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Abstract—Software-defined networking is considered a promis-
ing new paradigm, enabling more reliable and formally ver-
ifiable communication networks. However, this paper shows
that the separation of the control plane from the data plane,
which lies at the heart of Software-Defined Networks (SDNs),
introduces a new vulnerability which we call teleportation.
An attacker (e.g., a malicious switch in the data plane or
a host connected to the network) can use teleportation to
transmit information via the control plane and bypass critical
network functions in the data plane (e.g., a firewall), and to
violate security policies as well as logical and even physical
separations. This paper characterizes the design space for
teleportation attacks theoretically, and then identifies four
different teleportation techniques. We demonstrate and discuss
how these techniques can be exploited for different attacks (e.g.,
exfiltrating confidential data at high rates), and also initiate the
discussion of possible countermeasures. Generally, and given
today’s trend toward more intent-based networking, we believe
that our findings are relevant beyond the use cases considered
in this paper.

1. Introduction

Computer networks such as datacenter networks or the
Internet have become a critical infrastructure [1]. Not only
a large fraction of the economic activity critically depends
on the availability of such networks, but also governments
increasingly rely on existing and shared infrastructures,
mainly for their cost benefits [2].

This dependency on public and shared infrastructures
raises concerns. While the Internet has certainly been a
huge success, and over the last years, there has been much
innovation on the higher network layers (e.g., application
layer) and the lower network layers (e.g., data-link and
physical layer), the Internet core suffers from ossification [3].
In particular, it is questionable whether today’s network
technology is sufficient to ensure essential security, resilience
and dependability properties. For instance, today’s Internet
does not provide any means of path control, and we are still
struggling to render routing protocols more secure [4].

Software-Defined Networking is a novel networking
paradigm which promises to enable these necessary innova-

Figure 1: Illustration of teleportation: Malicious switches
(with red horns) exploit the control platform for hidden
communication, possibly bypassing data plane security mech-
anisms such as a firewall.

tions, also in terms of security, through its decoupling and
consolidation of the control plane, its formally verifiable
policies [5], [6], [7], [8], as well as by introducing new
functionality [9], [10], [11], [12].

However, Software-Defined Networks (SDNs) also in-
troduce new security challenges. In particular, we in this
paper study threats introduced by an unreliable south-bound
interface, i.e., we consider a threat model in which switches
or routers do not behave as expected, but rather are mali-
cious [13], and e.g., contain hardware backdoors [14]. While
many existing network security and monitoring tools rely on
the trustworthiness of switches and routers, this assumption
has become questionable: Attackers have repeatedly demon-
strated their ability to compromise switches and routers [15],
[16], [17], thousands of compromised access and core routers
are being traded underground [18], networking vendors have
left backdoors open [19], [20], national security agencies
can bug network equipment [14], hacker tools to scan and
eventually exploit routers with weak passwords, default
settings are openly available on the Web, etc. However,
the impact of malicious hardware is not well understood and
underexplored today.

In particular, this paper shows how an outsourced and
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consolidated control plane—as it lies at the heart of the
SDN paradigm, introduces an opportunity for teleportation:
Malicious SDN switches may transmit information via
the logically centralized software control plane, completely
bypassing data plane elements (such as other switches,
middleboxes, etc.). By violating logical and even physical
separations, teleportation can constitute a serious security
threat. For example, teleportation could be used by one
malicious switch to discover (and communicate information
to) other malicious switches, bypassing security checks in
the data plane. As we will show in this paper, teleportation
can also be exploited by malicious hosts, triggering (benign)
switches to teleport information for them.

We argue that teleportation can be seen as a flexible
communication channel which constitutes a threat in various
situations, for example (see Figure 1):

1) Bypassing critical network components: By im-
plicitly communicating information via the control
plane, it is possible to circumvent critical network
components, such as switches, middleboxes or pol-
icy enforcers located in the data plane. For example,
teleportation can in principle be used to bypass mid-
dleboxes performing security checks (e.g., network
intrusion detection systems), middleboxes in charge
of billing (e.g., a Radius server), or QoS enforcers
(e.g., a leaky bucket policer).

2) Rendezvous and attack coordination: While al-
ready a single malicious switch, for example located
inside an enterprise network, may cause significant
harm and violate basic security policies, the situa-
tion becomes worse if multiple malicious switches
cooperate [21]. Malicious or Trojan switches (e.g.,
switches containing a hardware/software backdoor)
may use teleportation as a rendezvous protocol, to
discover each other, and subsequently coordinate an
attack.

3) Exfiltration: Teleportation can also be used to
exfiltrate sensitive information between networks
that have no data plane connectivity.

4) Eavesdropping and data tampering: Particularly
serious threats are introduced if malicious hosts and
switches collude. For instance, in a scenario with
collusion, teleportation can be used for eavesdrop-
ping. We show that a malicious switch and host
can carry out a man-in-the-middle attack that serves
benign hosts with malicious web pages.

Teleportation can be difficult to detect: The teleported
information follows the normal traffic pattern of control
communication, not between switches directly but indirectly
between any switch and the controller. Moreover, the telepor-
tation channel is inside the (typically encrypted) OpenFlow
channel. Accordingly, it cannot easily be detected with
modern Network Intrusion Detection Systems (NIDSs), even
if they operate in the control plane.

1.1. Our Contributions

This paper makes the following contributions:

1) We identify a new vulnerability, namely teleporta-
tion, which targets the very core of the software-
defined networking paradigm, namely the separation
of the control and the data plane. In particular,
we consider the threats introduced by a malicious
data plane. Indeed, recent incidents related to the
trustworthiness of routers and switches, indicate that
our threat model is a relevant one.

2) We model and characterize possible teleportation
channels theoretically.

3) We recognize and demonstrate four teleportation
techniques in software-defined networks utilizing
state-of-the-art OpenFlow controllers, in particular
ONOS [22] among others.

4) We present and demonstrate multiple simple and
sophisticated attacks. In particular, we show that
teleportation can also be exploited by malicious
hosts in scenarios where all switches are benign.

5) We evaluate the performance and quality of the
teleportation channel in terms of throughput, jitter
and packet loss respectively, and also evaluate the
resource footprint in terms of CPU and memory
consumption at the controller.

6) We initiate the discussion of possible countermea-
sures. In particular, we propose to combine intru-
sion detection with waypoint-enforcement, forcing
Packet-out messages (from controller to switches) to
pass through the waypoint if mandated by a security
policy.

We have already notified the open source community
about some of the issues reported in this paper, and first
actions have been taken (see CVE-2015-7516 [23]).

More generally, in the light of today’s trend toward more
intent-based networking, we believe that our work touches a
topic whose relevance may increase in the near future and
go beyond the use cases considered in this paper.

1.2. Paper Organization

The remainder of this paper is organized as follows.
Section 2 introduces the necessary background on OpenFlow
and SDN. Section 3 introduces our threat model, and Sec-
tion 4 characterizes possible teleportation channels. Section 5
describes teleportation techniques; based on these techniques,
we demonstrate and discuss different attacks in Section 6.
Section 7 describes our performance evaluation of the out-of-
band forwarding channel. Section 8 initiates the discussion of
countermeasures. After reviewing related work in Section 9,
we conclude our work in Section 10.

