
Low Latency Decoder for Short Blocklength Polar
Codes

Heshani Gamage, Vismika Ranasinghe, Nandana Rajatheva, and Matti Latva-aho.
Centre for Wireless Communications, University of Oulu, Finland

E-mail: { heshani.niyagamagamage, vismika.maduka, nandana.rajatheva, matti.latva-aho } @oulu.fi

Abstract—Polar codes have been gaining a lot of interest due
to it being the first coding scheme to provably achieve the
symmetric capacity of a binary memoryless channel with an
explicit construction. However, the main drawback of polar codes
is the low throughput of its successive cancellation (SC) decoding.
Simplified SC decoding algorithms of polar codes can be used
to reduce the latency of the polar decode by faster processing of
specific sub-codes in the polar code. By combining simplified SC
with a list decoding technique, such as SC list (SCL) decoding,
polar codes can cater to the two conflicting requirements of high
reliability and low latency in ultra-reliable low-latency (URLLC)
communication systems. Simplified SC algorithm recognises some
special nodes in SC decoding tree, corresponding to the specific
subcodes in the polar code construction, and efficiently prunes
the SC decoding tree, without traversing the sub-trees and
computing log-likelihood ratios (LLRs) for each child node.
However, this decoding process still suffers from the latency
associated with the serial nature of SC decoding. We propose
some new algorithms to process new types of node patterns that
appear within multiple levels of pruned sub-trees and it enables to
process certain nodes in parallel.In short blocklength polar codes,
our proposed algorithm can achieve up to 13% latency reduction
from fast-simplified SC [1] without any performance degradation.
Furthermore it can achieve up to 27% latency reduction if small
error-correcting performance degradation is allowed.

Index Terms—Polar codes, Successive Cancellation, URLLC,
5G.

I. INTRODUCTION

Introduced by Arikan in [2], polar codes are the first
channel coding scheme to provably achieve the symmetric
capacity of a binary memoryless channel with low encoding
and decoding complexities. In addition, they remain the only
capacity achieving block code with an explicit construction.
However, a primary concern in regard to polar codes is the
long decoding latency of its SC decoding algorithm due to
the serial nature of processing. Since the introduction of polar
codes and the SC decoding algorithm, several algorithms have
been proposed to improve the decoding performance.

SC-list (SCL) [3], SC-stack (SCS) [4], and SC-flip (SCF)
[5] decoding algorithms are based on the concept of list
search. Given enough list/stack or flip size, they can achieve
near maximum-likelihood (ML) performance at a cost of high
computational and memory complexities. In addition to one of
SCL, SCS or SCF methods, a cyclic redundancy check (CRC)
can be added to the code to aid the selection of the most
likely codeword from the list[6], which helps in improving
the bit error performance even above ML performance. CRC
can be added to the code without affecting the code-rate by

utilizing frozen bit positions of the polar code to encode the
CRC bits. Since all of these methods based on SC algorithm
are processed serially, there are limitations in speeding up the
decoding process, restricting the decoder throughput. In [7]
parallel decoders are implemented by splitting the generator
matrix into component codes and processing them in parallel
with small performance degradation. Distributing CRC bits [8]
and partitioning the codeblock [9] are proposed to speed up
the decoding process in SCL decoding.

On the other hand, several investigations have been carried
out to simplify the SC algorithm to make it faster, without
reducing the error-correcting performance. These techniques
are generally based on identifying prevalent sub-trees in SC
decoding binary tree and efficiently pruning these sub-trees
for faster decoding. In simplified SC (SSC) [10] algorithm,
rate-0 (R0) and rate-1(R1) nodes are introduced to prune the
binary decoding tree. In [1] ML-SSC algorithm, ML nodes
are introduced to further prune the binary decoding tree to
speed up the decoding process. In [11] fast-SSC algorithm,
two more types of nodes are introduced, namely single parity
check (SPC) and repetition (REP) nodes for further pruning
the binary tree. In [12], some of more specific bit patterns
are identified as new nodes for the decoder tree-pruning.
Occurrence of some of these nodes is not very common
in short blocklength codes. Generalized-fast algorithm [13]
generalizes some of the nodes categorized in [12] to broader
categories and provides algorithms of efficient mergers for
some of the special nodes mentioned above.

In this paper, we propose a faster decoding algorithm for
increasing the throughput of SC decoding based on the most
prominent node patterns that appear in short blocklength polar
codes, within multiple levels of the binary decoding tree. We
introduce an algorithm to parallelize the processing of some
node patterns to avoid the latency associated with sequential
nature of SC decoding. We compare the error performance and
the complexity of the proposed algorithm with the fast-SSC
algorithm.

