arXiv:1601.03874v2 [cs.CR] 1 Feb 2016

PKI Safety Net (PKISN):
Addressing the Too-Big-to-Be-Revoked Problem of the TLS Eusystem

Pawel Szalachowski, Laurent Chuat, and Adrian Perrig
Department of Computer Science
ETH Zurich, Switzerland

Abstract—In a public-key infrastructure (PKI), clients must compromised, would mean that 26% of all websites that use
have an efficient and secure way to determine whether a HTTPS would be unavailable (or accessible only if the se-
certificate was revoked (by an entity considered as legitimte curity warning displayed by browsers is ignored). Diginotar
to do so), while preserving user privacy. A few certificaton and Comodo are two infamous examples of attacked CAs.
authorities (CAs) are currently responsible for the issuace of After the breach, while Diginotar had its certificate revoked
the large majority of TLS certificates. These certificates a@ ~ and removed from most CA lists [[2] (before eventually
considered valid only if the certificate of the issuing CA is so ~ declaring bankruptcy), Comodo’s incriminated CA certifi-
valid. The certificates of these important CAs are effectily Cate was not revoked and is still present in CA lists [6]. The
too big to be revoked, as revoking them would result in massive ~ Comodo Group is leading the certificate issuance business
collateral damage. To solve this problem, we redesign the (With @ market share of 33.9%, and some single private
current revocation system with a novel approach that we call ~k€ys that have been used to sign the certificates of 5.5%
PKI Safety Net (PKISN), which uses publicly accessible logm O all the websites considered in a W3Techs survey from
February 2015 [8]). Consequently, Comodo’s root certificate
could not be revoked without effectively preventing users
from establishing TLS connections with a significant portion
of the Internet. For this reason, we claim that the TLS
revocation system needs to be redesigned to remove the
) collateral damage that would be induced by the revocation
1. Introduction of some CA certificates.

We observe that time is a key element in this problem,

component of today’s Internet, as it enables to use and veri grr?errgm:igfae ds sﬁiﬂ?&j nt;etfggi;gee ?g\zgﬁli(éa&%rénaltj;gog%/ (\;Aé?_s
certificates for secure communications. Certification author; P

ities (CAs) are trusted third parties responsible for issuinﬁ!f'Cate is revoked. Therefore, we suggest that introducing a
and signing digital certificates, which contain authenticate

store certificates (in the spirit of Certificate Transpareng/) and
revocations. The proposed system extends existing mechamis,
which enables simple deployment. Moreover, we present a
complete implementation and evaluation of our scheme.

The TLS public-key infrastructure (PKI) is an essential

imestamp server for certificates and revocations can prevent
public keys. To do so, CAs also own certificates. Naturally,'nva“dat'ng any legitimate certificate. Another problem of

the problem is that private keys can get compromised ASé\‘urrent revocation schemes is that a certificate cannot be

. iy . -~ directly revoked by its owner. Our approach, PKI Safety
consequence, the ability to revoke any certificate (includin et (PKISN), solves this issue. In PKISN, domain owners

a CA certificate) and verify if a given certificate has beeng:an use their private keys to revoke the corresponding certifi-

revoked is crucial. This process should be lightweight, se ; : . .
cure, and preserve user privacy. To develop a new revocatio%ates’ while CAs can use a dedicated revocation key, which

scheme, one should also answer the question of who mu gn be secur(_aly stored offline as it is not needed during
be able to revoke a given certificate. The owner, the issueﬂOrmal operation.
the root CA, intermediate CAs, or a combination of these? The scheme we present is inspired by log-based so-
The current revocation schemes simplify many aspecttutions such as Certificate Transparency (CT), which was
of the PKI ecosystem. The most striking example is therecently introduced and deployed [28]. CT aims to make
following. As any private key can be stolen, it should bethe actions of CAs more transparent by introducing a log
possible to revoke any certificate; however, just like somehat makes certificates publicly visible. However, CT mainly
corporations are said to be “too big to fail”, the certificatescovers the issuance aspect of the problem. We propose to
of some certification authorities are, in practitep big to improve the system in several ways, in particular, by using
be revokedA study showed that around 75% of certificatestwo distinct hash trees (the data structure on which CT
had been issued by only three different companies, and onelies) to store not only certificates, but also revocations.
specific GoDaddy CA private key had signed 26% of allMoreover, PKISN gives CAs the ability to revoke their
valid certificates in March 2013 9]/ [17]. Revoking this own certificates after a certain point in time to ensure that
particular certificate, if the corresponding private key werepreviously-signed certificates remain valid.

http://arxiv.org/abs/1601.03874v2

Security breach notification laws require CAs to notify Timeliness: the attack window i.e., the time between the
relevant authorities about a data breach. For example, in the detection of an attack and the moment when the corre-
E.U., this naotification must occur within 24 hours. In other sponding certificate is considered invalid by all clients,
words, certification authorities are compelled by law to take is short (ideally, on the order of minutes/hours).
rapid action to disclose a data breach when it is detectedRrivacy: clients can obtain certificate-validity information

This notification should be immediately followed (if not without sacrificing their privacy. In particular, users

preceded) by a set of measures that can mitigate the attack, should not be forced to contact any other party than the

but it is currently not possible to simply revoke certain server they connect to in order to obtain the certificate

compromised CA certificates without incurring substantial status.

collateral damage. Authenticity: only legitimate parties can create a revo-
The major contributions of this paper are the following. cation message for a certificate, but that message is

Through PKISN, we redesign the revocation system to better verifiable by everyone. The set of legitimate parties
express the hierarchical structure of certificates, rebalance depends on a revocation policy.

the power of PKI actors, and address the too-big-to-beindependence: the revocation is independent from the cir-
revoked problem. In addition to the existing deployment cumstances in which the process takes place (e.g.,
plans of CT, we propose and discuss new models that max- server configuration or the availability of a special third
imize privacy and allow to monitor the log in a lightweight party). Ideally, whenever an allowed entity has issued a
manner, and we show how the log can be designed to handle revocation message, and a certain server is accessible,
these deployment models. We present an evaluation and a then clients of this server should be able to access the

full implementation of our system. disseminated message. An adversary must not be able
to suppress a revocation.

2. Background Complete status information: revocation messages must
provide the status of all certificates in the chain of trust.

2.1. The TLS Public-Key Infrastructure Transparency: revocations must be publicly accessible and

persistent, to guarantee to the interested parties that,
when a revocation is successfully issued, it is impossi-
ble to claim that the certificate is still valid.
h%ackward availability: the revocation system must solve
the too-big-to-be-revoked problem of the current TLS
PKI. In other words, it must be possible to revoke any
CA, without causing collateral damage, i.e., without re-

In TLS, certificates form a chain of trustdfrtificate
chain) that starts with the root CAs self-signed certificate
and ends with the server’s certificate. This chain can contai
a number of intermediate CAs and each certificate in the
chain (except the root) is signed by the private key corre-
sponding to the public key of the parent certificate. TLS : o " ;
cﬁents (ge.g., brovfl)sers) neiled a list Fz)f root CA certificates voklng,certl_ﬂcates that were Ieg|t|mately issued before
considered trustworthy to initiate the verification of other the _C_AS private key gc_)t compromlsgd.
certificates. Thévasi cConst r ai nt s extension indicates (1N€ efficiency of PKISN is evaluated ifi7.2, §8.1, and
whether a certificate is a CA certificate. For convenience8-2, While security properties are discussed througHait

we will use a simple notation to represent the chain of trus . .
formed by a series of certificates, as follows: 5'3' The Evolution of Revocation Schemes and

their Drawbacks
Co—Cyp— - —C, Q)

The first attempt to address the revocation problem
was realized with Certificate Revocation Lists (CRLS)I[13],
published by CAs at CRL distribution points. To verify the
validity of a certificate, the browser downloads a CRL and
checks whether the certificate is listed. Unfortunately, the
CRL approach has many drawbac#}lt is inefficient, since
the entire CRL must be downloaded to verify a single cer-
tificate (an-certificate chain requires connections)b) CAs
can violate the privacy of users by creating a dedicated
distribution point for a target certificate. Whenever a user
connects to this special distribution point, it means that this
) . user is very likely to visit the website that corresponds to the
2.2. Desired properties target certificatec) Gruschka et al[[19] reported that, during

)) a 3-month period, only 86.1% of the CRL distribution points

Here are the properties that we expect of a satisfactornad been available. Mainly due to efficiency issues, the
revocation system: usefulness of CRLs was questioned several years[ago [22],
Efficiency: transmission, computation, and storage over{32], [36].

heads are reasonable and the deployment of the system There are many schemes that improve the format of
is cost-effective. standard CRLs. For instance, Kocherl[24] proposed to use

where C, is a root CA certificateC, and possibly other
certificates are owned by intermediate CAs, afidis an
end-entity (leaf) certificate.