2. Preliminaries

This paper considers Software-Defined Networks (SDNs)
which outsource and consolidate the control over the network



switches to a logically centralized software controller. The
separation of the control and data plane has the potential to
simplify the network management, as many networking tasks
are inherently non-local. Moreover, SDN and especially its
de facto standard protocol, OpenFlow, introduce interesting
new flexibilities, e.g., in terms of traffic steering: Routes
may not necessarily be destination based, and can depend on
layer-2, layer-3 and even layer-4 properties of the packets.

At the heart of an SDN lies a control software, running
on a set of servers. These controllers receive information and
statistics from switches, and depending on this information as
well as the policies they seek to implement, issue instructions
to the switches.

OpenFlow follows a match-action paradigm: The con-
trollers install rules on the switches which consist of a match
and an action part; the packets (i.e., flows) matching a rule
are subject to the corresponding action. That is, each switch
stores a set of (flow) tables which are managed by the
controllers, and each table consists of a set of flow entries
which specify expressions that need to be matched against
the packet headers, as well as actions that are applied to the
packet when a given expression is satisfied. Possible actions
include dropping the packet, sending it to a given egress
port, or modifying its header fields, e.g., adding a tag. The
match-action paradigm is attractive as it simplifies formal
reasoning and enables policy verification.

By default, if a packet arrives at a switch and does not
match an existing rule, the packet (usually without payload
if the switch supports packet buffering) is forwarded to the
controller. This event is called a Packet-in. Upon a Packet-in
event, the controller can decide how to react to packets of
the corresponding type, and add/delete/modify flow rules
accordingly issuing Flow-mod messages to the switch (and
maybe to other switches proactively on this occasion as well).
A controller can also decide to send out a packet explicitly
from a switch, issuing a so-called Packet-out command to
the switch.

An attractive alternative to the hop-by-hop installation
of new flows, reacting to a new packet repeatedly along
the path (multiple Packet-ins), is the so-called “pave-path
technique”: Once the controller receives a first Packet-in
event from some switch, it proactively updates the other
switches along the path. Such an “intent-based” controller
behavior can render the reaction to network events and set
up of host-to-host/network connectivity (according to current
policies) more efficient.

While SDNs are logically centralized, the control plane
can be physically distributed, e.g., for fault-tolerance or per-
formance reasons. Accordingly, OpenFlow supports multiple
controllers for a single switch. The controllers and switch
exchange Role-request and Role-reply messages respectively
to assert the various roles (Master, Equal and Slave). There
may be only one Master controller for a given switch while
multiple Equal and Slave controllers are permitted.

The OpenFlow standard [24] specifies basic security
mechanisms. For example, the communication between the
controller and switch can be authenticated and encrypted,
using TLS over TCP/UDP.

Finally, we note that although some of our techniques
are generally applicable in networks separating the control
plane and the data plane, while others exploit OpenFlow
specific features, when clear from the context, in this paper
we will treat SDN and OpenFlow as synonyms.

3. Threat Model

We in this paper consider a threat model where OpenFlow
switches, hosts, or both, may not behave correctly but are
malicious.

We do not place any restrictions on what a malicious
switch can and cannot do. For example, a malicious switch
can fabricate and transmit any type of OpenFlow message, it
can arbitrarily deviate from the OpenFlow specification, and
it can even use multiple identities, all at the risk of being
detected. However, the malicious switch cannot choose where
it will be placed in the network. In order to collude, the
malicious switches have been programmed to recognize some
data and/or timing pattern. Similarly, we do not place any
restrictions on what a malicious host can and cannot do. For
example, a malicious host may masquerade its Media Access
Control (MAC) and/or Internet Protocol (IP) addresses, use
an incorrect gateway, falsify Address Resolution Protocol
(ARP) requests/responses, and so on. The attacker could
also be an insider, i.e., an authorized user who intends
to subvert his/her current organization. We also consider
the case where malicious hosts and switches collude. We
assume that an attacker has sufficient resources and know-
how to compromise hosts/switches and therefore do not
concern ourselves with how the host/switch is compromised.
For example, the attacker can exploit a buffer overflow
vulnerability in the switch software to compromise the
switch [13].

The OpenFlow controller and its applications on the other
hand are trusted entities and are available to the switches:
For example, they are based on static and dynamic program
analyses. The OpenFlow channel is reliable and may be
encrypted.

4. Modeling Teleportation

With these concepts in mind, we now model and charac-
terize a novel threat called teleportation which targets the
heart of SDNs: The outsourcing and consolidation of control
over multiple data plane elements. In particular, we argue that
we can see an OpenFlow controller as a “reactor”: It reacts
(in a best-effort and timely manner) to events generated by
the network operator, the OpenFlow switches, and timeouts;
as a response, the controller sends OpenFlow commands to
switches. Accordingly, we argue that the following 3-stage
functionality is fundamental in the SDN paradigm.

1) Switch to controller: A source switch intentionally
or unintentionally sends modulated information
to the controller (e.g., by adding specific events,
delaying existing events, etc.).



2) Controller to switches: The controller reacts to the
received events, by sending commands to one or
multiple other switches.

3) Destination processing: A destination switch pro-
cesses incoming commands from the controller. In
case of a malicious switch, the switch may search
for some message properties, temporal patterns, etc.,
and hence infer the information modulated by the
source, or by simply forwarding the information (to
a potentially malicious host).

Based on this controller model, we can identify two kinds
of teleportation channels 1:

• Explicit teleportation: The teleported information
actually appears in the messages exchanged. The
message may for example contain steganographic
contents.

• Implicit teleportation: The teleportation relies on
modulating information implicitly. For example, it
is based on timing (e.g., message transmissions are
delayed according to some pattern) or it is based on
shared resources, whose availability is changed over
time (e.g., leveraging mutual exclusion).

5. Teleportation Techniques

Having established a conceptual model of teleportation,
we next present techniques that can realize teleportation
in today’s SDNs. In particular, we have identified the
following three fundamental SDN functionalities which can
be exploited for teleportation:

1) Flow (re-)configurations: In an SDN, a controller
needs to react to various data plane events (such as
so-called Packet-ins in OpenFlow or link failures),
and configure and reconfigure flows and paths
accordingly. Triggering and exploiting such events
can be used for teleportation.

2) Switch identification: In an SDN, switches are
responsible for introducing and uniquely identifying
themselves to the controller. This is required as
policies are often specific to the switch. Unique
switch identifiers are also necessary to correctly
construct and enforce policies on the switches and
in the controller. We will show that such switch
identification mechanisms can be exploited for
teleportation.

3) Out-of-band forwarding: An SDN controller must
not only be able to receive events and control packets
from switches, but also to instruct switches to
forward specific messages. This basic functionality
in SDNs can be exploited by a malicious switch or
host to forward entire packets via the controller.

In the remainder of this section, we will discuss these
teleportation techniques in more detail in turn.

1 We note that our terminology of teleportation can be viewed as analogous
to covert channels. Explicit teleportation is analogous to covert storage
channels and implicit teleportation is analogous to covert timing channels.

Switch
(s1)

Controller
(c0)

Switch
(s2)

Packet-in (X→k1)

X is on s1
Packet-out

Flow-add (X→k1)

Packet-in(X→k2)

X is now on s2!
Packet-out

Flow-add(X→k2)

Flow-delete (X→k1)

Figure 2: Message sequence pattern for path update tele-
portation. Switch s2 teleports information to s1 when s1
receives the Flow-delete message from controller c0.

