains all the pointers to the
functions implementing the system calls. Since the inter-
face between user and kernel space goes entirely through
this interface, it is mandatory to verify the integrity of
this table to avoid tampering of those.

• vectors: in the ARM architecture whenever an exception
occurs the processor switches the execution to the correct
entry in the vector table. This table is also critical for the
safety and it should not be never changed.



Thanks to OP-TEE it is possible to verify at run-time that
these tables are not modified. To perform this it is sufficient
to compute the digest of the tables and verify that it is exactly
as the one expected. OP-TEE embeds in its code the digests
of the tables computed offline using the verified kernel image.
Figure 2 summarizes the steps of this integrity check.

3) Location-aware VM deployment: The location-aware
VM deployment can be split into two phases. The geo-tag
provisioning phase when we load and store the geolocation to
the edge compute nodes and the actual deployment phase.

The components that play a part during the first phase are
the geo-tag database and a tagging tool. Since the acquisition
of the edge location is not the goal of this research, we
use pre-defined static geolocation information and leave the
dynamic geolocation for future works. The tagging tool has
the role of provisioning the geo-tag to the trusted edge node.
The tags are stored in a database with a JSON format. The
tool extracts the needed tag from the database, calculates its
hash digest and sends it to the nodes Linux part (Normal
World). Then the control is transferred to the OP-TEE
where the digest is stored. The proposed geo-tag structure
consists of GPS coordinates and an additional text description:

{"host": {
"trusted": "true/false",
"tag": "tag string",
"geolocation": {

"latitude" : 12.345,
"longitude": -67.890 }

}}

Alternative geo-tag structures can consider regions, road
names, cities blocks, buildings or any other geographical
concept instead of GPS coordinates.

After the tag is provisioned to the trusted edge compute
nodes, the VM deployment can start. The OpenStack Flavors
are updated to include the geo-tag attributes. Before VM
instantiation, Nova (through the nova-scheduler and its filters)
checks the DB for a tag with matching attributes, calculates
the tags hash and attests the compute node. Through the
already existing mechanism of encryption and signing the hash
value is sent to the Attestation agent and the OP-TEE trusted
applications (TAs). The TA receives the calculated hash and
compares it with the stored one. If the two values match, a
success is returned and the VM provisioning on this node can
continue.

IV. EXPERIMENTAL SETUP AND RESULTS

The following experiment is designed in order to evaluate
the performance overhead added by the proposed security
and geo-fencing enhancements. Our work extends the VM
deployment process, hence, we are comparing the boot and
delete times of a VM in two scenarios. The first one is a
vanilla OpenStack deployment with one controller node and
one edge compute node without any extensions. The second

TABLE I
BOOT AND DELETE 50 VMS, WITHOUT SECURITY AND GEO-FENCING

Action Min (sec) Median(sec) 90%ile(sec) Max(sec) Avg(sec) Count

boot instance 12.816 12.939 13.084 13.4 12.97 50

delete instance 2.35 2.366 2.39 2.55 2.378 50

total 15.182 15.319 15.504 15.778 15.384 50

TABLE II
BOOT AND DELETE 50 VMS, WITH SECURITY AND GEO-FENCING

Action Min (sec) Median(sec) 90%ile(sec) Max(sec) Avg(sec) Count

boot instance 12.821 12.986 15.129 15.211 13.549 50

delete instance 2.353 2.372 2.556 2.595 2.414 50

total 15.197 15.435 17.524 17.664 15.963 50

one includes the security and location-awareness features.
However, the added logic is executed during the VM schedul-
ing, before the VM provisioning phase, therefore the results
are independent from the VM and guest OS size. Each run is
repeated 50 times.

OpenStack is deployed with Devstack [20] in a multi-node
configuration:

• One x86 controller node: Intel(R) Xeon(R) CPU E5-2623
v4 @ 2.60GHz, 32GB memory, Ubuntu 16.04.4 LTS,
KVM-enabled 4.4.0-128 Linux kernel

• One aarch64 compute node: Xilinx Zynq UltraScale+
MPSoC ZCU102 with a quad-core ARM Cortex-A53,
4GB memory, Ubuntu 18.04.4 LTS, KVM-enabled 4.14.0
Linux kernel

The hardware configuration of the VMs is based on the
default OpenStack m1.tiny flavor (1 VCPU, 1GB Disk, 512MB
RAM) and the booted guest OS is a CirrOS cloud image.
For the custom set up, we create a flavor derived from
m1.tiny extended with trust and location properties that have
to be matched during the VM scheduling process. The mea-
surements are performed by Rally [21], a testing tool for
multi-node deployment evaluation developed as an OpenStack
project [22].

The results can be seen in Tables I and II. Our imple-
mentation affects the VM creation while the deletion remains
unchanged which is confirmed by the delete times. The
security and location-awareness add an average overhead of
0.579s to the total VM boot time which is ∼ 4% of the vanilla
deployment result. However, the Min and Median values
between the two scenarios are very close which leads to the
conclusion that there is a variation caused by the networking
speed. This can be avoided by a better implementation and is
a direction for future improvements.

V. RELATED WORK

There is ongoing research in the direction of reducing the
trust in the cloud providers and securing the infrastructure
through hardware technologies. The authors of [23] follow
this path and propose a common platform for the integration



of edge devices with public cloud infrastructures. Their work
utilizes Intel SGX on the cloud and ARM TrustZone for
securing the edge, confirming in their experiments that a
trusted environment based on ARM TrustZone has a negli-
gible performance overhead. Another interesting work is [24]
which shows an orchestrator based on Kubernetes capable of
scheduling containers on a heterogeneous cluster of servers
taking into account the Intel SGX support. This allows the
execution of critical parts of the workloads in a hardware-
secured environment without trusting the providers.

An exhaustive research by [14] is proposing a complete so-
lution for a secure cloud infrastructure. They are addressing the
problems of platform integrity, external attestation, boundary
control and VM integrity together with a reference architec-
ture. The hardware technology on which the framework relies
is Intel Trusted Execution Technology (TXT) [25]. The Intel
TXT provides the hardware root-of-trust for measurements and
a TPM is used for secure storage and reporting. Based on
that they present a concept for a complete cloud architecture.
In a similar way, the work of [26] suggests an architecture
for trusted geo-fenced hybrid clouds based on Intel TXT and
a TPM. They focus on improving the scalability of existing
trustworthy boot and integrity measurement techniques as well
as the geo-location of servers and virtual machines and the
prevention of compromising the geo-fencing software.

The authors of [14] and [26] have laid the foundations
of a trusted cloud whichs need to be further extended to
accommodate the edge computing shift. As shown in [23]
and [24], there are ongoing efforts in this direction with
open challenges related to the sensitive data and workload
placement.

VI. CONCLUSION

In this work, we propose secure and location-aware exten-
sions to the workloads placement process with a focus on
the virtualized edge. We reflect on the workloads privacy
issues and the location-aware edge and propose a way to
safely incorporate the device geolocation during the workload
placement. Additionally, we address the security challenges
of the edge computing paradigm by offering an attestation
mechanism verifying the authenticity and the integrity of the
devices, based on the hardware isolation of ARM TrustZone.

We evaluate the computational overhead of our work by
conducting a series of experiments and compare it with an
identical deployment without our extensions. Our security
solution has a small impact on the VMs boot time (∼ 4%),
with a margin for improvement.

Our future efforts are pointed to the direction of securing
the VMs by virtualizing the TEE and as a result providing
each VM with access to its own isolated execution environ-
ment. Another important research topic is the adoption of
light-weight virtualization technologies at the edge, such as
unikernels and containers and ensuring their security.
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