The rest of this paper is organized as follows. In section
II, we review some preliminary material of polar codes, SC
decoding algorithm and other fast SC decoding algorithms.
In section III, we propose a new algorithm for improving the
throughput of SC decoder . In section IV, we compare the
bit error rate (BER), frame errror rate (FER) performances
and the latency of the proposed algorithm with the fast-SSC
algorithm. Finally in section V we provide some concluding

ar
X

iv
:1

91
1.

03
20

1v
1

 [
cs

.I
T

]
 8

 N
ov

 2
01

9

remarks.

II. PRELIMINARIES

A. Polar Codes

A binary polar code of length N = 2n with K information
bits and rate R , K/N is denoted by P(N,K). It can
be constructed by concatenating two polar codes of length
N/2. The recursive construction process can be represented
by modulo-2 matrix multiplication as

x = uG⊗n (1)

where, u = {u0, u1, ...uN−1} is the sequence of in-
put bits containing information bits and frozen bits, x =
{x0, x1, ...xN−1} is the encoded vector, and the code genera-
tor matrix G⊗n is the n-th Kronecker product of the polarizing
matrix G = [1 0

1 1].
The concept of channel polarization attributed to polar codes

is, transforming N copies of a channel with a symmetric
capacity of I(W), into extreme channels of capacity close to
one (completely reliable) or zero (completely noisy). Channel
polarization is achieved through recursively applying a po-
larization transform G. Out of N channels, I(W) fraction of
channels will become perfectly reliable channels and 1−I(W)
fraction of channels will become completely noisy channels.
Then, the information bits are sent only through best K
synthetic channels while inputs to other (N − K) channels
are made “frozen” bits by setting it at a predefined value;
one or zero, known at the decoder. Throughout this paper, we
assume all the frozen bits are set at zero. A denotes the set of
information bit indices and Ac denotes the set of frozen bit
positions which are known to the decoder.

B. Successive Cancellation Decoding

SC based decoding algorithms can be represented through a
binary tree. In Fig. 1 the SC decoding binary-tree structure for
a polar code of length N = 8 and rate 1/2 is presented. Here,
darkened leaves of the binary tree represent the information bit
nodes and white leaves represent the frozen bits. The binary
tree has n+1 levels where, n = log2N . λ ∈ [0, n] denotes the
level of the current processing node v of the tree. At a given
level λ there are 2n−λ nodes, and each node at level λ has 2λ

leaves. A vector of size 2λ is exchanged through the branch
between nodes at levels λ and λ + 1 during the traversal of
the binary-tree. It should be noted that the decoding is done
in bit-reversed order as in the butterfly diagram of [2]. Here,
the right leaf of a node is 2n−1 indices away from the index
of the corresponding left leaf.

Input to the decoder is an LLR vector
αn = {α0, α1, ...αN−1} at the root node (at level n).
At each level λ, a 2λ length LLR vector α is coming to the
node as input.

Once the node at level λ receives the LLR vector αv , it
calculates the 2(λ−1) length LLR vector αvl as

αvl [i] = αv[2i]� αv[2i+ 1] for i ∈ [0 : 2(λ−1) − 1]. (2)

�0

��

� = 3

�4 �2

��

�6

�

�1 �5 �3 �7

�

��

��

���

������

���

����� 0 1 2 3 4 5 6 7

� = 2

� = 1

� = 0

Fig. 1: SC decoding tree structure for a polar code of block
length N = 8 and rate R = 1

2 .

and passes to the left child node vl. Here, the binary operator
� denotes the operation

x� y = 2atanh(tanh
x

2
tanh

y

2
). (3)

In order to reduce the complexity, Eq.3 can be approximated
by min-sum simplification [14]. The local decoder node v then
waits until it receives hard bits vector βvl from the left child
node vl, and calculates αvr as

αvr [i] = αv[2i](1−2βvl [i])+αv[2i+1] for i ∈ [0 : 2(λ−1)−1].
(4)

and passes to the right child node vr. Once it receives the
hard bits vector βr from the right child node, it calculates the
codeword βv as

βv[2i] = βvr [i]⊕ βvl [i], (5)

βv[2i+ 1] = βvr [i]. (6)

for i ∈ [0 : 2(λ−1) − 1]. If the v current processing node is a
leaf node at level 0, once it receives the αv , it calculates the
βv as

βv =

{
h(αv); if v ∈ A,
0; if v ∈ Ac.