5.1. Flow (Re-)Configurations

We distinguish between two types of flow re-
configuration events: path update and path reset.

Path Update: Our first teleportation technique is based
on path updates. Path updates are a fundamental controller
functionality, and come in the form of different controller
features such as Mobility, VM Migration or simply MAC
Learning. The basic scheme is as follows: A controller
typically maintains some mapping of which hosts (MAC
addresses) are connected to which ports (on the switch). If
a host suddenly appears on another switch, the controller
installs new flows for the host on the new switch, and also
deletes the corresponding flow rules on the old switch. We
define this type of installation and deletion of flows by the
controller on switches as path update. Specifically, a path
update involves the use of Packet-in, Flow-mod and Packet-
out messages. Malicious switches can use path update for
implicit teleportation.

For the teleportation with path update, a switch triggers
the deletion of rules at other switches. Malicious switches can
teleport information between themselves by prompting path
updates for the same host using Packet-ins. Note that during
a path update, the Packet-out is be sent to the destination
reported in the Packet-in which may generate data plane
traffic. To prevent data plane traffic, the malicious switch
can use a destination host that is connected to itself (so that
the Packet-out is sent back to it). The message sequence
pattern for path update teleportation is shown in Figure 2.

We can summarize the scheme presented so far with
the following abstract steps: A switch s1 announces X , a
switch s2 announces X thereby stealing X from s1, where
stealing is detected by the “victim” ( s1). Also note that
announcing is possible once some host which is connected
to the malicious switch (e.g., k1 at s1) is learned by the
controller.



process incoming OpenFlow message :

on start teleportation :
- announce all {Xi,j}j∈[m] and {Xj,i}j∈[m]

on received Flow-delete for Xi,j for some j ∈ [m] :
- announce Xi,j

- add j to Discovered Switches

Algorithm 1: Generalized pseudo-code executed by
switch si to teleport information using path update.

Based on these basic steps, we can generalize our
scheme for m malicious switches. Each malicious switch, si,
with id i ∈ [m], should implement an event handler (see
Algorithm 1), in addition to the normal (non-malicious)
behavior. We assume that all switches are programmed with
the same list of m2 special MAC addresses {Xi,j}i,j∈[m]

(the pre-shared secrets). Note that once switch i discovers
switch j, it can contact it by sending packets with source Xi,j

and destination address Xj,i.
Path Reset: We next discuss a second flow reconfigura-

tion based teleportation which we refer to as path reset.
Recall that at the heart of any SDN controller lies the
functionality to set up host-to-host/network connectivity, ac-
cording to the network policy (e.g., defining constraints such
as bandwidth, link type and waypoints), which is translated
into device level configurations (e.g., flow rules). The “pave-
path technique” is an attractive alternative to the hop-by-hop
installation of new flows: Once the controller receives a first
Packet-in event from some switch, it proactively updates the
other switches along the path.

In order to provide high availability, a controller also
monitors the network state and makes necessary changes,
such as rerouting or resetting flows on switches, when needed
(e.g., due to a link failure). For example, triggered by a
Packet-in event, a controller may learn that (parts of) the
path may no longer be available, and hence initiates the
reconfiguration/repair of the path. We define the reinstallation
of flows by the controller on switches along a path as path
reset. Accordingly, the path reset technique involves Packet-
in, Flow-mod and Packet-out messages.

Malicious switches may use path reset for implicit
teleportation: If the controller resets the complete path
between hosts when it receives a Packet-in from a switch that
ignores the flow rule, then information can be communicated.
By doing this at multiple and specific times, a malicious
switch can teleport information to other malicious switches
along the path. Figure 3 illustrates the message sequence
pattern for teleportation using path reset.

5.2. Switch Identification

This teleportation type exploits the fact that a switch
typically must uniquely identify itself whenever it connects
to the controller. For example, in OpenFlow this is usually
done using the Datapath-ID (DPID) field in the Features-
reply message. We define two switches attempting to use
the same DPID to connect to the same logical controller as

Switch
(s1)

Controller
(c0)

Switch
(s2)

Switch
(s3)

Packet-in (k1→k2)

k1→k2 flow
on s1 broken???

Packet-out
Flow-add (k1→k2)
Flow-add (k2→k1)

Flow-add (k1→k2)
Flow-add (k2→k1)

Flow-add (k1→k2)
Flow-add (k2→k1)

Figure 3: Message sequence pattern for path reset telepor-
tation. Switch s1 teleports information to s2 and s3 via
Flow-add messages sent by the controller c0.

switch identification. The outcome can be used for implicit
teleportation.

Three basic ways an OpenFlow controller can react to
using the same DPID are as follows:

1) The controller denies the second switch a connec-
tion.

2) The controller terminates the first switch and con-
nects to the second.

3) The controller accepts both switches but sends them
different Role-request messages.

With any of the above outcomes, a switch can infer the
(mis)use of the same DPID by another switch. By using
a-priori configured single or multiple DPID values, a pair of
malicious switches can establish teleportation. For example,
consider the message sequence pattern in Figure 4, and
assume that first switch s1 tells controller c0 that its DPID
is 1. At a later time, switch s2 tells c0 that its DPID is 1.
At this point, c0 does not allow s2 to connect with DPID 1.
Since c0 denied s2 to connect with DPID 1, s1 teleported
information to s2 via c0. With a similar message sequence
pattern, the second outcome can be used for teleportation as
well.

Interestingly, switch identification is not limited to scenar-
ios with a single controller: We have found additional threats
in the presence of distributed control planes. Moreover,
we can generalize the first switch identification outcome to
scenarios with m malicious switches, see the event-handler
algorithm, Algorithm 2. The other two outcomes discussed
can also be seen as event-handler algorithms.

5.3. Out-of-band Forwarding

The third and potentially most powerful teleportation
technique is called out-of-band forwarding. It is an example
of explicit teleportation. Out-of-band forwarding exploits
the fact that an SDN controller is typically connected to
multiple switches: Accordingly, a packet from one switch



Switch
(s1)

Controller
(c0)

Switch
(s2)

Hello

Hello

Features-request

Features-reply(DPID=1)

s1 has DPID=1

Hello

Hello

Features-request

Features-reply(DPID=1)

s2 has DPID=1

Terminate s2 connection

Figure 4: Message sequence pattern for switch identification
teleportation when the controller denies the second switch a
connection. When s2’s connection is terminated, s1 success-
fully teleports information to s2.

Switch
(s1)

Controller
(c1)

Controller
(c2)

Switch
(s2)

s1 (DPID=1)
c1 (Master s1)

Features-reply
(DPID=1)

Features-reply
(DPID=1)

c1 (Master s1)

Role-request
(Master)

Role-request
(Master)

s2 (DPID=1)
Role decision

messages
c2 (Equal s2)

Role-request
(Equal)

Role-reply
(Equal)

c2 (Equal s2)

Figure 5: Message sequence pattern for switch identification
teleportation when controllers c1 and c2 send different Role-
request messages to s1 and s2 respectively. When s1 receives
the Role-request=Master message whereas s2 receives the
Role-request=Equal message. In this manner s1 teleports
information to s2 when s2 received the Role-request=Equal
message.

can potentially reach multiple other switches in the network
via the control plane. Out-of-band forwarding involves a
Packet-in from one switch and a Packet-out message at
another switch, with the possible side effect of Flow-mod
messages on the switch that sent the Packet-in message. Out-
of-band forwarding could for example include the complete
Ethernet frame (typically 1500 bytes), and can even serve

process connect to OpenFlow controller :
on Features-request message from controller :

- announce DPID {Xi,j}j∈[m] in Features-reply
message

on Controller denies connection to announced
DPID Xi,j for some j ∈ [m] :

- add j to Discovered Switches

Algorithm 2: Generalized pseudo-code executed by
switch si for switch identification teleportation when the
controller denies the second switch a connection.