Starting 1 April 2015, certificates must not be issued
with a validity period greater than 39 months [5]. However,
this concerns only leaf certificates, i.e., not CA certificates
In fact, certain root CA certificates are valid for up to 30
years (e.g., the certificate @A Disig Root Rl present in
the list provided by Mozilla[[6], will be valid until July
2042).

a Certificate Revocation Tree. This data structure, based ofsee §2.4), was the first attempt to provide that property.
binary hash trees, allows to efficiently prove that a certificatdnfortunately, due to the introduced data structure, checking
is not revoked. Naor and Nissim_[34] suggested a similawhether a certificate is revoked might be inefficient in prac-
solution, and their Authenticated Dictionaries support certifi-tice. Additionally, Revocation Transparency lacks a detailed
cate insertion and deletion more efficiently. Unfortunately,description.
these methods have not been adopted. Log-based approaches such as AKII[23], ECT][37],
To address the inefficiency of CRLs, the Online Certifi- ARPKI [10], PoliCert [40], and DTKI [[43] take the trans-
cate Status Protocol (OCSP) [38] was proposed. In OCSRarency of revocations into consideration. However, AKI,
clients contact a CA to get the status of a certificate ECT, and ARPKI do not allow domains to use multiple
However, this solution is still inefficient (the CA may be certificates (which is a common practice todaly [4]). In ECT,
under heavy load, and an extra connection is required), andnly the most recent certificate is considered valid for any
has a serious privacy issue (the CA learns about the servgiven entity. Similarly, in AKI and ARPKI, a certificate
that the browser is contacting). OCSP Staplingl [35] solvegxpresses the domain’s policy, which must be unique. Con-
these problems. In OCSP Stapling, the server periodicallgequently, these systems are designed in such a way that,
obtains an OCSP response from its CA, and then sendst a given point in time, there can exist only one active
the response along with the certificate in subsequent TLSertificate per domain name. To solve this issue PoliCert
connections. Unfortunately, the deployment and effectivedecouples policies from certificates. Similarly, DTKI intro-
ness of this technique depend on the server configuratioduces amaster certificateind amapping serverwhich also
(e.g., the age of a stapled response can be customized byalow a domain to possess multiple certificates. Unfortu-
configuration parameter, which may introduce a long attaclkately, all these schemes (including PoliCert and DTKI)
window). Liu et al. reported [29] that only 3% of certificates simplify the certificate hierarchy by ignoring intermediate
are served by servers supporting OCSP Stapling. MoreoveGAs, and consider that certificates are signed directly by
OCSP and OCSP Stapling only return the status of a singleoot CAs. Such certificates are unusual in practice, and
certificate (not the entire chain). To address this problemtaking intermediate CAs into consideration would introduce
an extension[[35] was proposed. a significant complexity to the log and protocol designs. For
Recently, browser vendors decided to disseminate spédnstance, to return complete status information, a log would
cial CRLs (called CRLSets) through software updates [3]need to efficiently look up all relevant information about
[25]. Such an approach does not require any server rea particular certificate chain (without performing a linear
configuration, but CRLSets only support cert&intended search). Furthermore, the previous proposals do not handle
Validation (EV) certificates [[25]. Such a policy restricts revocation of CA certificates.
the deployability and effectiveness of the method, as the Unfortunately, none of the methods proposed in the
fraction of EV certificates is relatively small [17], [21], and literature identifies and solves the too-big-to-be-revoked
the revocation process is still conducted through a CA (groblem of the current TLS PKI and would thus create large

user cannot revoke his own certificate without contactingcollateral damage if a popular CA certificate were revoked.
the CA). A study showed that Chrome’'s CRLSet contains

only 0.35% of all revoked certificates [29]. .
Short-Lived Certificates (SLCs) [36], [42] solve prob- 2.4. Certificate Transparency
lems associated with CRLs and OCSP, by periodically pro-
viding domains with fresh certificates with a limited validity The Certificate Transparency (CT) [28] project was ini-
period. SLCs are designed to be valid for a few days, andiated by Google and aims at making the issuance of TLS
as they are irrevocable, a long attack window exists. SLCsertificates accountable and publicly visible. In order to
are intended for leaf certificates, hence intermediate anéchieve this goal, log servers are used to collect certificates
especially root certificates cannot benefit from the propertiethat can be submitted by anyone (clients, servers, CAs).
of SLCs. In addition, their deployment depends on server The CT framework relies on the Merkle tree (also called
configuration. hash tree) data structure. In the binary Merkle trees used
Another recent approach, called RevCast [39], improvesn CT, leaves are essentially hashes of certificates and the
revocation dissemination through unique properties of radi@mther nodes are obtained by hashing the concatenation of
broadcast. RevCast proposes an architecture where CABeir two children. We can distinguish between two types
broadcast revocation messages and users with radio receivexcMerkle trees. When new leaves are generated, they can
can receive them immediately. RevCast employs a blacklistither be appended to the tree (in chronological order) or the
approach where the user must possess the entire CRL, atrée can be continuously sorted (in lexicographical order). In
to satisfy this requirement an additional infrastructure mustCT, logs use append-only trees sorted in chronological order,
be provided or users have to continuously listen to broadcastecause it can be efficiently proven (with a number of nodes
transmission. RevCast also requires users to purchase atlwjarithmically proportional to the number of entries in the
install radio receivers. tree) that a certificate is part of the tree and that a given
None of the schemes presented above provides theee is the extension of another tree. Trees that are sorted in
transparency property. Revocation Transparency [27], whickexicographical order, on the other hand, allow to efficiently
was proposed as a supplement for Certificate Transparenspow that a certain entry is absent from the tree.

When a certificate is submitted to the log for inclusion, TABLE 1. NOTATION.
it returns a Signed Certificate Timestamp (SCT), which is

a promise to incorporate the certificate to the tree within C, certificate
a fixed time period called the Maximum Merge Delay Rc, revocation of certificate”,
(MMD). The SCT must be provided by the TLS server to ¢, timestamp
its clients at every connection, and the documentafioh [28]sk, secret key associated with the public key authen-
of CT describes three ways to do so: via OCSP Stapling, ticated byC,
via a TLS extension, or via an X.509v3 extension. The lastrk, revocation key (stored offline) associated with a
method is of particular interest as it is CA-driven (i.e., CAs CA certificateC,,
directly embed the SCT into the certificate at issuance) andvk key used by the software vendor
does not require servers to be updated, but it requires thakiog log key
CAs participate. H() cryptographic hash function
Sig,(m) messagen signed with keyk
2.5. Assumptions 1) null value
I concatenation

For our revocation system to be operational, we make
the following assumptions:

« It is possible to determine when the private key of a
CA is misused, in particular, by monitoring logs or with
audits. (This is easier to achieve if certificate logging is
mandatory, which is the case for PKISN.)

o CAs can store a special private key offline in a secur
manner.

« Browser software is provided by a single vendor. (This
assumption is introduced for the sake of simplicity and
can be easily relaxed.)

« Browsers have a working software-update mechanism.
« The log server is highly available (for both read and .)))
update operations) to all parties. 3.1. The Certificate Log as a Timestamping Service

« The different parties are loosely time-synchronized (up
to few minutes), and time is expressed in Unix seconds. The main goal of our work is to solve the too-big-

« The cryptographic primitives used by PKISN are secureto-be-revoked problem of the current TLS PKI. Namely,

« Only one log server exists, but extending PKISN towe want to enable revocation of CA certificates without

securely with servers/domains. A server is authenticated
through a certificate chain created by a number of CAs.
All certificates and revocations must be logged by a log
server. At everyupdate time each log updates its local
Satabase, and the time period between these updates is called
the scheduling periodThe log is verified by browsers and
dedicated parties callethonitors CAs must also act as
monitors to verify that no illegitimate certificate (issued on
their behalf) is present in the log.

multi-log settings is discussed H8. causing collateral damage. The typical scenario in which
a revocation is required is after a private key compromise.
2.6. Adversary Model Currently, revocation of a compromised private key owned

by an important CA, should invalidate all certificates signed

_We consider that an adversary can steal a domain'yy ihis key, as the certificates may have been fraudulently
private key to perform a man-in-the-middle attack or a CAS aateqd.

private key to issue malicious certificates/revocations, but Our main observation is that when a compromised CA
an dattackert cannot alf cess a CdAsf offlln?tv\srevocat(ljor:) k_?_ycan determine the time of the attack—more precisely, the
and cannot access key(s) used for software up ate. e at which an illegitimate action (like certificate issuance
adversary can also contact the log (to fetch or submit dat r revocation) was first observed—then the certificates
as any other party. The adversary's goal can ba)aause signed before the attack can still be considered valid. Only

collateral damage af?d mak_e many websﬂes un.ava”abl%\ertificates issued after the attack are potentially malicious,
b) violate the revocation pqllcy 3”0' convince a cllent. thatand should not be trusted. It is possible for CAs to determine
a revoked certificate is still valid, oc) revoke a valid the time of that attack as. in the PKISN framework. all
certificate without legitimately owning the appropriate key. certificates and revocationé must be logged before théy are

. considered valid. Thus, the instant of the first maliciously
2.7. Notation registered certificate is the instant of compromise.