(7)

h(x) is the binary quantizer with

h(x) =

{
0; if x ≥ 0,

1; otherwise.
(8)

C. Fast SC Decoding

In order to increase the speed of SC based decoding, par-
ticular sequences of frozen and information bit patterns have
been identified from the leaves of the binary tree. Efficient
fast decoders have been proposed based on performing tree-
pruning on these nodes. We denote a frozen bit as ‘0’ and
information bit as ‘1’ in the polar code construction pattern
s. The pattern for the polar code in Fig.1 can be written as
s = {0, 0, 0, 1, 0, 1, 1, 1}.

According to the polar construction, bits which are decoded
first tend to be of lower reliability than bits that are decoded
later in the decoding tree. Therefore, the frozen bits tend
to concentrate into first K/N leaves of the binary tree and
information bits tend to be concentrated in the end of the tree
with a grey area between concentrated frozen and information
bits.

1) Simplified Nodes: The following nodes which are intro-
duced in [10] and [1] are the most frequent simplified nodes
occur in short block length polar code construction patterns.

• R0 node: A node at level λ where all the 2λ corresponding
leaf nodes of the sub-tree are frozen which can be denoted
by s = {0, 0, ..., 0}. Then the tree can be pruned at the
rate-0 node and code vector can be set as βv[i] = 0 for i ∈
[0, 2λ − 1]

• R1 node: A node at level λ, where all the 2λ correspond-
ing leaf nodes of the sub-tree are information bits. This
can be denoted by s = {1, 1, ..., 1}. Then the tree can
be pruned at the R1 node and code vector can be set as
βv[i] = h(αv[i]) for i ∈ [0, 2λ − 1].

• REP node: A node at level λ with the last right leaf is
an information bit and all the other 2λ − 1 leaf nodes
of the sub-tree are frozen, which can be denoted by the
pattern s = {0, 0, ..., 0, 1} . Then the tree can be pruned
at the REP node and code vector can be set as βv[i] =
h(
∑2λ−1
i=0 αv[i]) for i ∈ [0, 2λ − 1].

• SPC node: A node at level λ with the first left leaf is
a frozen bit and all the other 2λ − 1 leaf nodes of the
sub-tree are information bits, which can be denoted by
the pattern s = {0, 1, ..., 1}. Here, hard decisions of the
of the LLR vector is calculated as h(αv) and the parity
bit is calculated as

parity =

2λ−1⊕
h(αv[i])

i=0

(9)

Then the index of the least reliable bit is found from

j = argmin
i

|αv[i]|. (10)

Then the output of the node can be calculated as

βv[i] =

{
h(αv)⊕ parity when i = j

h(αv) otherwise
(11)

for i ∈ [0, 2λ − 1].
2) Simplified Node Mergers: Theses are the mergers be-

tween simplified nodes mentioned above for further reducing
the latency.

• REP-SPC Merge [11]: This merge is achieved by having
two SPC decoders, SPC0 and SPC1, whose inputs are
calculated assuming output of the REP code is 0 and 1
respectively.

• Generalized REP (G-REP) Merge [13]: This is an exten-
sion of node mergers in [11], where the nodes in multiple
levels are merged. This is a node at any stage L whose

descendants are R0 nodes except the rightmost node at a
certain stage l0 < L, which is a generic node of rate C.

• Generalized Parity-Check (G-PC) Merge [13]: This is a
generalized version of SPC nodes of [11]. This is a node
at stage L in which all its descendants are R1 nodes
except the leftmost node at level l0 < L, which is an R0
node.

After pruning the tree according to the simplified nodes as
mentioned above, hard-bits are propagated until the root node
unlike in the SC algorithm. After we get the β0 at the root
node, we can calculate the x̂ from

x̂ = β0G. (12)

We can get the bit estimates û from x̂ using the construction
pattern s.

III. PROPOSED ALGORITHM

We analysed the most frequent nodes and node patterns in
short polar codes and we observed that only a limited number
of patterns are prevalent. Node patterns denoted in the binary
sub-trees (a) to (g) in Fig. 2 are the most prominent patterns in
short blocklength polar codes. We propose efficient algorithms
for processing these node patterns in multiple levels of the
binary-tree. Our algorithm enables processing of the several
left-most nodes of the binary sub-tree in parallel at the node
merging point, so that it will avoid the serial nature of the
fast-SSC.