Switch
(s1)

Controller
(c0)

Switch
(s2)

Packet-in (k1→k2)

k1 on s1, k2 on s2
Packet-out

Figure 6: Message sequence pattern for out-of-band for-
warding teleportation. The controller c0 receives the Packet-
in from s1 and accordingly sends a Packet-out to s2,
successfully teleporting packets from s1 to s2.

as a “multicast service”. Out-of-band forwarding can be a
serious threat to network security, not only because malicious
traffic can bypass critical security functions in the data
plane, but also because it can be exploited by switches
and hosts. Figure 6, illustrates the message sequence pattern
for teleportation using out-of-band forwarding.

A summary of our teleportation techniques is shown in
Table 1 along with the type of teleportation and the associated
OpenFlow messages.

6. Switch- and Host-based Attacks

We now demonstrate how the identified teleportation
techniques can be exploited to carry out specific attacks. In
particular, we show how teleportation may be exploited:

1) To bypass security critical network functions such
as firewalls and NIDSs;

2) As a rendezvous protocol for malicious switches;
3) To exfiltrate sensitive data from remote locations;
4) To conduct a man-in-the-middle (mitm) attack.

Along the way, we also present a novel denial-of-service
(dos) attack (published as a CVE-2015-7516).

Before presenting the attacks in more detail, we report
on the setup we used to verify the attacks.

6.1. Setup

We verified all our attacks in a virtual machine, using
Mininet-2.2.0 and Open vSwitch-2.0.1 for the data plane. For
the control plane we used ONOS-1.1.0 as it was the state-
of-the-art. At the time of our experimentation Floodlight,



TABLE 1: Summary of teleportation techniques, types and
associated threats.

Technique Type Threat

Flow (Re-)Configuration Implicit Covert communication and
coordination.

Switch Identification Implicit Attack coordination.
Out-of-band Forwarding Explicit Exfiltration, firewall/NIDS

bypass and man-in-the-
middle.

OpenDaylight Lithium-SR2, and RYU v3.27, still did not
support the intent based framework. Indeed our experiments
showed that they were only vulnerable to a subset of the
attacks (e.g., switch identification, out-of-band-forwarding2)
For packet generation we use ping and nmap-6.40. We
use ebtables v2.0.10-4 (December 2011) as our transparent
firewall and Snort version 2.9.6.0 GRE (Build 47) as our
NIDS. We modified code developed by austinmarton [25] to
set the Ethertype field in an Ethernet frame. ettercap 0.8.0
was used with a custom HTTP filter for the mitm attack.

6.2. Bypassing Critical Network Functions

We believe that the possibility to bypass network ele-
ments is a serious threat in modern computer networks. For
example, many network policies today are defined in terms
of adjacency matrices or big switch abstractions, specifying
which traffic is allowed between an ingress port s and an
egress network port t [26]. In order to enforce such a policy,
traffic from s to t needs to traverse a middlebox instance
(waypoint) inspecting and classifying the flows. The location
of every middlebox may be optimized, but is subject to the
constraint that the route from s to t should always go via
the waypoint.

Firewall and NIDS. In order to demonstrate how a firewall
may be circumvented by hosts (or switches), we set up
Mininet and ONOS as shown in Figure 7. The switches do
not have flow rules for k1 and k2 to communicate. The
firewall fw1 prevents hosts on the left to communicate with
hosts on the right and vice-versa. ONOS has the Intent
Reactive Forwarding (ifwd) application enabled. ifwd uses
the reactive “pave-path technique” (discussed above) to
install flows in the switches. By default, the ifwd application
establishes host-to-host connectivity when it receives a
Packet-in for which no flows exist.

We send a ping packet from k1 to k2. Despite the
presence of the firewall, k1 receives the reply from k2 using
out-of-band forwarding teleportation. In the absence of out-
of-band forwarding teleportation, the packet would have been
dropped by fw1.

Indeed, in this case, out-of-band forwarding teleportation
has the side effect of installing flows on s1 and s2 for k1
and k2 to communicate, preventing further out-of-band for-
warding teleportation. By masquerading its MAC address, k1

2 https://goo.gl/FN9ULQ

k1 k2

Ethernet link
OpenFlow channel

Host
OpenFlow switch
ONOS controller

s1
fw1

(k1,k3↔k2,k4)⇒DENY

c0

k3 k4

Teleportation traffic

Firewall

s2

Figure 7: An SDN topology with OpenFlow switches s1
and s2 and an OpenFlow controller c0 (ONOS). k1 and k3
are connected to s1 while k2 and k4 are connected to s2. s1
and s2 are separated by a firewall fw1 that denies hosts
on s1 to communicate with hosts on s2 and vice-versa. k1
can use out-of-band forwarding teleportation to transfer data
to k2, bypassing fw1.

can teleport more data to k2 via out-of-band forwarding
teleportation.

Similar to the firewall scenario, we can also use out-of-
band forwarding teleportation in the presence of Snort, an
NIDS. In particular, we can generate attack traffic using nmap
to conduct TCP flag attacks or even port scans. Indeed, by
masquerading the source MAC address, one can effectively
carry out a wide enough port scan without having the scan
pass through the firewall and being detected by the latter.

By replacing the firewall we previously described with
Snort, we use nmap from k1 to carry out a TCP port
scan on k2 using out-of-band forwarding teleportation. By
inspecting the alerts in Snort we verified that no alerts were
generated for the port scan.

Note that the host-to-host connectivity setup involves a
Packet-in and Flow-mod messages whereas the out-of-band
forwarding teleportation only involves Packet-in and Packet-
out messages with the side effect of Flow-mod messages.
Therefore, security policy enforcers that do not inspect and
correlate Packet-in with Packet-outs, will miss out-of-band
forwarding teleportation based attacks. Of course, violating
Flow-mods may eventually be detected, but only after the
data has been teleported.

6.3. Rendezvous and Malicious Switch Discovery

We next consider a rendezvous protocol in which mali-
cious switches wish to discover one another. A rendezvous
or discovery protocol can be also seen as a precursor to
a much more damaging attack such as a denial-of-service,
man-in-the-middle (mitm) or exfiltration.

Teleportation can be an attractive solution: A rendezvous
protocol can rely on steganography, i.e., embedding patterns
in teleported benign information or modulating patterns in
legitimate messages. Without teleportation, by going through
the data plane directly, the malicious switches risk detection.

https://goo.gl/FN9ULQ


s1

s3

s4

s2
k1 k2

Ethernet link
OpenFlow channel
Host to host traffic

Host
OpenFlow switch
ONOS controller

c0

k4k3

Teleportation traffic

Figure 8: An SDN topology of OpenFlow switches s1, s2, s3
and s4, OpenFlow controller c0 (ONOS). Hosts k1 and k3
are connected to s1 and k2 and k4 are connected to s2. c0
has installed flows on s1, s3 and s2 so that k1 and k2 can
communicate bi-directionally. Teleportation traffic is via c0.