Throughout the paper, we use the notation presented in As we cannot I‘e|y on the creation-time field of a certifi-

Table[1. cate (because it may be easily predated by the adversary),
the main challenge in resolving the too-big-to-be-revoked is-
3. PKISN Overview sue is the lack of a trusted timestamping service [20]. PKISN

leverages the concept of a certificate log to provide this

This section gives a high-level picture of the overall service. Depending on the deployment scenario, a domain

system and introduces the entities involved and basic termisr a CA submits the certificate to a log. When the certificate
nology. In PKISN, clients/browsers want to communicateis accepted, the log returnschain commitmen{CC) and

appends the certificate to the tree in the next update. Adare reluctant to use this option, as it renders all servers with
ditionally, all intermediate certificates are added as well (ifa certificate issued by that particular CA unavailable.

they are not already in the log). The returned commitment PKISN introduces a revocation policy that reflects the
includes a list ofegistration timestampthat specifies when interactions of the current PKI and the hierarchical struc-
the non-registered certificates in the chain will be presenture of the certificate chain. Specifically, we introduce the
in the log (in this case, the timestamp denotes the nexbllowing revocation rules:

update time) and when the already registered certificate$he owner of a leaf certificate can revoke this certificate
were appended to the log. - using the associated private I&yThis option gives
Every new certificate is appended along with its reg- domains the opportunity to revoke, without the need
istration timestamp. Thereafter, anyone with the obtained tg contact CAs or a software vendor.
commitment can query the log for the presence proof of therhe issuer (or an upper-level issuer, i.e., a CA in the
certificate. As a presence proof includes a registration times- certificate chain) of a leaf certificate can revoke that
tamp, it is the confirmation that the log contained a given certificate. The revocation message is created by the
certificate at a given point in time. Hence, a requester can issuer’s (i.e., a CA’s) private key and can be performed,
assert that the certificate was created before this timestamp. fgor example, when a domain lost its private key. Note

that a certificate can be revoked directly by a root CA,

3.2. Transparent and Persistent Revocation without involving intermediate CAs.
)) . CAs can revoke their own certificates and the certificates of
PKISN also employs a public log for storing revocations. their child CAs from a given point in time callegvo-

In order to enhance the transparency of the current PKI cation timestampThis revocation states that certificates

ecosystem, revocations need to be logged. For instance, and revocations issued after a revocation timestamp
whenever a key is compromised or lost, the owner should should be considered invalid and should be ignored

have a guarantee that a revocation will be visible for others during the certificate-chain validation. The CAs own

at least until the revoked certificate expires. The obligation certificates are revoked with a dedicatesl’ocation
of logging certificates also makes CAs more transparent, as key, while child certificates are revoked with a regular
they cannot misbehave by distributing two different CRLs private key. With the revocation key, a CA can prevent
or two different OCSP responses. _ all potentially malicious actions starting from a certain
PKISN introduces special types of revocation messages point in time. A CA can use its revocation key only
(seefd.]), and due to the hierarchical nature of the certificate once, and as it invalidates the CA's certificate there is
chain, a given certificate can be revoked by a set of entitieS g need to revoke or update a revocation key. A new
(see PKISN's revocation policy below). B revocation key is generated every time a CA's certificate
An authorized entity (usually the owner of a certificate) is created.
who wishes to revoke a certificate can create a speciak software vendor can revoke any certificate, and for CA
revocation message. This message is submitted to the log, certificates, they have to specify a revocation times-
which, after verification, returns sevocation commitment tamp as above. Only child certificates and revocations
stating that the revocation will be appended to the log in jssyed with the revoked certificate before that times-
the next update. When the revocation message is in the log, tamp are considered valid. Currently, software vendors
the presence proof for the corresponding certificate must effectively have the ability to revoke any certificate,
contain this revocation message. To minimize the attack gg this option explicitly reflects their power in the
window, whenever a revocation is pending for addition, the current TLS PKI ecosystem. Moreover, PKISN holds
log can accompany the presence proof of a certificate with thejr actions accountable and transparent. For the sake

its revocation, without waiting for the end of a scheduling of simplicity, we assume that there is a single software

period. vendor that issues revocations with a privatendor
key The corresponding public key is provided to the

3.3. Revocation Policy clients within the software (like today), and can be

N updated with a software update (but cannot be revoked
In the current PKI ecosystem, a certificate can be re- through PKISN).

voked only by two parties, namely the issuer and a softwarg i that we do not allow a revoked (i.e., compromised,

vendor (e.g., a browser or an OS vendor). Whenever %sually) CA to revoke its child certificates, even if the re-

domain wishes to revoke Its own certlf_lcate, the do.ma'r\/ocation had been legitimate (otherwise an adversary could
must contact the appropriate CA that will eventually ISSU€cause collateral damage by invalidating certificates with the
the revocation. Ob\."OUSIV' such a procedure results in %\Iready revoked key). In such a case, any non-revoked CA in
prolpnged attack wm_dow and depends completely on th‘?he certificate chain can still issue a valid revocation for the
issuing CA. Alternatively, the software vendor can SIM-10af certificate. However, after a CA is revoked, its clients

ply blacklist certain certificates a_nd propagate the_ Ch"’mge§hould be informed that, although their legitimately-issued
through software updates. In this case, a domain has to '
contact the software vendor. This option can be also used 1 gy associated private kaye mean the one corresponding to the public

for revoking misbehaving CAs. However, software vendorskey that the certificate authenticates.

certificates are still valid and can be used, the CA lost itavhich actions performed by CAs are considered valid. The

revocation ability, and the certificates should be reissued itegitimacy period is defined between the moment when a

the near future (e.g., few days or weeks). certificate is received by the log for the first time (regis-
Possible revocation actions for an example certificatération timestamp) and the moment when it expires or is

chain are presented in Figl 1. A single certificate can havéegitimately revoked (revocation timestamp). A certificate is

many associated revocations. All these revocations can beonsidered valid when it passes fhre-validationand when

fetched from the log with a presence proof. all certificates in the chain were issued (and never revoked)

during corresponding legitimacy periods.

Ca revoke An example that illustrates the concept of legitimacy
(root CA, e.g,, from #; periods is presented in Fi@] 2. In this example, the root
GeoTrust Global CA) |~ (with rk,)

CA certificateC,, gets compromised, but the attack is then
detected and the CA is able to determine the time at which
revoke revoke from 3 the attack was performed. In the meantime, the adversary
(with sky) (with sko) used the private key to maliciously revoke the certificate
C, of an intermediate CA.In this particular case, the leaf
certificateC.. is valid even though its parent CA certificate

revoke from 4
(with vk)

Software Vendor | yeyoke from (inter. CA, c.g., gf;ﬁkz was revoked, as PKISN allows to express the fact that
(e.g., Mozilla) t5 (with vk) Google Internet /sy, 1.y was maliciously revoked (the revocation was done during

Authority G2)

theillegitimacy periodof C,).

revoke revoke
with vk .
() (with skp) Cg’s legitimacy period Cy/'s illegitimacy period
v Issued
Ce (self-signed) Compromised Detected
revoke C O

(server,eg., |), ..o Mo TS+

AR Tt
"2 | Revoked from ¢, 4
: (with rkq)

. a
*.google.com) (with skc) (root) t

T
I
I
I
I
Figure 1. All possible revocations for a certificate chélp — C, — C., |
|
%

|
| (Issued | Revoked
whereC, andC}, have associated ke, , rk, andsk,, rky, respectively (signed with skg) v (maliciously with skg)
(standard and revocation private keys), while the leafifazate is asso- Cy O @ —>
ciated only with a standard private kek., andvk denotes the software (intermediate) 1 t3 |
vendor key. :
|
|
3.4. Valida.tion Issued (signed with sk, I
c, (sig b)%

: v
For a successful validation, a client must be provided (leaf)

with a certificate chain, a corresponding chain commitment
(CC), and a proof from the log. First, the input data is pre-Figure 2. Timelines for a chain of three certificates, withagack (against
validated (for details se§4.4), and verified. This includes a the root CA) and a detection thereof.
standard chain validation as executed in modern browsers.
However, the PKISN validation process goes further, as
it determines time periods for which CAs were behaving
legitimately. 3.5. Log Consistency
As shown in Fig[L, a single certificate can be revoked by
different entities and through different revocation messages.
Hence, to achieve an unambiguous validation of revocation Periodically, a browser contacts a random monitor to
messages, priorities must be established. PKISN introducensure that they share the same view of the log. As monitors
the following priorities for revocation messages, from thehave a copy of the log, they can inform about historic

highest priority to the lowest: versions. To prevent equivocation, browsers can compare
1) revocations issued by the software vendor, log information obtained during the TLS connections with
2) revocations created with a dedicated revocation kegorresponding monitor statements. Even if such a proce-
(only applies to non-leaf certificates), dure does not completely protect against malicious logs, it
3) revocations issued by parent CAs, enables to detect log misbehavior.

4) revocations created with the standard private key asso-
ciated with the certificate (only applies to leaf certifi-
2. Although such an attack was never observed in the realdwgol

Cates). the best of our knowledge), nothing currently prevents aveeshry who
To conduct a validation, PKISN introduces the notion compromised a private key from performing revocations. r&fue, our

of a legitimacy period which denotes a time period during new scheme should take this case into account.

4. PKISN Details features, the log maintains two hash-tree-based data struc-
tures: aTimeTreeand aRevTree(Revocation Tree). Fid.]3
; depicts an example of these trees.
4.1 Revocation Messages The TimeTree contains all objects added to the log in
rchronological order. It stores certificateS,{, revocations
(Rc,), and roots of the RevTree. All objects are accom-
anied with a registration timestamp that denotes when the
bject was actually appended to the tree. With the TimeTree,
is possible to prove that a given object is indeed an element
f the log and was inserted at a given registration timestamp.
Additionally, it is possible to prove that one version of the
TimeTree is an extension of the previous TimeTree.
The RevTree consists of sub-trees (it is, in fact, a forest)
i that reflect the hierarchical structure of certificate chains.
Re, = Sig,(H(C,),r evoke), @) The RevTree is built after every scheduling period, and the
wherek can be:a) a private key associated with the authen-root of this tree is the last element appended to the TimeTree
ticated public key in a leaf certificat®) the private key of in every update of the log. The leaves of every sub-tree
one of the CAs in the certification chain, oy a software consist of:
vendor key. Note that in contrast with the current revocation « A hashH, = H(C,||t,) that identifies a certificat€’,
system, domains can revoke their own certificates without and a registration timestamp. The leaves of every
any interaction with the issuing CAs. Leaf certificates do not sub-tree are sorted in lexicographical order of these
contain a special revocation key and can be revoked without hashes.
a revocation timestamp, as they cannot cause collateral « The possible revocation messages @f. This may

PKISN introduces a new dedicated revocation key pai
for CAs. The revocation private key is only used when
a given CA notices that its standard private key (used i
production) has been compromised or lost. As the revocatio
key is not used in production, it should be securely store
offline.