Here, we assume the root node of the sub-tree is at level
L and the leaf nodes (pruned) are at level l0. Therefore, the
depth of the sub-tree is given by, t = L− l0. We can group the
node patterns (a) to (g) in Fig. 2 into three groups as bellow.

A. Group A patterns

Patterns (a) and (b) of Fig. 2 falls under G−REP merge
in [13]. In the pattern (a), There are t R0 nodes from level L
to leaf level l0 and an SPC node as the rightmost leaf. We
name this as R0t−SPC and In the pattern (b), There are t−1
R0 nodes from level L to level l0 + 1, and a REP − SPC
node as rightmost sub-tree at level l0 + 1. We name this as
R0t−1 − REP − SPC pattern. Pattern (a) can be identified
as a G − REP node with Rate − C node is replaced with
REP node. In the pattern (b), Rate− C node of G−REP
node is replaced with a REP − SPC merged node.

B. Group B patterns

In patterns (c) and (d) of Fig.2 , there are t REP nodes
from level L − 1 to leaf level l0. In pattern (c), the right-
most leaf node is an SPC node whereas in pattern (d) the
rightmost leaf is an R1 node. We name these as REP t−SPC
and REP t − R1 respectively. These are the most frequently
appearing node patterns in the most polar code construction
patterns.
REP t − SPC node merger can be processed faster as

follows. Assuming the information bit at a REP node at level

�0

�0

�0 ���

�0

�0

��� ���

���

���

��� ���

���

���

��� �1

������

���

���

������

�1

�1

�1���

�1

�1

(�) (�) (�) (�)

(�) (�) (�)

L

l0

L

l0

Group	A Group	B

Group	C

Fig. 2: Most frequent node patterns in short blocklength polar codes.

l is ql, We first calculate the information bit at each REP node
at level l in parallel as

ql = h(

2l−1∑
k=0

2t−1∑
k=0

α2ti+k � α2ti+k+2t−1). (13)

After calculating t REP nodes in parallel, the decoded
information bits are encoded again before decoding the SPC
node. First information bits to encode are transformed as a
concatenation of t REP nodes of size 2t−1 to 1 (size one
REP node is equal to qL). The nodes are in the order from
the lowest level node to the highest level node. Last bit is set
as 0. For example for t = 3, the sequence to be encoded is

q = {0, 0, 0, ql0 , 0, ql0+1, ql0+2, 0}. (14)

This is encoded using a polar code generator matrix of size
2t−1 as

a = qG. (15)

Now the encoded SPC bits from the SPC node can be
directly calculated as

βi = h(

2t−1∑
k=0

(1− 2ak)α2ti+k) for i ∈ {0, 2l0 − 1}. (16)

For the final encoded partial sum bits going out from the merge
node at level L, encoded a bits are added to each βi as a⊕βi
for i ∈ {0, 2l0 − 1}

REP t − R1 node merge also can be processed in exactly
the same procedure as above REP t − SPC node, replacing
the SPC node with an R1 node. Both of these node mergers
will case a small degradation in error-correcting performance
of the code.

C. Group C patterns
In patterns (e) , (f)and (g) of Fig.2 , There is a REP node

at the leftmost leaf of the pruned binary subtree. In the pattern
(e), all the rightmost children are SPC nodes from level l0
to level L − 1. In pattern (f), all the right-most child nodes
are R1 nodes except the right-most leaf node at the level l0
which is an SPC node. In pattern (g) all the right child nodes
are R1 nodes. We name these patterns as REP − SPCt,
REP − SPC − R1t−1, and REP − R1t respectively. The
REP − SPCt merge can be made faster by the following
algorithm, at the expense of a small performance loss. First
the REP node is LLR is decoded as

qL = h(

2l0−1∑
i=0

2t−1∑
j=0

� α2ti+j). (17)

Now partial sum bits at level L can be directly calculated in
parallel from

β2ti+k = h(α2ti+k +

2t−1∑
j=0/k

� α2ti+j),

for i ∈ {0, 2l0 − 1} and k ∈ {0, 2t − 1}.

(18)

Finally 2t parity checks can be performed for each i such
that

2l0−1∑
k=0

β2ti+k + qL = 0. (19)

When the parity check is not satisfied, the partial sum bit with
the least reliable LLR value can be flipped similar to the SPC
node processing.

The REP −SPC −R1t−1 node merger can also be made
faster following the procedure above and REP − R1t node
can be decoded similar to REP − SPCt, without the final
parity check.