We show how three of our techniques, namely path
update, path reset and switch identification teleportation may
be used as a rendezvous protocol for malicious switches.

6.3.1. Path Update. To demonstrate a rendezvous with path
update teleportation, we set up Mininet and ONOS as shown
in Figure 8. Instead of instrumenting code for the malicious
switches, we keep them as simple Open vSwitches and we
defined dedicated Mininet hosts (k3 and k4) for each of
them. We use the dedicated hosts (k3 and k4) to generate
the packet that the malicious switch sends as a Packet-in
to the controller. The host mobility and ifwd applications
are enabled on ONOS. The controller has already installed
flows for k1 to k2 and vice-versa. Accordingly, we use k4
connected to s2, to send k2 a packet using k1 as the source
MAC address. This triggers the controller to issue Flow-
mod commands to s1, s2 and s3. s2 thereby teleported its
presence to s1.

By inspecting the flows on the switches, we verified the
successful path update teleportation: s2 was able to cause a
flow deletion in s1 without exchanging any packets with s1
directly (except for a normal flow in the past).

Note that path update may trigger alerts in systems that
keep track of moving MAC addresses by inspecting Packet-
in and Flow-mod messages. In such cases, many moving
MAC addresses may introduce suspicious activity within the
network. Also worth noting is that port-based security (that
associates MAC addresses with specific ports) may not be
applicable in the presence of malicious switches.

6.3.2. Path Reset. To demonstrate that path reset teleporta-
tion can be used as a rendezvous protocol, we consider the
same setup as outlined in Section 6.3.1. We modulate traffic
between k1 and k2 using ping packets with 100 microsecond
intervals. Instead of manipulating the Open vSwitch code for
sending a Packet-in for an existing flow from s1, we simply
remove the flow for k1 to k2 on s1, using the ovs-ofctl
del-flow command. This causes s1 to send c0 a Flow-

removed message which triggers the controller to add the
flow back onto s1. But due to the high rate of ping traffic,
at least one packet triggers a table-miss before s1 adds the
flow and a Packet-in is sent to c0.

When c0 receives the Packet-in it sends the packet to s2
directly as a Packet-out, bypassing s3, and then sends Flow-
mods to s1, s2 and s3 resetting the bi-directional path
between k1 and k2. By checking the lifetime of the flow
rules on s1, s2 and s3 we verified that path reset teleportation
succeeded. In this manner, s1 teleported its presence to s2 by
having the controller send Flow-mod commands for existing
flow rules.

Note that such an attack works in the presence of topology
spoofing defenses [27], [28] as the Packet-in and Flow-mod
messages generated do not alter the existing topology. Indeed,
receiving a Packet-in for a flow that exists in the switch is
suspicious but we are not aware of any work that keeps track
of such events.

6.3.3. Switch Identification. We now demonstrate how two
malicious switches may teleport their presence using switch
identification. We set up Mininet and ONOS as shown in
Figure 8 with only s1, s3 and s4 having connected to c0
with DPID 1, 3 and 4 respectively. Also, there are no flows
installed on the switches for hosts to communicate. We
modified the Mininet script to configure s2 with the same
DPID as s1.

When s2 tries to connect to c0 with DPID 1 after s1
has connected to c0, it is denied a connection. This way, s1
teleports its presence to s2.

In Floodlight and OpenDaylight, when s2 attempts to
connect to c0 with DPID 1 after s1 has connected, Floodlight
terminates the connection with s1 and accepts s2’s connec-
tion. s2 thereby teleports its presence to s1. Interestingly
RYU allowed switches with the same DPID to co-exist which
potentially introduces additional issues.

Switch identification teleportation is also possible when
multiple controllers manage independent switches. We set
up Mininet and ONOS as shown in Figure 9. Initially s1
connects to c1 with DPID 1. c1 then declares itself as the
Master for s1. At a later time, s2 connects to c2 and claims
to have DPID 1. c2 then sends s2 the Equal role. In this
manner, s1 teleports its presence to s2. By inspecting the
OpenFlow channels, we verified the different Role-request
messages sent by the respective controllers to their respective
switches.

6.4. Exfiltration

Our next attack is related to data exfiltration. This is a
key concern for many organizations that own intellectual
property, personal data or any kind of sensitive information.
Once an attacker gets into a network, one possible goal of
the attacker is to stealthily exfiltrate sensitive data.

We demonstrate exfiltration by considering a scenario
where a small number of hosts are networked together in a
remote location. The data plane isolation is meant to improve
security. However the data plane elements are managed by
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Figure 9: An SDN topology with independent OpenFlow
switches controlled by independent OpenFlow controllers
(ONOS). c1 and c2 share and synchronize state information
via an independent controller network. s1 is controlled by c1
and s2 is controlled by c2 respectively.
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Figure 10: An SDN topology with OpenFlow
switches s1, s2, s3 and s4 and an OpenFlow controller c0
(ONOS). k1 and k3 are connected to s1 while k2 and k4
are connected to s2. Note that s2 is not connected to the
other switches, and thereby is isolated in the data plane. k2
can still exfiltrate data to k1 using out-of-band forwarding
teleportation circumventing the data plane isolation.

a controller that handles other similar remote locations. We
show that in such a network, not only malicious switches
can exfiltrate data using out-of-band forwarding teleportation
but even malicious hosts.

We set up Mininet and ONOS as shown in Figure 10.
ONOS has the ifwd application activated. By showing how k2
can exfiltrate data to k1, we also demonstrate how s2 can
exfiltrate data to k1 or s1.

Given that s1 and s2 do not have flow rules for traffic
from k2 to k1 (as they are located in disconnected data
planes), k2 can exfiltrate data to k1 by simply sending a
packet (e.g., UDP packet) to k1 thereby exploiting out-of-
band forwarding teleportation. The controller will receive
the packet from s2 and send it to s1 which will then forward
the packet to k1.

By inspecting the OpenFlow channels, we can see the
out-of-band forwarding teleportation, first as a Packet-in and
then as a Packet-out.

Switch
(s2)

Controller
(c0)

Switch
(s1)

Packet-in (k2→k1)

k2 unknown, k1@s1
Packet-out

Figure 11: The message sequence pattern for evading policy
conflicts using out-of-band forwarding teleportation. The
side effect of Flow-mod messages are avoided when Jumbo
frames are used from a masqueraded MAC address; only
Packet-ins and Packet-outs are used.

6.5. Evading Policy Conflicts

For an attacker, remaining stealthy is key to persistent
existence. One of the side effects of using the out-of-band
forwarding teleportation is the Flow-mod messages issued by
the controller. The Flow-mod messages may generate policy
conflicts (unauthorized/conflicting flow rules), alerting the
administrator. A stealthier version of using the out-of-band
forwarding teleportation would be to prevent the Flow-mod
side effect. This would not only prevent policy conflicts, but
also leave minimal traces on the source and sink switches.

In order to demonstrate this attack, we set up Mininet
and ONOS with ifwd activated as shown in Figure 10.
k2 can exfiltrate data to k1 using out-of-band forwarding
teleportation without triggering Flow-mod’s on s2 and s1 by
masquerading its source MAC address and ETHER TYPE
(e.g., Jumbo frame: 0x8870).