PKISN supports two formats of revocation messages
The first one is used for invalidating leaf certificates:

damage. be o when a certificate has no associated revocation
Because CA certificates introduce collateral damage, message. Every revocatidiy, is accompanied with a
they are always revoked by the following revocation mes- registration timestamp, which indicates when the revo-
sage: cation was appended to the log (this is not a revocation
timestamp as in Eq[]3)).
Rc, = Sig,(H(C;),revoke from rev_timestamp, « The root ¢,) of the sub-tree (the sub-tree contains
(3) certificates signed with the private key associated to
wherek can bea) the CAs revocation keyb) the standard C,), that may bew when the certificate does not
private key of a parent CA, oc) a software vendor key. have any children (e.g., leaf certificates). For efficiency

This revocation message contains a revocation timestamp, reasons, leaves can also store pointers to their sub-trees.

that indicates a time from which all actions (certificateS e ReyTree’s top sub-tree identifies root certificates, and
and revocations issuances) of the revoked CA must bg ey jeaf is associated with a sub-tree of its child certifi-
considered invalid. This timestamp must be earlier than the o< This design allows the log to efficientl) prove
expiration time specified within the revoked certificate. that all certificates from a chain were appended to the log
at a given time, and) show all the revocations associated
4.2. Structure of the Log with these certificates. As all the leaves of a RevTree’s sub-
trees are sorted in lexicographical order, it is also possible
In PKISN, a log stores all the issued certificates andl© prove that a given certificate was not appended to the
revocations, and additionally processes them like a timesiree at a given time. In combination with a TimeTree, a
tamping service. On demand, the log can produce efficiergomplete proof contains the information that the RevTree’s

proofs about the stored content. The log is designed t®roof comes from the current version of the RevTree, as its
support the following operations: root is the very last element of the TimeTree.

1) prove that a given certificate or revocation is in the log

and was appended to the log at a given point in time,4-3. Interactions with the Log

2) prove that a given certificate or revocation was not :
appended to the log at a given point in time, Certificate Registration. Before a certificate is used it must

3) with a given chain commitment (CC), prove that all be ;gbmitted to the log. For ir)stance,_ a domain_ with leaf
certificates from the chain were appended Correcﬂ);:eruflcateCm sends the following certificate chain to the

(according to the timestamps of the CC) and show all©9:

revocations associated with these certificates, Co = Cq — Cip. ®)
4) prove that one snapshot of the log is an append-only, automate this operation, certificates can also be submitted
extension of any previous one. to the log by CAs, in a similar way agre-certificatescan

Additionally, relevant information about a particular cer- be submitted in CT[[28]. The log verifies the chain, and
tificate chain must be processed efficiently. To provide thessechedules the inclusion of non-appended certificates from

Halede fgr Hiijarkamr,)
- — @0 - 1
Hal)r:rl Hr:fgru Hhijd’ Hk[mr, H/\
— — - _— 12
Heyp Heq H{’f H, H, Hjy H, — !
g 3 gro hi gd’ kl mry
R M i,
|

- o =5 o
H, H, H. H, H, H; H, H, H, H H Hy H, H H,
|

I I
[[[[[| | | [[| [[i ! Hy, @ H.,2
Carto Chity Coyto Casty Ceyto Crity Gyt 10,0 Chyty Civty Cjity Regyty Croty Cpty Coyty m1]

A
oo a1 .o
! |

rdq .

Presence proof fo€,, (in the chainC, — Cy — C},):

—
d d d d
{HmvgvgleaH?Adev(Rcdatl)vHilnga ’I{&

d d d d

Ho,@,Hy,Hs, t1, Hy, Hiy, Hhijar , Habedefgry }- - (4) H; Hy Hj

| | |
Hi H,o Hy o

| ! | |

] (o] 1] @

Figure 3. Example of log trees. The TimeTree stores all abjieachronological order, while the leaves of the RevTrealstrees are sorted lexicographically.
The log contains one revocation messdge, associated with the certificaté;. Nodes in boxes are needed for the presence proof of ceteifadwain
Co — Cyq — Chy.

the chain to the TimeTree and the RevTree. Any new certifithe proof. It guarantees that a revocation status for every
cate will be appended along with a registration timestampcertificate from the chain is known. The proof is returned
The log returns &hain CommitmenfCC) signed withk,g to the requester accompanied with the current signed root:
immediately after verification. The CC consists of: .

Sig,,, (root, tz). (8)

Slg’“'OQ(H(Cm)’tm’td’t“)' (6) The signed root can also be requested separately. In our
It constitutes a promise that,,, will be appended at,,, and setting, the combination of a presence proof and the signed
thatCy, C, are or will be visible aftet, andt,, respectively. root is the most important piece of information from a
As each certificate is unique within a log, the registrationclient’s perspective; it contains almost everything to perform
timestamps for CA certificates will often be from the past (asa certificate validation. However, in PKISN, a log is also
it is likely that these certificates have been submitted beforepbligated to provide extension proofs between two versions
The following must always be satisfiet};, > t4 > t,. of the TimeTree (to prove the consistency of two snapshots
Proof Querying. In the first update time after a successful of the log).
submission, the certificate is added to the trees. ThereafteGertificate Revocation. An entity allowed to revoke a
anyone can query the log for the presence proof of theertificateC, can create a revocation message from Ef. (2)
certificate. The internal design of PKISN optimizes the logor Eq. [3). The revocation messade:, is sent along with
for serving presence/absence proofs to a requester with a certificate chain whose last certificate is intended to be
certificate chain and a corresponding CC, as this is the mosevoked. The log, after verifying whether the revocation is
common interaction with the log. legitimate and matches the certificate, schedules the revoca-
For instance, with a certificate cha®y, — C; — C,, tion and returns a message:
and the corresponding CC from E 6), the followin .
request is prepa?red an% sent to the |£:(: ? S, (H(Rc,) t), ©)
which states that the revocation will be appended to the lo
H(Cplltm), H(Cyl|ta), H(Callta)-) atter timet,. However, during the scheduﬁﬁg period (Wheng
Due to the structure of the request, the log can efficientlythe revocation is not yet appended) the log can attach a
locate the requested leaves in the RevTree, and generater@vocation message to every relevant presence proof. This
presence proof, by showing all intermediate nodes necessawould reduce the attack window. During the update of the
to build the tree root. For instance, for the content presentelbg, the revocation message is appended to the TimeTree
in Fig.[3 and the previous request, the log can produce thand is appended to the RevTree’s leaf which corresponds to
presence proof from Ed.](4) (see Hi@l. 3). Note that whenevethe revoked certificate. From that time forward, every pres-
a certificate from the chain has some associated revoc&nce proof requested for a chain that contains the revoked
tion messages, these messages must be contained withdartificate must contain the revocation message.

Monitoring. The role of amonitor is to verify the correct

Algorithm 1: Complete certificate validation.

behavior of a log. Each monitor periodically (after every log
update) contacts the log and downloads the newly appended
objects and the current signed root. Then, the monitor up-
dates its own copy of the log, by appending new certificates
and revocations to the TimeTree, and by introducing all
changes to the RevTree. After that, the monitor puts the
current root of its RevTree as the last leaf into the TimeTree.
Finally, the monitor computes the root of its own copy of the
TimeTree and compares it with the root received from the
log. During this update, the monitor also verifies whether
the certificates and revocations accepted by the log were
legitimate.

Through this periodic update, the monitors can detect
any inconsistency/misbehavior of the log. Anyone can re-
guest signed roots from a monitor, and report a proof of
misbehavior such as:

« anincorrect CC (with incorrect registration timestamps
or absence proof of a certificate that was not appended),

« a revocation that is not appended (showing a message
from Eq. [9), and a proof that the revocation is not in
the log),

« two different roots from the same time period,

« the presence proof of an invalid certificate or revoca-
tion.

The monitor, in such a setting, must replicate the log's
content. In§5.4, we propose a novel deployment model that

root : signed root (TimeTree), e.g., Edl (8)

proof : presence proof, e.g., EQl (4)

chain: certificate chain, e.g., EJ.](5)

CC: signed chain commitment, e.g., EQl (6)

name: name of the contacted domain

t, : registration timestamp of’,

LP : dictionary that maps certificates to their legitimacy pésio
currTime(): returns current time in Unix seconds
preValidate(): returnstrue < pre-validation passes
verifyProofs(): returnstrue < proof is correct
determineLP(} returns legitimacy period of a certificate

function isValid(root, proof, chain, CC, name)
if not preValidate(chain, namehen
|_ return FAIL;

if not verifyProofs(root, proof, chain, CGhen
|_ return FAIL;

for C, € chain /*start from root CA*/do
LP[C;] < determineLRLP, C,,ts, Rc,, ...);
if C, isnot a root certificatethen

if to & LP[C,.pareni then

|_ return FAIL;

f C, is a leaf certificate/*last certificate*/then
if currTimg) € LP[C,] then

| return SUCCESS

else

| return FAIL;

allows to implement a monitor in a lightweight manner.