IV. PERFORMANCE

In this section we first compare the decoding latency be-
tween the fast-SSC algorithm [11] and the proposed multi-
level mergers. Similar to the work in [13], we assume equa-
tions (2), (4), and R0, R1 nodes have a cost of 1 time step
each. Furthermore, processing of REP and SPC nodes have
costs of 2 and 3 time steps respectively. TABLE: I tabulates
the latency for each node merger in terms of time steps. Since
our focus is only on reducing the decoding latency, we assume
unlimited resource availability for the latency calculations.
This enables the decoder to process in parallel whenever
possible to achieve minimum latency.

Merge Time steps
R0t − SPC 4

R0t−1 −REP − SPC 4
REP t − SPC 9
REP t −R1 8

REP − SPCt 7
REP − SPC −R1t−1 7

REP −R1t 7

TABLE I: Number of time steps assumed for different node
mergers.

In TABLE: II, obtained latency improvements for polar
codes of blocklengths 128 and 512 and rates of 1/2 and 1/4
are presented. Here, we calculate the latency in terms of time
steps for fast-SSC, proposed algorithms employing only the
loseless mergers, and proposed algorithms for all the mergers.
It can be seen that we can achieve up to 13% of latency
reduction compared to fast-SSC by using only the lossless
mergers of proposed algorithm . Furthermore, we can achieve
up to 27% of latency reduction using all the proposed mergers
at a cost of a small degradation in error performance.

Fig. 3 compares the error correcting performance of the
fast-SSC decoder and proposed mergers for polar codes of
block lengths N = 128 and 512 at R = 1/2 and 1/4.
It should be noted that the BER and FER performances of
fast-SSC decoder are similar to that of the SC decoder. It
can be observed that for R0t − SPC, REP − R1t−1, and
R0t−REP −SPC mergers the error correcting performance
is similar to that of fast-SSC. Hence, for those nodes, as shown
in TABLE: II, further improvements in latency can be achieved
without sacrificing the error correcting performance.

However, a degradation of error performance can be ob-
served for mergers REP t−R1, REP t−SPC, REP−SPCt,
and REP − SPC − R1t−1. In REP t − SPC nodes, the
performance degradation is caused by calculating the REP
nodes in parallel as it alters the optimality of successive
cancellation decoding. As the number of REP nodes in the
merger increases, the impact on error correcting performance
is greater. For the REP −SPCt and REP −SPC −R1t−1

mergers, since a single parity check is used after calculating
the REP bit, performance degradation is caused by ignoring the
constraints imposed by SPC nodes in merger. This is similar
to the idea of ignoring the frozen bits in Rate − C node in
G − REP merger to achieve a better latency in [13]. These
ignored frozen bits are known as addition frozen bits(AF) bits.
Hence larger the number of SPC nodes in the merger, greater
impact on performance.

Parameters
Simulation

name
Enabled mergers Complexity

Latency

reduction

N = 128

R = 1
2

Fast-SSC - 55 -

Proposed loseless mergers
R0t − SPC

REP −R1t
49 11%

All proposed mergers

R0t − SPC

REP − SPCt

REP t − SPC

REP −R1t

42 24%

N = 128

R = 1
4

Fast-SSC - 50 -

Proposed loseless mergers - 50 0%

All proposed mergers
REP t − SPC

REP t −R1
41 18%

N = 512

R = 1
2

Fast-SSC - 167 -

Proposed loseless mergers
REP −R1t

R0t − SPC

R0t−1 −REP − SPC

145 13%

All proposed mergers

REP t −R1

REP −R1t

R0t − SPC

R0t−1 −REP − SPC

REP − SPCt

REP t − SPC

REP − SPC −R1t−1

130 22%

N = 512

R = 1
4

Fast-SSC - 165 -

Proposed loseless mergers
R0t −REP − SPC

R0t − SPC
145 12%

All proposed mergers

R0t−1 −REP − SPC

REP t − SPC

REP − SPCt

REP t −R1

R0t − SPC

120 27%

TABLE II: Latency improvements with proposed mergers for
N = [128, 512] and R = [14 ,

1
2]

V. CONCLUSION

In this work, we introduced new multi-level node mergers
for fast decoding of short blocklength polar codes base on most
frequent node patterns in polar code construction patterns. The
proposed algorithm is evaluated for the latency reduction in
terms of number of time steps for short blocklength polar
codes. In addition, the error correcting performance of the
proposed algorithm is compared with the fast-SSC algorithm.
Our algorithm can gain up to 13% of latency reduction
without any performance degradation, using only proposed