If the packet processor and intent framework cannot
correctly identify a packet, their behavior may violate security
policies. Note that it is enough if the ETHER TYPE is set
to a value that ONOS does not recognize, and we are not
restricted to Jumbo frames only. The message sequence
pattern for out-of-band forwarding teleportation without the
Flow-mod side effect is shown in Figure 11.

By inspecting the OpenFlow channels, we can verify that
the packet was indeed teleported via out-of-band forwarding
teleportation first as a Packet-in and then as a Packet-out.
By inspecting the flows on the switches, we can verify that
no new flows are present.

Remark on a Denial-of-service Attack. Interestingly, we
observed that a side effect of our out-of-band forwarding
teleportation is a novel denial-of-service attack. If in our
evading policy conflicts example, the host sends the same
packet (Jumbo frame) again, then ifwd encounters a null-
pointer exception and disconnects the switch that sent it the
packet. This shows how a malicious host can cause the switch
it is connected to, to be disconnected from the controller
even when a packet it sends is not corrupted.

We emphasize that this is a side effect of out-of-band
forwarding teleportation only, and not a teleportation issue
in itself. Fortunately, the issue has been resolved by the



ONOS community after we contacted them (published as
CVE-2015-7516).

6.6. Man-In-The-Middle

While we have so far focused on attacks where either
only switches or only hosts are malicious, we now detail
an attack that involves a malicious switch and a malicious
host. The damage of such a collaboration can be severe,
for example, the attackers could serve benign hosts with
malicious web pages. In order to exemplify the attack we
use HTTP rather than HTTPS.

For this attack, we set up Mininet and ONOS with ifwd
activated as shown in Figure 12. s1 and k2 are both malicious
while the others are not. k3 is a benign web server. s1
teleports specific HTTP traffic towards k2. k2 modifies the
HTTP traffic and teleports it back to s1 who then forwards it
to k1. In order to emulate the malicious switch, we introduced
a flow rule (shown in Listing 1) that rewrites the destination
MAC address for TCP traffic with PSH and ACK flags
sent from k3 to k1, to k2. This modified packet is then
passed through the flow table lookup again by using the
resubmit action in Open vSwitch. k2 runs ettercap to
modify the TCP/HTTP payload and forwards the packet to
the correct destination. Specifically, we created an ettercap
filter that looks inside HTTP responses from k3 for the
word “good”, replaces it with “evil”, and sends it to k1. The
firewall fw1 is meant to block traffic between hosts on the
right and the left.

When k1 requests the index.html page from k3,
based on the flow rule installed on s1, only HTTP responses
from k3 are teleported to s2 and forwarded to k2, through
the out-of-band forwarding teleportation. Subsequently, k2
modifies only the index.html web page and has s2
teleport it back to s1 via out-of-band forwarding teleportation.
Indeed, the side effect is Flow-mod messages to s1 and s2.

By viewing the index.html file received at k1 we
verified that the mitm attack was successful. The benign and
malicious web pages are shown in Listing 2 and Listing 3
respectively. By inspecting the flow counters on the switches
we verified that necessary packets did not pass through the
data plane.

Note that we did not introduce code into the Open
vSwitches to handle the mitm, therefore once the flows are
installed on the switches, the firewall will block all traffic
between s1 and s2 and vice-versa.

7. Out-of-Band Forwarding Performance

Having identified and demonstrated the various attacks
in this section we describe our evaluation of the out-of-
band forwarding channel. In particular we measure the
throughput, jitter and packet loss of the channel, and the
resource footprint of this channel in terms of CPU usage
and memory consumption at the controller.
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Figure 12: An SDN topology with OpenFlow switches s1
and s2 with c0 the OpenFlow controller (ONOS). k1 and k3
are connected to s1 while k2 is connected to s2. fw1
denies k2 to communicate with k1 and k3 and vice-versa via
the data plane. s1 and k2 being malicious, exploit the out-
of-band forwarding teleportation to eavesdrop and modify
communication data between k1 and k3 bypassing fw1.

p r i o r i t y =50001 , tcp , i n p o r t =2 ,
d l s r c = 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 3 ,
d l d s t = 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ,
t p s r c =80 , t c p f l a g s =+ psh+ack
a c t i o n s = mod dl ds t : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 ,
r e s u b m i t : 0

Listing 1: An Open vSwitch flow rule that was introduced
into the malicious switch (s1) to teleport HTTP traffic
with the PSH and ACK flags to the benign switch s2.
The matching packets have the destination MAC address
modified and resubmitted to the flow-table lookup which
results in Out-of-Band Forwarding teleportation.

7.1. Setup

In order to measure the throughput, jitter and packet
loss of the out-of-band forwarding channel, we set up three
dedicated systems: one system (64 bit Intel Core i7-3517U
CPU @ 1.90 GHz with 4GB of RAM) running ONOS-
1.5, another system (Intel Core 2 CPU @ 2.13 GHz with
4GB of RAM) running Mininet for the switches, and a third
system (Intel Core i5-5200U CPU @ 2.20GHz with 16GB of
RAM) running OFCProbe [29] for load generation. Only the
three systems are networked together via a Netgear 100Mbps
switch. On the Mininet system, we use a simple line topology
consisting of two hosts and two switches, where, host1 is
connected to switch1 which is connected to switch2; switch2
in turn is connected to host2. The switches accordingly
connect to ONOS as their controller.

7.2. Methodology

In order to emulate the malicious switch, we simply
install a flow rule on switch1 with the highest priority so that



root@Mininet−vm : ˜ # c u r l h t t p : / / 1 0 . 0 . 0 . 2
<html>
<head>
< t i t l e >Welcome page </ t i t l e >
<body>
good
</body>
</ html>

Listing 2: HTML code from the benign web server. Note
the word “good” is present in the body of the HTML
code.

root@Mininet−vm : ˜ # c u r l h t t p : / / 1 0 . 0 . 0 . 2
<html>
<head>
< t i t l e >Welcome page </ t i t l e >
<body>
e v i l
</body>
</ html>

Listing 3: HTML code modified by the malicious switch
s1 and host k2. Note the word “evil” is present in the
body of the HTML code.

the out-of-band forwarding applies by default, i.e., Packet-Ins
are sent to ONOS and forwarded accordingly.

We measure the throughput, jitter and packet loss using
iPerf3 running on the hosts in Mininet using UDP packets.
We consider UDP packets with a payload of 512 bytes to
be teleported. Note that for the 512 bytes to be teleported,
the overhead in bytes for encapsulation (in the following
order: Ethernet, IP, TCP, OpenFlow, Ethernet, IP, UDP) is
110 bytes (for a Packet-in) and 108 bytes (for a Packet-out).
Therefore, a 10 Mbps teleportation channel corresponds to
approximately 2009 packets (Packet-ins) per second. For the
CPU and memory usage on the controller, we use taskset
to pin ONOS to a single CPU and use top to measure the
CPU and memory usage. For the load generation: OFCProbe,
emulates 20 switches that trigger Packet-Ins to the controller
following a Poisson distribution (λ=1). The throughput, jitter,
packet-loss, CPU and memory usage is sampled every second
for 600 seconds.