4.4. Validation

Legitimacy-Period Determination. The next step in the

To conduct a certificate validation, a client needsa
certificate chain,b) a chain commitmentg) a proof of
presenced) and the corresponding signed root. The ful
validation is presented in Algorithid 1. This section present
the different steps. We assume that before validation, th
structure and format of all messages is checked.
Pre-Validation. The first step is to pre-validate the certifi-
cate chain against a given domain name. This is similar

validation procedure is to determine the legitimacy periods
of all certificates in the chain. This procedure slightly differs
| depending on the type of certificate (leaf certificates do not
é'ntroduce any collateral damage and thus are revoked with-
gut specifying a revocation timestamp). Legitimacy periods
are determined as presented in Fiyy. 4 (for CA certificates)
and as in Figlb (for leaf certificates).

The procedure starts with the first (the root) certificate in

to the standard validation procedure executed by moderfe chain, and is executed for every subsequent certificate.
browsers. It encompasses checking whether the leaf ceirst, the legitimacy period is set as a time range from

tificate is issued for the given domain, checking whether= (the registration timestamp) t@’;.Not Af t er (which

the certificate chain is correct and terminates with a trustedenotes the expiration time specified within the certificate).

root certificate. Usually, such a pre-validation also includedf & revocation issued by the software vendor is present, the
expiration checks, but this functionality is enhanced bylegitimacy period of the current certificate is limited by the

PKISN.

time from which the vendor revoked this certificate (i.e.,

Proof Verification. During the next step, the browser ver- Up to the revocation timestamp). If a certificate is revoked
ifies the authenticity and correctness of the obtained logVith a private key associated with the certificatk,(for a
proofs. First, the match between a proof, a certificate chaircA certificate andsk, for a leaf certificate), the legitimacy
and a chain commitment is verified. The browser checkgeriod is similarly limited by the revocation timestamp from
whether the proof contains (in correct locations) the hashefie revocation message. The last option is a revocation
of all the chain’s certificates concatenated with the correealized by parent CAs. Similarly, the legitimacy period can
sponding timestamps (from the CC). Then, by hashing thde restricted, but this revocation message must be issued
elements of the proof, a root is computed and comparedluring the legitimacy period of the issuer.

with the signed root provided as input. When the roots are

The legitimacy period of a leaf certificate can express

the same, the verification passes, and the signed root can hgo states (revoked or non-revoked), but the processing logic

kept for further consistency checks and monitorifg.g).

is similar to the previous case.

During the complete validation procedure (see Algo-Log Consistency. After validation succeeded, the client
rithm [d), it is also ensured that every certificate from thesaves the signed root for future consistency checks. Then
chain (except the root) has a registration timestamp withirperiodically, the client contacts a monitor to compare the
the legitimacy period of its parent. In the final step of theobtained root with the monitor’'s version. If two roots with
validation, it is ensured that the leaf certificate is neitherthe same timestamps are different, it means that the log

revoked nor expired.

begin — tx
end — Cx.expiration

Revoked by
vendor?

evoked by
own revocation

end «— revocation
timestamp

evoked
during parent's
legitimate
period?,

Figure 4. Legitimacy period determination for CA certifiest wheret,,
denotesC’s registration timestamp. After the algorithm’s execatithe
legitimacy period is expressed as a time range (ftmgin to end).

begin « tx
end — Cx.expiration

Revoked by
vendor?

Revoked by
(upper-) parent?

during parent's —0
legitimate 0

period?

Revoked
by own private
key?

Figure 5. Legitimacy period determination for leaf certfies, wheret,
denotesC’s registration timestamp. After the algorithm’s execatithe
legitimacy period is expressed as a time range (ftmgin to end).

misbehaved, which can be proved and reported (e.g., to
a software vendor). To strengthen consistency checking,
PKISN can be enhanced by a system such as ARPKI [10],
or by gossip protocols as proposed by Chuat et al. [14].

5. Deployment

The deployability of a system like PKISN depends on
many factors, such as the incentives of the different parties
to adopt the technology and the number of required parties.
CT introduced two ways of providing proofs that a cer-
tificate is logged to clients while preserving privacy [[26],
[28]. We describe these models in the context of PKISN
in the following two subsections. We also show that the
deployment of PKISN is challenging with one of the models
introduced by CT, and the main reason for this is that the
ultimate goals of the two systems are different (CT tries to
detect misbehaving CAs, while a revocation system tries to
avoid using invalid certificates). However, we present new
models including a browser-driven deployment that brings
many advantages, and a new lightweight realization of a log
monitor. The presented deployment models can also be used
in conjunction.

5.1. Server-Driven Deployment

In the first deployment scenario, depicted in Fig. 6,
servers are driving the process of proving to their clients
that their certificate is not revoked:

1) The server contacts the log at regular intervals (at least
every scheduling period) to obtain a fresh signed tree
root and a fresh presence proof.

2) The log returns the requested data.

3) Every time a client connects to the server, this data,
together with the certificate chain and the CC, is
transmitted to the client (e.g., via an OCSP-stapling
mechanism).

4) Clients can communicate with monitors to verify that
they share a consistent and compatible vision of the
log.

Figure 6. Server-driven deployment model. Dotted and dhghes repre-
sent optional and periodic communications, respectively.

This deployment model is ideal in terms of efficiency
(because only the server needs to periodically perform a few

extra connections and the storage requirements are low) and Browser 1)

privacy (because the client does not need to contact a third Vendor Log
party to verify the validity of a server certificate). However, ‘
this model requires that servers are updated and this is not 2) !
likely to happen rapidly for all TLS servers on the Internet.

v
3) Client ‘4)% Monitor
4

5.2. ISP-Driven Deployment
Figure 7. Browser-driven deployment model. Dotted and édslhines

As many servers are not updated regularly the burdeﬁspresent optional and periodic communications, respslgti

of contacting the log to retrieve the revocation information

could bg put on clients, but there is a privacy issue if clients 1) Periodically, the browser vendor contacts a log to ob-
do so directly. The documentation of CT [26] mentions that tain the new revocations (note that a vendor can also
clients could use a modified DNS resolver (provided by their act here as a monitor).

ISPs) as an intermediary to contact the log. However, this 2) The vendor prepares a software update creating a list of
model is problematic when it comes to revocation, since the * Lo\ revocations (TCRL). Then this TCRL is submitted

goal is no longer to simply detect attacks in an unspecified 4 the Jog, which returns a commitment indicating that
future, but to instantly determine if a certificate can be the TCRL will be appended to the TimeTree. Finally

considered valid. Moreover, in a revocation system, such \yith this commitment (or a presence proof), the vendor
a connection would be required after the certificate chain pushes the TCRL to the browsers. Browsers verify

is received and before it is accepted (otherwise the client \\hether log proofs matched the TCRL and accept the
does not know for which certificate chain a validity message update.

should be returned), which would increase latency and be 3y pyring the TLS handshake, the client obtains a certifi-
prone to blocking attacks. For these reasons, it would be * -5te chain along with the corresponding BChen

challenging to adapt this model in PKISN. with a locally-stored TCRL, the browser verifies
whether all certificates from the chain have not been

5.3. Browser-Driven Deployment revoked. (As TCRLs provide complete revocation mes-
sages, clients can determine the legitimacy periods.)

Since the ISP-driven deployment does not fit the re- The browser continues with a verification similar to

quirements of PKISN, and since we cannot assume that Algorithm[d.

all servers would quickly be configured to provide fresh 4) The browser can (optionally) contact a monitor, to
proofs to TLS connections (server-driven model), we seek Verify that the local version of the TCRL (vendor’s

an alternative solution. We present a variant of browser- View) is consistent with the monitor’s view. Note that

driven deployment with the goal of providing users with this communication does not reveal any information on
the minimal information required to ensure that no certificate ~ the domains that the browser has contacted.

(from the chain) is revoked. To achieve this goal, we propose

to extend a browser update mechanism (mentioné2i8) 5.4. Lightweight Monitoring

that is already deployed, namely CRLSets.

As in a browser-driven deployment clients are period- Monitors are an integral part of many log-based
ically provided with revocation messages, it is crucial toschemes. They have the responsibility to constantly monitor
minimize bandwidth and storage overheads. In our deploythe logs to verify whether they behave correctly. In previous
ment model, vendors employ the log as a source of newroposals [[10], [[23],[[26] monitors were implemented as
revocations, and they push CRLSets that consist of ideneplicas of the logs that perform some extra checks on
tifiers (in our case hashes) of all revoked and non-expirediemand (e.g., confirm that their view of the log is consistent
certificates with their corresponding legitimacy periods (forwith the root provided by the client). Because of that design,
CA certificates). Additionally, vendors are obliged to log the bandwidth and storage required to operate a monitor are
every CRLSet before it is propagated to the browsers, angignificant. In this section, we propose a novel deployment
are obliged to propagate the CRLSet with a commitment (0fodel that allows to run a lightweight monitoring service.
presence proof) from the log, indicating that the CRLSet isThis model could be used by network devices with security
accepted by the log and will be visible in the near future. Wefeatures or by power-users, for example. Such a service can

call this concept alransparent CRI(TCRL). On the log- assist the clients in additional verification of a connection,
side, the TCRL is simply appended to the TimeTree. Thisand the required features are:

deployment model does not provide properties as strong
as the server-driven deployment, but it allows to verify
certificate validity and it enables the audit of TCRLs.

The connection establishment and certificate validation

of this deployment model are presented in [Eig. 7 and pro- 3 it a server deploys PKISN, then a proof is sent during thedbhake,
ceed as follows: and the client validates the certificate chain ag5l.

« confirm the root of the log,
« prove that the log is consistent (i.e., a version of the
log is the extension of a previous one),

« prove that a given object is in the log. g8.1. Moreover, such an optimization can be easily applied
Our first observation is that the large storage requireto other log-based approaches that employ hash trees.
ment of the log is induced by the necessity of storing
entire certificates (a single certificate takes about 2 kB ir6. Security Analysis
PEM format). However, as PKISN clients are provided with
certificate chains and the corresponding information during ~ Our first claim is that PKISN provides authenticity, i.e.,
TLS connections, monitors need not store actual certificate@ non-capturing adversary cannot create any legitimate
but only the corresponding hashes. This is sufficient tgevocation messageas long as he cannot forge a digital
ensure that a certificate is indeed in the log and that the logignature. An adversary with the private key of the domain
is consistent. In our proposal, a lightweight monitor is notcan revoke only the domain’s certificate. However, by this
directly equipped with the TimeTree’s leaves, but with theiraction, an attacker would reveal that the key is compromised,
parent nodes (i.e., hashes) and with revocation messagets the revocation must be logged.
Another observation is that certificates have a standardized A more powerful adversary, able to capture a CAs
maximum lifetime. Therefore, after some time, the TimeTreePrivate key, can revoke that CAs certificate, and all its child
will contain a continuous list of expired certificates and therecertificates. We claim that PKISN provides backward avail-
is no need to store the hashes of these certificates, unlea8ility and timeliness, i.esuch an adversary can misbehave

they are parts of non-expired chains. only for a short time periode.g., by temporarily introducing
collateral damage or malicious certificates). Specifically, that
root time period is less than or equal ®; + T, + T + T,

where Ty is a detection time, i.e., the duration between

Hab{?drz ror Hhi T klmry . . . o .
! “;{ H//]f\H the moment when a misbehavior (illegitimate revocation or
abed efror hij f! klmr: ifi i 1
__ e _ nagf _ Hmry cert|f|ca_te |ssuancg) is Iog_ged and the moment when the
Hy Hy H,,, H, Hyp Hy H,, CA notices that misbehaviofl;, denotes the audit delay,

A armar | i.e., the time during which the CA determines when the
Fo Bb Be Ba Be By Hf @@ o I‘{” first misbehavior was loggedy, is the scheduling period of
tC"’ tc*“ fC fO’Z' fO fcf' :"’ ;1’ tc, tC tCJ k" fC’ f? the log (seef3). For existing CT logs a scheduling period
oo T R e R R (called in CT MMD) is set between 1-24 houfE, stands

for the propagation time, i.e., the time it takes for a new
Figure 8. An example of a TimeTree, where all certificateteef; are ~ Change to be propagated to clients. This time depends on
expired. Only nodes in boxes are stored by the lightweightiton a deployment model, however in all presented models (see
g5) we may expect this time to be bounded by a few hours.
An example of our optimization is depicted in Hg. 8. It Overall, we estimate that it is feasible to conduct the entire
shows the original TimeTree and the values that a monitoprocess within several hours.

must provide. In this case, a monitor must initially obtain Let's consider the extreme case in which such an ad-

from the log only the following: versary compromises the root CA's private key and revokes
to : {Hapea, Hep, Hyo), all child pertif_icates with a revo_cation timesta_mp close to
the creation time of the CA. This would invalidate all the
ty s {Hr,}, (10) actions of this CA. With PKISN, these revocation messages
ta o {Hp, Hi, Hj, Rc;, Hg, H, Hy Hyy must be submitted to the log. The log accepts them if they
{root, £2} - are signed with an authentic key. These revocation messages

- will be visible, at the latest, when the log is updated. After
Then, periodically, adelta updatebetween the current o \nqate, the malicious revocations are noticed by the
TimeTree and the monitor's local list is transferred. Every A, which, after an audit procedure, can estimate when the
update is also accompanied with the corresponding signefreach happened, and can revoke its own certificate with
root (Eq. [8)). Such a design allows a monitor to store &, eyqcation timestamp set to the breach time, using the
minimizedversion of TimeTree and to: offline revocation key. Thereafter, in the next update of the
« check if every non-expired certificate of the chain is|og, all malicious revocations will be invalidated, and this
indeed present in the tree (e.g., on a client's query), change will eventually be propagated among clients {Se
« check the revocations of certificates and determingp generalT, > Tj, but when a CA is revoked, or many
legitimacy periods (e.g., on a client's query), revocations are submitted with a single key, the log could
« build the TimeTree’s root, and optionally compare it inform the CA about these actions before the update. Such
with other monitors to Verify that the view is ConSiStent, an information would give a CA some time to take actions
« extend the tree with new hashes, in order to completely eliminate the collateral damage.
« verify the proofs received from the clients. As explained above, PKISN enables to remove collateral
In this setting, a monitor is able to verify millions damage from the TLS PKI, but with the assumption that
of certificates and needs to store only tens of megabyteshe log is not malicious. We stress that the log itself is only
instead of several gigabytes for a complete TimeTree. Arusted to a certain extent, as it is constantly monitored and
detailed analysis of the required resources is presented i8 only supposed to: 1) be append-only, 2) accept object

registrations, 3) return cryptographic evidence about theroof and signed root from the log. For every subsequent
content/consistency of the trees. Hence, the log cannot ré-LS Handshake, the server sends these values (and the
voke certificates by itself, as it requires a private key to signchain commitment) usingLS Certificate Status
appropriate revocation messages. However, a misbehavirRequest [38], while the server’s certificate is sent within
log can block requests (by simply ignoring them), which isa standardSer ver Hel | o message. Such a configuration
a more generic problem of all log-based schemes. enables deployment of PKISN without any changes to the
The combination of a capturing adversary and a mali-TLS protocol. This setting is specific to the deployment
cious log is especially dangerous. Consider the case (similacenario presented #b.1.
to the previous one) in which an important CA is compro-
mised and malicious revocation messages for child certifi7.2. Performance
cates are issued and logged. Then, when the CA wants to
revoke its own certificate, the malicious log can just ignore With the setting presented above, we measured the effi-
the requests. As a consequence, the malicious revocatioagency of our system by conducting a series of experiments.
will not be invalidated. This attack is simple and severe, butEvery presence proof in our test contained two revocation
to succeed, an adversary must compromise the CA and theessages (pessimistic setting) and every certificate chain
log at the same time. contained three certificates. All results were obtained by
PKISN requires that all actions are signed and loggedgxecuting a given operation one thousand times on one
making the parties accountabldRevocations as well as Intel i5-3380M core @ 2.90 GHz, on Ubuntu 14.04 with
certificates ard@ransparent and visiblewhich makessplit- 16 GB of RAM. During one second, the log was able
world attacks [31] detectable. Consider the case whereto register 1907 certificate chains on average. For these
an adversary controls the log and captures a server's oltegistrations, the log verified the chains and returned signed
revoked key. Now, the adversary can produce a single fakehain commitments. To add 10000 new certificate chains to
presence proof, which states that a given certificate is ndhe trees, and to update the trees, the log needed on average
revoked for example, and can launch a man-in-the-middI&.154 seconds. Our client's implementation conducted a
attack on clients. Then, with such a proof, the adversargomplete validation within 1.266 ms on average, where the
must provide the corresponding signed root to the attackegire-validation and proofs validations take 0.405 ms and
client. The attack can succeed, as the client trusts the lod.370 ms, respectively. This computational overhead should
but the attack is detectable if the client contacts a monitobe unnoticed by users [41].
(or any other party) which has a different (legitimate) view
of the log. Such an attack is more difficult to conduct with 8. Evaluation
the deployment scenario sketchedfn3, as revocations are
stored in the browsers. We evaluate PKISN in terms of storage and bandwidth
PKISN preserves user privacyn all the presented de- overheads and focus on the server-driven deployment model,
ployment models §5), clients receive complete revocation the browser-driven model, and the lightweight-monitor pro-
status either through browser update or directly from thgposal. For the server-driven deployment, the information
contacted server. Clients do not contact any third parties teequired to verify a certificate chain is obtained directly
ensure that a given certificate is valid. Clients obtain signedrom the TLS Handshake. For the lightweight monitor
roots and extension proofs from the monitors, but this actiordeployment, the monitor is provided with a delta update,
also does not reveal any information about websites visitedas in Eq. [(ID), which allows the browser to reconstruct
minimized trees. In the browser-driven deployment (TCRL),
At ; ; the browser receives a delta update from the vendor as
7. Realization in Practice hashes of revoked certificates. Note that these two variants
) provide different properties (se€f.3). In our simulations,
7.1. Implementation we assume that the Ed25519 [12] scheme is used as the
signature scheme and that the hash function produces an
In order to prove the feasibility of PKISN, we imple- output of 20 bytes (this is a parameter, and second pre-
mented the system in Python (2.7.6) and C++ (gcc-4.8.2)mage resistance is the main property we rely on).
using the M2Crypto, libpki, and OpenSSL (1.0.1f) cryp-
tographic libraries. We modified libpki to add a dedicated8.1. Storage
revocation key into the extension field of every CA X509v3
certificate [15]. To minimize overheads we decided to use The Server-driven deployment does not require any stor-
the Ed25519 signature scheme, except for the standard kegge on the client-side, and only a small amount of storage on
of X509v3 certificates where RSA-4096 was used insteadthe server-side: a signed root (88 bytes), a chain commitment
We used the SHA-256 hash function for both certificate96 bytes for a chain of three certificates), and a presence
and the implementation of hash trees. proof (each node takes 20 bytes). In the standard case, this
We wrote a complete log and TLS client that implementsoverhead should be around 1 kB.
the validation logic from§4.4. For the server side, we To estimate the storage overhead required for the pre-
used Nginx, which periodically requests a fresh presenceented deployment variants, we used data available from

35 -
M certificates 623\ Bandwidth to the log

= 5M certificates --><-- <
s 20 6M certificates ---%---) s
< 7M certificates £} g
g F=
° =

[15 [
& 8

g 1 g

5 : S

2 % o £
3

5 g
I I © ol o+ | | | |
240 4M certificates —+— o - - - —

o ificates --<--- ¥ 1024 Lightweight monitor (minimized trees)
g gm ‘ég:gg‘é::g: i o o =) t < Browser-Driven deployment (TCRL) -------
£ 200 7M certificates -3 o o =) " = 256

g - £ 64

2 5

o 160 3 16

g c

[} 2 4

g 120 8

S € 1

&h = v

@ £

80 g 025
5 7 9 11 13 15 S L ! Lo \

Fraction of revoked certificates (%) Dec Jan Feb Mar Apr

Figure 9. Storage overhead required by TCRL-enabled biofime chart), Figure 10. Bandwidth required by the log to receive certiigagistrations
and by a monitor with the minimized-trees variant (bottonarch and revocations (top chart), and by the browser to receilg dadates
(bottom chart, note that the y-axis is in logarithmic scale)

one of CT’s public log8 First, we conservatively qual-]
ified certificates as valid considering theiot Bef ore April 2014. Heartbleed allowed attackers to remotely read

and Not Af t er validity fields, and found that out of the @ server's protected memory including sensitive information
7,427,474 certificates in the log, 3,938,656 were valid on 13ike private keys. As a consequence, in mid-April 2014 we
May 2015, 12:00:00 UTC (note that certificate chains carPbserved the highest frequency of certificate re-issuance and
be added to the log only if the root certificate is containedrevocation ever. This unique event and its impact on the TLS
in a set of acceptable roots that the log maintains). Therfcosystem has been thoroughly analyzed [16], [44].

we simulated storage overheads for the two deployment We evaluated the bandwidth required by PKISN during
variants, depending on the number of certificates and thBormal operations (i.e., a few months before Heartbleed) and

fraction of revoked certificates (this fraction in HTTPS was during what we will refer to as theeak time(i.e., right after
recently reported as 8% [29]). Heartbleed was announced). For this test, we used the above-

As shown in Fig[®, the results differ significantly de- mentioned dataset to extract all new certificate issuances
pending on the deployment variant. With today’s number@nd revocations observed over the time period. We assumed
of valid certificates and a 10% revocation rate (which isthat certificate chains consist of three certificates, as this
considered as high), a browser employing the TCRL mechiS, reportedly, the length of the vast majority (about 98%)
anism needs 8 MB of storage, while, for the same scenarigf certificate chains [17]/[21]. By fetching all entries from
a lightweight monitor needs 115 MB, whereas the log inone of CT's public logs (as i§8.1), we determined that the
such a setting stores about 8 GB. average size of a single certificate is about 1966 bytes. The

setting of cryptographic primitives used here is the same as

. in the previous test.
8.2. Banawidth First, we estimated the total bandwidth required by the
. . log to register all issued certificates and revocations. The

We also evaluated PKISN in terms of bandwidth re- ; ; :
quired, using real-world traces. Zhang et 1 [44),using datgct e 8 0L 0) ke Vo O 701 a) the g recenves
ga‘([jhetlzed by Ramcﬂ'g_ollected |nf?rmathrnhaboutt(_?ertltflcates 5-13 MB per day. At peak time, the number of certificate
glrt]ere detoc?:r(;ﬁzipdoenr g‘rﬂyri\éﬂgaé?gg fror(; fﬁé : IA?:XZS Tvggrlpssuances and revocations increases, causing higher demands
1 Million global sitef] For these 628,692 certificates, the Eelz’]qz?rg?jv?sdltgs? ?r\:\;?]vég ?\\A/gnptgf g,at;le maximum bandwidth
1,3§r6rilco(;r?spo?dlng %?a::_s were dow_nlge:{ded a}gr:)dgrct)cgsse " Second, we estimated the bandwidth required for the

€ dalaset we uSe@overs a period from 39 Lctober daily update of a browser (TCRL) and a lightweight monitor
2013 to 28 April 2014. This period is especially Intere?Q‘t'm:](minimized trees). Fig._10 depicts the results for these two
from our point of view adHeartbleed—a critical vulnerabil- variants '
ity in an OpenSSL extension—was publicly announced in In a standard scenario, the daily update for the mini-
http://ctgoogleapissom/pilot mized trees variant is 15-40 kB, but with the increasing
httpé://scanm/study/sonassl number of revocations caused by Heartbleed, the required
bandwidth increases as well. On 17 April 2014, it reaches

http://s3amazonawgsom/alexa-static/top-1rosv.zip ©S @]
https://ssl-researatts neuedu/datasettml around 1.4 MB, which is the highest number observed. After

No oA

http://ct.googleapis.com/pilot
https://scans.io/study/sonar.ssl
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://ssl-research.ccs.neu.edu/dataset.html

this date, the bandwidth required decreases rapidly. In aas issued on 29 January 2007, which means that a single
similar manner, for the deployment variant using TCRL, theprivate key was used to sign about 43.25 certificates per
normal update is below 1 kB, while the update during theday on average, during more than 8 years. If that key was
peak reaches 300 kB at most. We believe that such overheadmpromised and the corresponding certificate revoked with
is acceptable, but we expect that with a higher revocatiorcurrent methods, thousands of websites would be affected.
rate (which may occur in practice) browser vendors wouldwith PKISN, only a small number of certificates would be
reduce the transfer cost through a more efficient encodingevoked (provided that the detection process is reasonably
of TCRLs or by limiting the scope of TCRLs (e.g., to EV fast). For instance, if a misbehavior was detected after one
certificates only—see CRLSets {2.3). week, only about 300 certificates would have to be revoked
In the server-driven deployment, for every TLS connec-and re-issued, which constitutes only about 0.2% of all
tion, a client is provided with about 1 kB (s¢8.d) of certificates issued with this key.
additional data.

_ 9. Discussion
8.3. Comparison
} The effectiveness and security of our system depend on
~ We now summarize the above results and compare thghe |ength of update periods, which introduces an obvious
different deployment models of PKISN with competing trade-off between the log's performance and the size of
revocation schemes. The comparison encompasses storag@ attack window. We believe that a delay of a few hours
and bandWldth OVerhead on the C|ient-Side, as We" as thgetween |Og updates is a good Compromise_
potential latency introduced by the revocation scheme to ope remaining challenge, and a potential subject for
the TLS connection. The results are presented in Table 3ytyre work, is the multi-log scenario, which is challenging
Depending on the scheme, the revocation information ca@s synchronization between the logs would be necessary.
be passed through an update (e.g., daily) or during evenpne interesting approach to make the multi-log scenario
TLS Handshake (per connection), which is described inscalaple, is to introduce domain-driven security polidies [40]
the Bandwidth column. For PKISN and other log-basedihat would allow domains to specify which logs they trust.
approaches we show the storage required for a revocatiophen, all certificate registrations and revocations could be
rate of 8% and four million active certificates ($§&1). The sybmitted only to these logs. Another interesting aspect that
bandwidth required by PKISN is given as the median valug:qy|d be investigated relates to the question of how PKISN
observed ing8.2, while for CRLSets we used the datasetcan pe extended to other trust models, log systems, and their
provided by Liu et al., and for CRLs we used a dataseyppjications[[18],[[33]. In particular, PKISN could be com-
provided by ISCI[7]. _bined with ARPKI [10], for example, to provide additional
~ Besides efficiency, the schemes compared here diffegecurity properties (such as “connection integrity”). We also
significantly in the properties they offer (s§2.3 andd). plan to conduct a formal analysis of PKISN.
An open problem, that all new log-based approaches
8.4. Case Study face, is to find an optimal deployment model and an in-
cremental deployment plan. PKISN can benefit from the
GoDaddy is currently one of the largest issuers of TLSprevious works[[11],[[30], but we plan to investigate and
certificates[[9]. We take the “Go Daddy Secure Certificationanalyze the proposed deployment models in depth. An ad-
Authority” certificate (serial numbef7969287) as an vantage of PKISN is that it can be easily built on the top
example in a case study on how effective PKISN could be irof CT, which currently is being deployed.
practice. By analyzing the content of Google’s pilot CT log, We believe that the revocation policy employed by
we found 139,086 valid certificates (on 19 November 2015PKISN fits the current TLS ecosystem and reflects the
signed by the aforementioned intermediate CA. The oldespower of PKI actors and the connections between them.
of these certificates (as indicated by thet Bef or e field) = However, we envision that this policy could be optimized
and standardized by organizations and consortia such as the
CAB Forum [1].

TABLE 2. COMPARISON OF REVOCATION SCHEMES

Scheme Storage Bandwidth Latency 10. Conclusion
CRL 34 MB 24 kB/conn. increased Th t tificat fi t ffer f
0OCSP None 0.5 kB/conn. increased e current certificate revocation systems suffer from
OCSP Stapling None 0.5 kB/conn. unalteredNany drawbacks such as large attack windows, privacy
CRLSet 02MB 0.12kB/day unaltered iSSues, and configuration dependencies. In this paper, we
ECT/DTKI None 1 kB/conn. increased redesigned the current TLS revocation system and presented
AKVARPKI _ None 0.5 kB/conn. unaltered PKISN, which resolves several problems that we identified.
ii:gﬂ Ezw'd“vez'fﬂ)g)'ce”] 4N'\f/’|'|139 017'(%‘;‘3””- U”?t'te“:jd The most important advantage of PKISN is that it is the first
rowser-ariven . . ay unaltere _hiA-
PKISN (iight, monitor. 55.4) 108 MB 30 kB/day unaltered system (to the best of our knowledge) to solve the too-big

to-be-revoked problem of the current PKI. It also enhances

transparency and introduces a novel revocation policy thato]
reflects the actual interactions within the TLS ecosystem.
Only a few changes are required to deploy PKISN with the
current infrastructure. Moreover, the evaluation and perfor{20]
mance results of our implementation indicate that PKISN is
viable for use in practice. [21]

Acknowledgments [22]

We thank our shepherd Bart Preneel, the anonymous
reviewers, and Franz Saller for their valuable feedback. Wep3;
gratefully acknowledge support from ETH Zurich and from
the Zurich Information Security and Privacy Center (ZISC).

[24]
References

[25]
[1] CA/Browser forum. https://cabforurarg. [26]

[2] DigiNotar removal follow up. https://blagnozilla.org/security/2011/
09/02/diginotar-removal-follow-up. Mozilla Security @&j. (27]

[3] Mozilla’s revocation plan. https://wikinozilla.org/CA:

RevocationPlan. [28]

[4] Qualys SSL lab. https://wwwssllabscom/ssltest/indektml. [29]

[5] Baseline requirements for the issuance and managenhgutbdicly-
trusted certificates. https://cabforurg/wp-content/uploads/
BaselingRequirementsv1_1_6.pdf, 2014. CA/Browser Forum.

[6] Mozilla included CA certificate list. https://wikinozilla.org/CA:
IncludedCAs, 2015.

[7] SSL CRL activity. https://issansedu/crlshtml, 2015. SANS Internet
Storm Center.

(30]
(31]

[32]
[8] Usage of SSL certificate authorities for websites. WiyBtechscom/
technologies/overview/sgtertificate/all, 2015. W3Techs.

[9] A. Arnbak, H. Asghari, M. V. Eeten, and N. V. Eijk. Secyritollapse
in the HTTPS marketQueue August 2014.

[10] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse| B. Szala- [34]
chowski. ARPKI: Attack Resilient Public-key Infrastrucéu In ACM
CCs 2014. [35]

[11] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D.1TiK. R. But-
ler, and A. Alkhelaifi. Securing SSL certificate verificatidmough [36]
dynamic linking. INnACM CCS 2014.

[12] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.Y&ng. [37]
High-speed high-security signatureurnal of Cryptographic Engi-
neering 2012.

[13] CCITT. Recommendation X.509: The Directory Autheation
Framework, 1988.

[14] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and Eedderi. [39]
Efficient gossip protocols for verifying the consistencyceiftificate
logs. InIEEE CNS$ 2015.

[15] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Hgusind
W. Polk. Internet X.509 public key infrastructure certifieaand
certificate revocation list (CRL) profile. RFC 5280, May 2008 [41]

[16] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, MailBy,
F. Li, N. Weaver, J. Amann, J. Beekman, and M. Payer. The matte [42]
of Heartbleed. IPACM IMC, 2014.

[17] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderm#&malysis (43]
of the HTTPS certificate ecosystem. ACM IMC, 2013.

[18] S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and&mith. [44]
Hey, NSA: Stay away from my market! Future proofing app market
against powerful attackers. KCM CCS 2014.

(33]

(38]

[40]

N. Gruschka, L. L. lacono, and C. Sorge. Analysis of therent
state in website certificate validatiorsecurity and Communication
Networks 2014.

S. Haber and W. S. Stornetta. How to time-stamp a digit@lument.
Journal of Cryptology 1991.

R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL
landscape: A thorough analysis of the X.509 PKI using actind
passive measurements. ACM IMC, 2011.

J. lliadis, S. Gritzalis, D. Spinellis, D. De Cock, B.dmeel, and
D. Gritzalis. Towards a framework for evaluating certifeatatus
information mechanismsComputer Communication2003.

T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and MigGr.
Accountable Key Infrastructure (AKI): A proposal for a pigskey
validation infrastructure. I'WWW 2013.

P. C. Kocher. On certificate revocation and validatiém.Financial
Cryptography 1998.

A. Langley. Revocation checking and Chrome’s CRL. siffavww.
imperialvioletorg/2012/02/05/crlsetistml, 2012.

B. Laurie and E. Kasper. Certificate transparency v.2titep://www.
links.org/files/Certificate TransparencyVersiob2pdf, 2012.

B. Laurie and E. Kasper. Revocation transparef@yogle Research
2012.

B. Laurie, A. Langley, and E. Kasper. Certificate traargmcy. RFC
6962, June 2013.

Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs. Mis-
love, A. Schulman, and C. Wilson. An end-to-end measureroént
certificate revocation in the web’s PKI. KCM IMC, 2015.

S. Matsumoto, P. Szalachowski, and A. Perrig. Deplaymehal-
lenges in log-based PKI enhancementsElroSe¢ 2015.

D. Mazieres and D. Shasha. Building secure file systentsof
byzantine storage. IACM PODG 2002.

P. D. McDaniel and A. D. Rubin. A response to “can we efiate
certificate revocation lists?”. IRinancial Cryptography 2000.

M. S. Melara, A. Blankstein, J. Bonneau, E. W. Feltend &h. J.
Freedman. CONIKS: Bringing key transparency to end users. |
USENIX Security2015.

M. Naor and K. Nissim. Certificate revocation and cestife update.
IEEE Journal on Selected Areas in Communicatjd300.

Y. Pettersen. The transport layer security (TLS) npldticertificate
status request extension. RFC 6961, June 2013.

R. L. Rivest. Can we eliminate certificate revocatioatd? In
Financial Cryptography 1998.

M. D. Ryan. Enhanced certificate transparency and ereht
encrypted mail. IlNDSS 2014.

S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Gaipeand
C. Adams. X.509 Internet public key infrastructure onlirestificate
status protocol — OCSP. RFC 6960, June 2013.

A. Schulman, D. Levin, and N. Spring. RevCast: Fastyaig
certificate revocation over FM radio. KCM CCS 2014.

P. Szalachowski, S. Matsumoto, and A. Perrig. PoliCsecure and
flexible TLS certificate management. ACM CCS 2014.

N. Tolia, D. G. Andersen, and M. Satyanarayanan. Q&ang
interactive user experience on thin clientEEE Computer 2006.

E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, and bndB.
Towards short-lived certificate8Veb 2.0 Security and Privacg012.

J. Yu, V. Cheval, and M. Ryan. Dtki: a new formalized pkitlwno
trusted partiesarXiv preprint arXiv:1408.10232014.

L. Zhang, D. Choffnes, D. Levin, T. Dumitras, A. MislovA. Schul-
man, and C. Wilson. Analysis of SSL certificate reissues and
revocations in the wake of Heartbleed. ACM IMC, 2014.

https://cabforum.org
https://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up
https://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up
https://wiki.mozilla.org/CA:RevocationPlan
https://wiki.mozilla.org/CA:RevocationPlan
https://www.ssllabs.com/ssltest/index.html
https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1_1_6.pdf
https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1_1_6.pdf
https://wiki.mozilla.org/CA:IncludedCAs
https://wiki.mozilla.org/CA:IncludedCAs
https://isc.sans.edu/crls.html
http://w3techs.com/technologies/overview/ssl_certificate/all
http://w3techs.com/technologies/overview/ssl_certificate/all
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
http://www.links.org/files/CertificateTransparencyVersion2.1a.pdf
http://www.links.org/files/CertificateTransparencyVersion2.1a.pdf

	1 Introduction
	2 Background
	2.1 The TLS Public-Key Infrastructure
	2.2 Desired properties
	2.3 The Evolution of Revocation Schemes and their Drawbacks
	2.4 Certificate Transparency
	2.5 Assumptions
	2.6 Adversary Model
	2.7 Notation

	3 PKISN Overview
	3.1 The Certificate Log as a Timestamping Service
	3.2 Transparent and Persistent Revocation
	3.3 Revocation Policy
	3.4 Validation
	3.5 Log Consistency

	4 PKISN Details
	4.1 Revocation Messages
	4.2 Structure of the Log
	4.3 Interactions with the Log
	4.4 Validation

	5 Deployment
	5.1 Server-Driven Deployment
	5.2 ISP-Driven Deployment
	5.3 Browser-Driven Deployment
	5.4 Lightweight Monitoring

	6 Security Analysis
	7 Realization in Practice
	7.1 Implementation
	7.2 Performance

	8 Evaluation
	8.1 Storage
	8.2 Bandwidth
	8.3 Comparison
	8.4 Case Study

	9 Discussion
	10 Conclusion
	References