1 , 0 1 , 5 2 , 0 2 , 5 3 , 0 3 , 5 4 , 0
1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 , 0 1 , 5 2 , 0 2 , 5 3 , 0 3 , 5 4 , 01 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 , 0 1 , 5 2 , 0 2 , 5 3 , 0 3 , 5 4 , 0
1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 , 0 1 , 5 2 , 0 2 , 5 3 , 0 3 , 5 4 , 01 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

Fra
me

 Er
ror

 Ra
te

E b / N 0

 R a t e = 1 / 2 F a s t S S C R a t e = 1 / 4 F a s t S S C
 R a t e = 1 / 2 F a s t S S C w i t h p r o p o s e d l o s s l e s s m e r g e r s o n l y R a t e = 1 / 4 F a s t S S C w i t h p r o p o s e d l o s s l e s s m e r g e r s o n l y
 R a t e = 1 / 2 F a s t S S C w i t h a l l p r o p o s e d m e r g e r s R a t e = 1 / 4 F a s t S S C w i t h a l l p r o p o s e d m e r g e r s

Bit
 Er

ror
 Ra

te

E b / N 0

(a) (b)

E b / N 0

E b / N 0

Fig. 3: FER and BER performance of the proposed algorithm for polar codes of length (a)N = 128 (b)N = 512 and for rates
R = 1/4 and 1/2, with and without lossy mergers.

losless mergers and it is possible to achieve up to 27%
latency reduction if lossy mergers are allowed. This latency
improvement is achieved through parallel processing of nodes
in the mergers, avoding the serial nature of SC decoding.

REFERENCES

[1] G. Sarkis and W. J. Gross, “Increasing the Throughput of Polar De-
coders,” IEEE Communications Letters, vol. 17, no. 4, pp. 725–728,
2013.

[2] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073,
2009.

[3] I. Tal and A. Vardy, “List Decoding of Polar Codes,” IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[4] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics
Letters, vol. 48, no. 12, pp. 695 –697, June 2012.

[5] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity
improved successive cancellation decoder for polar codes,” Conference
Record - Asilomar Conference on Signals, Systems and Computers, vol.
2015-April, pp. 2116–2120, 2015.

[6] K. Niu and K. Chen, “CRC-Aided Decoding of Polar Codes,” IEEE
Communications Letters, vol. 16, no. 10, pp. 1668–1671, 2012.

[7] B. Li, H. Shen, and D. Tse, “Parallel Decoders of Polar Codes,” no. 3,
pp. 2–5, 2013.

[8] J. Chen, Y. Chen, K. Jayasinghe, D. Du, and J. Tan, “Distributing CRC
Bits to Aid Polar Decoding,” 2017.

[9] S. A. Hashemi, M. Mondelli, S. H. Hassani, C. Condo, R. L. Urbanke,
and W. J. Gross, “Decoder Partitioning : Towards Practical List Decod-
ing of Polar Codes,” IEEE Transactions on Communications, vol. 66,
no. 9, pp. 3749–3759, 2018.

[10] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-

cancellation decoder for polar codes,” IEEE Communications Letters,
vol. 15, no. 12, pp. 1378–1380, 2011.

[11] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast Polar
Decoders : Algorithm and Implementation,” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 5, pp. 946–957, 2014.

[12] M. Hanif and M. Ardakani, “Fast Successive-Cancellation Decoding
of Polar Codes: Identification and Decoding of New Nodes,” vol. 21,
no. 11, pp. 2360–2363, 2017.

[13] C. Condo, V. Bioglio, and I. Land, “Generalized Fast Decoding of Polar
Codes,” 2018 IEEE Global Communications Conference, GLOBECOM
2018 - Proceedings, pp. 1–6, 2019.

[14] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross,
“Hardware implementation of successive-cancellation decoders for
polar codes,” J. Signal Process. Syst., vol. 69, no. 3, pp. 305–315, Dec.
2012. [Online]. Available: http://dx.doi.org/10.1007/s11265-012-0685-3

http://dx.doi.org/10.1007/s11265-012-0685-3

	I Introduction
	II Preliminaries
	II-A Polar Codes
	II-B Successive Cancellation Decoding
	II-C Fast SC Decoding
	II-C1 Simplified Nodes
	II-C2 Simplified Node Mergers

	III Proposed Algorithm
	III-A Group A patterns
	III-B Group B patterns
	III-C Group C patterns

	IV Performance
	V Conclusion
	References