7.3. Evaluation

We first study the throughput of the UDP-based tele-
portation channel, then consider the packet loss and jitter
characteristics, and finally examine the resource footprint in
terms of CPU and memory in turn.

7.3.1. Throughput. In Fig. 13 we visualize the throughput
of the teleportation channel as box plots. In Fig. 14 and 15,
we visualize the throughput of the teleportation channel
without and with load resp. as scatter plots.

We first observe that the teleportation channel can indeed
sustain very high transmission rates (Tx), of up to 40Mbps
in both scenarios. In the scenario without load (Fig. 13

and 14), we see that the channel becomes saturated around
rates slightly higher than 60Mbps, after which the throughput
suffers. In the scenario with load (Fig. 13 and 15), the vari-
ance of the throughput is naturally higher, but nevertheless it
can sustain rates which are almost as high as without load.

In conclusion, our results show that the performance of
teleportation can go far beyond a small number of packets
per second, which underlines the relevance (and potential
threat) of such channels.

7.3.2. Packet Loss and Jitter. Fig. 16 shows the packet
loss for the scenario without load and with load, respectively.
The experiments confirm the quality of the considered
teleportation channel: Up to 40 Mbps, the packet loss is
small despite some variance, and naturally increases beyond
10% for rates more than 50 Mbps. Again, only beyond the
critical rates of slightly more than 50 Mbps packet loss
becomes significant. Indeed, we can see a direct correlation
between the packet loss and the drop in throughput.

We plot the jitter without load resp. with load in Fig. 17 3.
Also in terms of this metric, we can see that the teleportation
channel offers a good quality also for high rates. The load
on the controller again introduces some variance to the jitter,
however, it does not influence the median value by much.

7.3.3. Resource Footprint. To better understand the re-
source requirements of the teleportation channel, as well
as the reasons behind the throughput drop at high rates,
we measured the CPU load and memory footprint on the
controller.

Fig. 18 visualizes the CPU usage as a box plot, while
Fig. 19 and 20 visualizes the CPU loads over time. We
observe that for a 10 Mbps channel, the CPU utilization has
a median value of 55, which is fairly high, but not alarming.
We also observe that at rates around 20 Mbps, the additional
CPU load introduced for an extra 10 Mbps (20 Mbps vs 30
Mbps channels) is small. The influence of the load on the
controller is discernible by the variance introduced and a
slight increase in the utilization. However, again at around
50 Mbps, the effects become larger: We can clearly see
the relationship between the throughput and CPU load, and
when the CPU consumption begins to climb, the throughput
begins to drop. Indeed, for transmission rates beyond 50
Mbps, the CPU utilization is so high that it can easily be
detected. This is also the time around which the jitter tends
to increase by a small amount.

With respect to the memory consumption, Fig. 21 shows
that between 10 and 50 Mbps the memory consumption
is within a close range (13-15 MB) regardless of whether
the load is induced or not. For 60Mbps and above, the
memory consumption is higher. Nonetheless, the impact of
teleportation on the memory is negligible.

3 Due to noise in our measurement setup, we obtained some outliers in the
jitter experiments. Therefore, we followed the median absolute deviation [30]
method, with a tolerance of 3.5 to remove such outliers.
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Figure 13: Received throughput using Out-of-Band Forward-
ing without and with load on the controller.
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Figure 14: Received throughput using Out-of-Band Forward-
ing without load on the controller.

7.4. Summary

Our first experiments show that teleportation channels
in the order of 10 Mbps are feasible, providing low packet
loss and low jitter. Moreover, these channels introduce a
moderate resource overhead in terms of CPU and a low
overhead in terms of memory. Hence, such traffic may go
unnoticed given the normal traffic patterns (even if the regular
traffic rate is orders of magnitude smaller). However, we also
observe that beyond a certain teleportation rate, the CPU load
will increase and become the bottleneck for teleportation,
limiting the throughput, introducing high packet loss rates,
and jitter. Therefore, we expect a sophisticated attacker
to target teleportation rates resulting in resource footprints
which are obfuscated by the regular load.
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Figure 15: Received throughput using Out-of-Band Forward-
ing with load on the controller. Legend as in Fig. 14
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Figure 16: Received packet loss using Out-of-Band Forward-
ing without and with no load on the controller.

8. Countermeasures

Having showcased a variety of attacks using teleportation,
we now start exploring possible countermeasures. Although
we have demonstrated all the attacks using ONOS we believe
that these issues are likely to become more general in
nature. They are becoming important with the shift towards
automated and intent aware controller frameworks allowing
for simpler and agnostic controller applications. Based on our
experiments we have also seen that the resources required
and utilized for teleportation, even at high rates are moderate.
Therefore, it may be difficult to distinguish the attack traffic
from the benign traffic. Accordingly we believe that, with the
separation of the control and data plane, it is now important
to monitor and police the communication channel between
the separated planes due to the increased attack surface [13].
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Figure 17: Received jitter using Out-of-Band Forwarding
without and with no load on the controller.
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Figure 18: CPU load using Out-of-Band Forwarding without
and with no load on the controller.

8.1. Packet-in-Packet-out Watcher

In order to prevent the out-of-band forwarding teleporta-
tion, we strongly advise the use of a Packet-in and Packet-
out watcher. It can either exist as a controller application or
as an application that resides between the controller and
switches akin to hypervisors. It would involve tracking
and enforcing security policies for Packet-ins and their
corresponding Packet-outs. Existing security enforcement
kernels, hypervisors and security applications must account
for Packet-ins and Packet-outs in addition to Flow-mods to
detect and prevent out-of-band forwarding teleportation.

Note that the out-of-band forwarding teleportation could
also be used by malicious controller applications. In a non-
adversarial scenario, the order in which a packet’s fate
is decided upon by various applications can inadvertently
teleport the packet. Therefore, verifying that the Packet-out
does not reach an undesired switch/host can prevent out-of-
band forwarding teleportation.
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Figure 19: CPU load using Out-of-Band Forwarding without
load on the controller. Legend as in Fig. 14
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Figure 20: CPU load using Out-of-Band Forwarding with
load on the controller. Legend as in Fig. 14

8.2. Audit-Trails and Accountability

We propose controllers to introduce secure audit-trail
capabilities, and accounting, that enable network adminis-
trators to thoroughly investigate events in their networks.
For example, controllers must log and alert sensitive events
such as a moving MAC addresses, or, receiving a Packet-
in when a flow has not yet timed out. Such capabilities
can aid detection and prevention mechanisms. It is also
useful for investigating security incidents. We recommend
administrators to frequently view controller logs, investigate
failed events and suspicious identities in the network.

8.3. Enhanced IDS with Waypoint Enforcement

Network intrusion detection systems are an important
means to detect and limit cyber attacks today, and accordingly
intrusion detection systems constitute an integral part of most
networks. We strongly suggest the use of an IDS application
on top of or before the controller, that can inspect Packet-
ins and Packet-outs and alert on suspicious traffic. Indeed,
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Figure 21: Memory usage using Out-of-Band Forwarding
without and with no load on the controller.

some controllers today already offer basic functionality for
waypoint enforcement. In particular, we suggest waypoint
enforcement and coordinating intrusion detection systems
from the control plane with the data plane. This is non-trivial,
but vital for network security.

9. Related Work

While researchers have already pointed out several in-
teresting novel challenges in providing a correct operation
of networks with separate data and control planes [7], [8],
[31], it is generally believed that SDN has the potential to
render computer networking more verifiable [5], [6] and even
secure [32], [9], [10], [11], [12].

Only recently researchers have started discovering secu-
rity threats in SDN. Klöti et al. [33] report on a STRIDE
threat analysis of OpenFlow, and demonstrate data plane
resource consumption attacks. Kreutz et al. [34] survey
several threat vectors that may enable the exploitation of
SDN vulnerabilities. Benton et al. [35] analyze vulnerabilities
in OpenFlow. In particular they point out the lack of
TLS adoption/implementation in OpenFlow switches and
controllers. In addition, they correctly identify the possibility
of dos attacks on the centralized control plane. Another key
challenge arising from the separation of the control and data
planes, is the potential loss of network visibility. It has been
shown that the network view of the controller may even be
poisoned [27], [28]. Thimmaraju et al. [13], point out that
threat models for the virtualized data plane need to account
for a malicious/compromised data plane in SDNs, and cloud
operating systems such as OpenStack.

While much research went into designing more robust and
secure control planes [36], [37], less published work exists
on the issue of malicious switches. A notable exception is the
work by Antikainen et al. [38], who consider the possibility
of a malicious relay node for a man-in-the-middle attack.
Interestingly, in our paper, we have shown that the relay
node can be the benign controller itself.

To the best of our knowledge, our work is the first to
point out and characterize the fundamental problem of SDN

teleportation. More generally, while most prior studies about
malicious switches focus on (indirect) attacks targeting the
controller, we in this paper demonstrate new kinds of attacks
which merely exploit the controller for directly attacking
(e.g., the confidentiality or availability) of network services.

However, there are a number of interesting approaches
proposed in the literature which have implications for our
scenarios as well. For example, the pre- and post-conditions
of Topoguard [28] can defend against our path update attack.
However, if the switches are malicious, these conditions can
be spoofed by the malicious switches. Also, Topoguard can-
not detect teleportation using path reset, switch identification
and out-of-band forwarding teleportation.

Sphinx [27] can alert on the path update teleportation.
However, it cannot detect the path reset as the flow graph
remains the same. Additionally, Sphinx assumes that switches
cannot use the same DPIDs, therefore, we believe that our
switch identification teleportation will not be detected by
Sphinx. Also, our out-of-band forwarding relies on Packet-
in and Packet-out messages, while Packet-outs are not
considered by Sphinx4. Therefore the suggested out-of-band
forwarding teleportation can evade Sphinx, until topology
altering flows are installed.

Porras et al. [39] propose a security mediator that
comprises of Rule Conflict Analysis, Role-based Source
Authentication, State Table Manager and a Permission Me-
diator. We admit that the path update can be detected using
this approach, however, our path reset does not introduce
any conflicting rules. The Features-reply messages are not
a part of their solution, therefore, we believe that switch
identification teleportation can succeed. With respect to
out-of-band forwarding teleportation, unless the mediator
investigates the destination switch or MAC address in the
Packet-out, the teleportation can bypass the security mediator
given sufficient permissions.

SDN Hypervisors such as CoVisor [40], Flowvisor [41],
FortNOX [10] depend on policies maintained in the hy-
pervisor. Therefore, we believe that all our teleportation
mechanisms hold unless a specific policy blocks it.

Dover Networks [42] discovered the behavior of Flood-
light with switches using the same DPID, which we exploit
for teleportation.

While Security-Mode ONOS [43] can enhance the secu-
rity in many scenarios, by introducing roles and permissions,
at least today, it does not help against teleportation: Once
ifwd has the permission to write intents and emit packets, our
teleportation succeeds. These permissions are bare necessities
for ifwd to function.

10. Conclusions

As OpenFlow networks transition from research to
production, new levels of reliability and performance are
necessary [44]. This paper has identified and demonstrated a
novel security threat introduced by software-defined networks
separating the control plane from the data plane. In the

4 Unfortunately, the source code of Sphinx is not available.



TABLE 2: Summary of teleportation attacks and involved
entities.

Attack Teleportation
technique

Exploited by

Bypass Firewall Out-of-band forwarding Switch and Host
Bypass NIDS Out-of-band forwarding Switch and Host
Exfiltration Out-of-band forwarding Switch and Host
Evading policy con-
flicts

Out-of-band forwarding Switch and Host

Man-in-the-middle Out-of-band forwarding Switch and Host

Rendezvous
Path update Switch
Path reset Switch
Switch identification Switch

presence of an unreliable south-bound interface (containing
malicious switches): We have shown that state-of-the-art
controller(s) are vulnerable to teleportation. Teleportation has
numerous applications (cf. the summary in Table 2): It can be
exploited to bypass security-critical network elements (e.g.,
to exfiltrate confidential information), as a discovery protocol
for malicious switches, to evade policy conflicts as well as
for man-in-the-middle attacks. Based on our preliminary
evaluation, we can say that even a teleportation channel of
over 10 Mbps can easily be used inside a loaded control
channel.

Our work can also be seen as a first security analysis of
the increasingly popular intent-based network mechanisms:
While intent-based mechanisms are attractive for allowing
(cloud) network operators resp. SDN applications to focus
on “what to connect” rather than “how’, we have shown
that controller managed intents need to be used with care.
Indeed, our experiments with controllers that are only
starting to introduce an intent based mechanism are not
yet vulnerable to all the specific attacks presented in this
paper. Moreover, while intent mechanism implementations
can vary across controllers, we believe that the underlying
issues are fundamental.

We understand our work as a first step, and believe
that our paper opens several relevant directions for future
research. In particular, we plan to extend our vulnerability
analysis to other SDN protocols and conduct a more in-depth
performance analysis. Another relevant avenue for future
research regards the development of countermeasures.
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Attacking an sdn with a compromised openflow switch,” in Proc.
Secure IT Systems: Nordic Conf. Springer International Publishing,
2014, pp. 229–244.

[39] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software-defined network control layer,” in Proc. NDSS,
2015.

[40] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compo-
sitional hypervisor for software-defined networks,” in Proc. NSDI,
2015.

[41] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Flowvisor: A network virtualization
layer,” OpenFlow, Tech. Rep., 2009.

[42] J. M. Dover, “A denial of service attack against the open
floodlight sdn controller,” Dover Networks, Tech. Rep., 2013.
[Online]. Available: http://dovernetworks.com/wp-content/uploads/
2013/12/OpenFloodlight-12302013.pdf

[43] “Security-Mode ONOS,” 2015, accessed: 2017-02-06. [Online].
Available: https://wiki.onosproject.org/display/ONOS/Security-Mode+
ONOS

[44] M. Kuniar, P. Pereni, and D. Kosti, “What you need to know about
sdn flow tables,” in Proc. Passive and Active Measurement (PAM),
2015, pp. 347–359.

http://dc.bluecoat.com/Inception_Framework
https://wiki.onosproject.org/display/ONOS/Wiki+Home
https://wiki.onosproject.org/display/ONOS/Wiki+Home
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://gist.github.com/austinmarton/1922600
http://dovernetworks.com/wp-content/uploads/2013/12/OpenFloodlight-12302013.pdf
http://dovernetworks.com/wp-content/uploads/2013/12/OpenFloodlight-12302013.pdf
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS

