1802.06691v1 [cs.CR] 19 Feb 2018

arxXiv

Sponge-Based Control-Flow Protection for IoT Devices

Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan Mangard
Graz University of Technology
Email: {firstname.lastname} @iaik.tugraz.at

Abstract—Embedded devices in the Internet of Things (IoT)
face a wide variety of security challenges. For example, soft-
ware attackers perform code injection and code-reuse attacks
on their remote interfaces, and physical access to IoT devices
allows to tamper with code in memory, steal confidential
Intellectual Property (IP), or mount fault attacks to manipulate
a CPU’s control flow.

In this work, we present Sponge-based Control Flow Pro-
tection (SCFP). SCFP is a stateful, sponge-based scheme to
ensure the confidentiality of software IP and its authentic
execution on IoT devices. At compile time, SCFP encrypts and
authenticates software with instruction-level granularity. Dur-
ing execution, an SCFP hardware extension between the CPU’s
fetch and decode stage continuously decrypts and authenticates
instructions. Sponge-based authenticated encryption in SCFP
yields fine-grained control-flow integrity and thus prevents
code-reuse, code-injection, and fault attacks on the code and
the control flow. In addition, SCFP withstands any modification
of software in memory. For evaluation, we extended a RISC-V
core with SCFP and fabricated a real System on Chip (SoC).
The average overhead in code size and execution time of SCFP
on this design is 19.8 % and 9.1 %, respectively, and thus meets
the requirements of embedded IoT devices.

Index Terms—control-flow protection, fault attacks, counter-
measures, authenticated encryption, sponges

1. Introduction

Internet-of-Things (IoT) devices serve a variety of pur-
poses, ranging from consumer products in smart home
environments, over sensor nodes in modern cars, to control
units in critical infrastructures. Typically, these embedded
IoT devices feature simple hard- and software architectures
with only little consideration of security to stay lightweight.
However, the rapidly growing number of IoT devices makes
them an interesting target for attackers. In particular, the
security of pervasive 10T devices can have direct impact
on security and safety in the real world. For example,
the worm Stuxnet [25] spread across programmable logic
controllers in Iranian infrastructure in 2010, and the malware
Industroyer [6] caused a black out of the Ukrainian power
grid in 2015. In addition, extensive Distributed Denial-
of-Service (DDoS) attacks on infrastructure providers by
hijacking a large set of IoT devices, as with the Mirai
malware [1]], are a significant threat.

There are numerous security challenges with IoT devices.
The prevalent Internet connection of IoT devices gives rise
to remote attacks on their exposed interfaces. In particular,
attackers can try to find and exploit vulnerabilities in these
interfaces to take control over IoT devices via code injection
or code-reuse attacks, like Return-Oriented Programming
(ROP) [39] and Jump-Oriented Programming (JOP) [15].
Further, many IoT devices are run in hostile environments,
where attackers have physical access to one or many IoT
devices. These physical attackers can read and tamper with
code in memory to perform code analysis and inject malicious
code. Access to code amplifies the risk of widespread
code injection and reuse attacks, and is a critical concern
for software Intellectual Property (IP) vendors. However,
physical access also allows attackers to perform fault attacks
on the processor chip itself, by using, e.g., clock or power
glitches [9], [27], [31]], in order to manipulate the execution
of code on the device. For example, by skipping instructions
using power glitches, attackers can get control over one
particular IoT device to fake, e.g., sensitive sensor data.

To prevent code injection and code-reuse attacks, different
countermeasures have been proposed, such as Data Execution
Prevention (DEP), return stack protection [19], [26], [32]],
Address-Space Layout Randomization (ASLR) [40], software
diversification [41]] and Control-Flow Integrity (CFI) [2]]. To
protect the authenticity and confidentiality of IP, encryption
and authentication of software binaries and Random Access
Memory (RAM) can be used. To counteract physical fault
attacks on the control flow of the processor, CFI [43] is a
feasible countermeasure as well.

However, current embedded devices hardly implement
any of these countermeasures. Moreover, existing counter-
measures work well for their original purpose in isolation, but
for each of them, some of the attacks on IoT devices remain
feasible due to the vast amount of different attack vectors.
While a simple combination of existing countermeasures
can inhere overheads that are impractical for lightweight
embedded devices, the security analysis of combinations of
countermeasures can also become highly complex. Recently,
SOFIA [20], [21] was presented as the first approach to
counteract a combination of these attacks. By encrypting,
authenticating and chaining blocks of instructions using
a stream cipher and MAC, SOFIA yields CFI as well as
confidentiality and authenticity of software. However, one
drawback of SOFIA is its checking mechanism. In particular,
the dedicated MAC verification is a single point of failure
that can potentially be exploited using physical fault attacks

on the error signal within the hardware. Furthermore, the
introduced code size and runtime overheads are potentially
too high for certain applications.

Contribution. As an alternative approach to SOFIA and to
overcome existing limitations, this work presents Sponge-
based Control-Flow Protection (SCFP). SCFP is a novel,
stateful scheme to protect the confidentiality of software IP
and the authenticity of its execution in IoT devices. In partic-
ular, SCFP encrypts and authenticates software binaries with
instruction-level granularity by using cryptographic sponges.
SCFP is designed as a hardware extension that continuously
decrypts and authenticates instructions in hardware at the
latest possible point before the processor’s decode stage.
The use of sponge-based authenticated encryption in
SCFP yields fine-grained control-flow integrity and thus
prevents code-reuse attacks. By keeping the software en-
crypted throughout all memory, SCFP completely thwarts
code-injection attacks from within software, and effectively
protects the IP of software vendors. By decrypting in-
structions right before the decode stage of the processor,
SCFP resists tampering with code in memory, physical
attacks on memory like rowhammer [29]], [30], and fault
attacks that manipulate control flow or software code. SCFP
supports interrupt handling and is thus compatible with
operating systems. Compared to existing work, SCFP has
lower memory and runtime overhead and offers strong fault
resistance. In particular, any globally induced physical fault
on the processor chip destroys the internal SCFP state
with high probability and leads to the execution of random
instructions, whereas state-of-the-art CFI schemes use a
single verification step that can be by-passed using controlled
faults. Random code execution is a secure processor state,
because it is hard to control and exploit for an attacker,
and has a low probability of being meaningful. Furthermore,
timely detection of random execution is also supported.
SCFP is a highly flexible tool. We hence present two
suitable sponge constructions as well as three different
SCFP instances for different applications. First, Authentic
Encrypted Execution (AEE) provides all security features at
cryptographic levels of security, i.e., above 80 bits. Second,
Authentic Encrypted Execution Light (AEE-Light) reduces
memory overhead in trade for reduced software authenticity
by using keyed permutations. Third, Infective Execution (IE)
is a very lightweight CFI scheme to solely protect against
code-reuse and physical fault attacks on the control flow.
SCFP is both practical and lightweight. For demonstra-
tion, we integrated AEE-Light with a RISC-V core and
evaluated a set of benchmarks on this processor by executing
them both unprotected and encrypted with AEE-Light. It
shows that the average overheads in code size and execution
time of our AEE-Light instance are 19.8% and 9.1 %,
respectively, and thus practical for many IoT scenarios.

QOutline. This paper is organized as follows. [Section 2
describes the concept of SCFP and the application of
authenticated encryption to the instruction stream. [Section J]
gives two sponge modes suitable for SCFP and [Section 4

presents different SCFP instances and their security proper-
ties. gives evaluation results and provides
a comparison with related work. Finally, concludes
this work.

2. Overall Concept

Sponge-based Control-Flow Protection (SCFP) is a novel
security concept for IoT devices that is based on authenticated
encryption from cryptographic sponges. In this section, we
introduce the threat model we assume for IoT devices and
present the architecture of SCFP. In particular, we describe
how sponge-based authenticated encryption is applied to
an instruction stream and discuss the adaptions required
to support arbitrary code execution including control-flow
transfers and interrupts.

2.1. Threat Model and Assumptions

This work considers IoT devices which are threatened
by both software and physical attacks. In terms of software
vulnerabilities, we assume a remote attacker who has arbitrary
read and write access to the memory due to bugs in the
software. Correspondingly, active physical attackers are
assumed to have direct access to the device. This direct
access can be used to dump and manipulate external memory,
to probe and force signals on the PCB (e.g., bus signals
between chips), or to inject global faults into the system
(e.g., clock glitches). On the other hand, micro probing and
similar invasive techniques are considered out of scope in this
work. Similarly, side-channel leakage of hard- and software
implementations is not considered in this work.

Presumed targets for adversaries in this domain are to
extract secret IP (e.g., firmware code), to bypass security
checks (e.g., by skipping one or more instructions), or to
achieve arbitrary code execution via code reuse or injection.
In other words, adversaries try to compromise the confiden-
tiality and/or authenticity of the code, either at rest or at
runtime. Note however, that Denial-of-Service (DoS) as well
as data-driven attacks are out of scope given that neither can
be solved via a CFI scheme.

This work assumes that SCFP is deployed as the only
countermeasure to the mentioned threats. Hence, if guar-
antees that exceed the capabilities of precisely enforced
CFI (e.g., resistance against control-flow bending [17])) are
required, additional attack mitigation techniques (e.g., safe
stack [32]]) have to be utilized. Further, note that the hardware
component of SCFP is implemented in such a way that
there is no interface to access plaintext instructions, the
sponge state or internal SCFP signals. All this information
is inaccessible in software.

2.2. Architecture

The idea behind SCFP is to encrypt programs at compile
time using a sponge-based AE cipher. Decryption is then
performed within the CPU, instruction by instruction, just

Processor Register File
Decode]—bEEXeCUte

A
A 4

[Memory (RAM/Flash)]

AE
[Fetch Decrypt

State

Figure 1. High-level system architecture of a classic RISC processor which
has been extended for SCFP with a sponge-based AE decryption stage.

in time for execution. At its heart, the sponge-based AE
cipher uses an internal state z, which provides the foundation
for the CFI protection in SCFP. This state accumulates
information about all the processed instruction ciphertexts,
which enforces that correct decryption is only possible iff all
previous instructions have also been genuine. Conceptually,
with every processed instruction ciphertext C, the plaintext
instruction P as well as a new internal state 2’ are derived
from the current state z using a permutation f following
(P|z") = f(Clz) (| denotes concatenation). As a result, the
correctness of the plaintext instructions that get executed
by the CPU does not only depend on the fetched input
(i.e., ciphertext), but also on the history which has been
accumulated within the internal state of the cryptographic
primitive.

If either the state (e.g., through a CFI violation or
clock glitch) or the ciphertext (e.g., through manipulation
in memory) is erroneous, correct decryption is not possible
anymore and pseudo-random instructions are produced as
plaintext. We consider the respective execution of random
instructions a secure processor state for two reasons. First, the
probability of random code which is generated by SCFP to be
meaningful is extremely low, especially when attack gadgets
of multiple instructions are required. Second, attackers neither
have control over the random instructions being executed,
nor can attackers observe what the plaintext instructions
are during random execution. This effectively hampers any
attacker attempts to execute harmful code. Besides, we will
later show that SCFP supports the detection of random code
execution to add error handling as desired.

From a processor architectural point of view, the ideal
location within the processor pipeline for performing the
decryption is between instruction fetching and decoding, as
shown in Figure [T} The instructions are transferred from the
fetch to the decode stage exactly in the execution sequence,
which also matches the desired decryption sequence of
SCFP. As the decode stage is the first to need plaintext
instructions, performing decryption right in front of the
decoder is in fact also the latest possible point for inserting
SCFP and effectively minimizes the number of components
with plaintext code access to the decode stage itself. All the
other components, like peripherals, main memory, various
caches, memory buses, and even the fetch unit, operate on

N)

Cipertext AE Plaintext
Decrypt 3 Decode —i-> Execute
—] —
State —_
; Decoder Signals
Cipertext AE Plaintext
Fetch =S Decode =
patch |Decrypt
— — —

Figure 2. Data dependencies between two consecutive instructions within a
processor pipeline when SCFP is implemented. The decoder signals can
optionally be fed back.

encrypted code only.

Figure [2] depicts the instruction-data dependencies be-
tween the different pipeline stages for the processor from
Figure |1} A traditional scalar processor with a pipelined
architecture only has dependencies between the different
stages (visualised horizontally) but not across multiple
instructions (visualised vertically). The processor basically
decodes each instruction completely isolated from other
instructions. Dependencies between instructions are solely
a result of data dependencies in the program (e.g., via the
register file) which can lead to pipeline hazards and stalls.
Extending the pipeline with an AE decryption unit breaks this
isolation between instructions and introduces an additional
dependency via the cipher state.

For scalar processors, it is additionally possible to feed
the data independent decoder signals of each executed
instruction back into the cipher. Such feedback extends
authenticity protection up to the pipeline’s execute stage and
can, for example, be used as a link to fault countermeasures
in the ALU. Note however, that the SCFP approach is not
limited to scalar processors. Superscalar microarchitectures
can also be protected using SCFP with a coarser granularity,
e.g., decrypting multiple instructions instead of individual
instructions in one block.

2.3. Authenticated Encryption and Control Flow

Sponge-based authenticated encryption schemes use a
single internal cipher state for both encryption and authen-
tication. This common state leads to the nice property that
the mapping between each encrypted and plain instruction
depends on the actual values of all previously processed
instructions. Hence, to be able to encrypt a program such that
it can be executed on a processor that implements SCFP, the
exact sequence of executed instructions needs to be known
at compile time. However, exactly this property makes the
combination of authenticated encryption with control flow
challenging.

More concretely, at compile time, the exact instruction
sequence can only be determined for a very limited number
of programs. Basically, only programs that have a completely
data independent control flow (e.g., no data dependent
branches) can be trivially supported. Additionally, even
genuine and intended code reuse (e.g., loop bodies or
functions) is not easily possible anymore. This is due to the

Figure 3. Simple example of patching the CFG of an if-then-else construct
in SCFP.

fact that after encryption, the ciphertext is fixed and correct
decryption of an instruction is only possible given the correct
unique cipher state (and thus execution history). Placing
the sponge-based authenticated encryption scheme into the
processor pipeline therefore provides a solid foundation for
SCFP and thwarts code reuse by default.

The main idea to allow specific code reuse in SCFP and to
make SCFP applicable to general programs is to deliberately
introduce collisions into the internal state of the cryptographic
primitive. These state collisions are conceptually a white
listing of permitted control flow transfers and have to be
introduced exactly at the required positions in a program.
Note that these deliberately introduced collisions do not
weaken the security of the cryptographic primitive.

The simplest and most efficient way to generate the
required state collisions is to inject additional metadata as
correction terms into the cipher state at certain points during
the execution of the program. We denote this process of
deliberately adjusting the AE state as patching and the in-
volved constants as patch values. Via patching, we effectively
cancel out divergences in the cipher state which originate
from taking different valid paths through the Control-Flow
Graph (CFG). As the result, correct decryption of a program
under SCFP is only possible as long as the execution adheres
to the statically determined CFG.

It has to be noted that patching must be implemented as
a differential update of the AE state. Otherwise, if patching
was implemented by simple replacement, patching would
destroy all the history which had been accumulated into the
state. Besides, the patching process must be able to modify
the full sponge state in order to create arbitrary collisions.

2.4. Patch Handling, Placement and Calculation

The patch values in SCFP are conceptually very similar
to the justifying signatures in the soft error and fault attack
countermeasures based on Continuous Signature Monitoring
(CSM) [43]], [44]. Therefore, also similar implementation
techniques can be used to find suitable patch locations as well
as to determine the concrete values of the patch constants.

More concretely, the task of the patch values in SCFP
is to introduce cipher state collisions at the merge points
in the CFG of the program. Hence, all differences which
originate from traversing the statically determined CFG along

runtime data dependent paths have to be compensated. An
example for patching a simple if-then-else construct is shown
in Figure [3] There, a patch value is injected into the cipher
state before the execution of Basic Block (BB) C (i.e., on
the red CFG edge) such that the state at the beginning of
BB D is the same, regardless of whether the blocks A and B,
or the blocks A and C (incl. the patch) have been executed.

The exact way how such a patch value is encoded into
the program and how patches are processed during runtime
strongly depends on the concrete implementation of SCFP
and is highly Instruction-Set Architecture (ISA) specific.
However, an intuitive way to implement and think about
cipher state patching is to consider the patch values as part
of specialized control-flow instructions. Similar to immediate
operands in standard instructions, the patch values are part
of the instruction encoding and get fetched like regular code
by the processor during execution.

From the toolchain perspective, implementing SCFP
consists of two steps. In the first step, during compilation,
patches have to be inserted at the correct positions into the
program by emitting suitable instructions with patch support.
In the second step, at link time or in a post processing phase,
the program binary has to be encrypted and the correct patch
values have to be inserted into the binary (i.e., similar to
relocations).

For a program which comprises only branches and
direct calls, a functional solution for patch placement during
compilation can be obtained by looking at the undirected
CFG of the full program. Every cycle in this graph has to be
broken by introducing a patch for the cipher state. Therefore,
the minimum number of patches and possible positions can
be obtained by comparing the CFG with its spanning tree.
Taking the function call graph into account, this approach
is also applicable to indirect and recursive function calls.
Unfortunately, comparably expensive whole program analysis
has to be performed to acquire the mentioned graphs.

Nevertheless, also compilation in multiple translation
units can be supported with SCFP when a well-defined
patching convention is established around function calls.
Similar to a regular calling convention, having a patching
convention allows to correctly place patches in every function
of the program in isolation. Within each function, it is then
typically sufficient to always patch when a branch is taken
as shown in Figure 3] Additionally, to cope with recursion, it
has to be ensured that at least one patch is performed before
the recursion is entered. Note however that the simplicity
of the patching convention, compared to the graph based
approach, comes at the cost of an increased number of patch
values.

To illustrate the concept, in the following, an exemplary
patching convention for direct and indirect function calls is
presented.

2.4.1. Direct Calls. Every function which gets directly
called from more than one call site within a program
necessarily requires patching. In particular, at least n — 1
patches are required when n call sites exist. Interestingly,
this situation is also similar to the direct branch example

Function A Function B Function C

Call —'-"-'— Call

Patch, |«—— —»| Patch_

GHig
BB

Figure 4. Example of a simple patching convention for direct function calls.
Function B can be called from both, function A and C.

in Figure [3] where one patch is required since two paths
in the CFG lead to BB D. However, placing patches at
every call site except one again requires access to the full
program during compilation. To relax this constraint, at the
cost of one additional patch per function, patching can simply
be performed on every call site as shown in Figure [In
this example, Patch4 has to be applied when the control
flow returns from function B to function A. Returning from
function B to C uses Patchc, respectively.

Note that, in most cases, having one patch per direct
call is sufficient regarding both functionality and security,
because typical ISAs perform direct calls relative to the
program counter. In this case, the program counter relative
offset is part of the function call encoding and is different
for each call site. This implies a different, internal SCFP
state for each call site. As a result, besides the required state
collisions at the call and return edges of the direct function
call, there are no other, undesired collisions being introduced
to the program.

In general, it does not matter whether the patch value is
applied at the return operation or the call operation, as long
as it is done consistently and aligned with the way branches
are patched. Applying patches is therefore possible either
after branches and on returns (as shown in Figure [3| and
Figure [)), or before merge points of branches and during
calls. In fact, when looking at the CFG of the whole program,
function returns are simply branches and function calls are
merging points.

2.4.2. Indirect Calls. Similar to direct function calls, also
indirect function calls require patching. However, determin-
ing the exact function which gets called at runtime by an
indirect function call is not always possible at compile time.
Moreover, often also multiple different functions get called
from the same indirect call site during the runtime of a
program (e.g., comparison callback of gsort). Therefore,
the best one can do with static CFI such as SCFP is to
determine a, possibly over approximated, set of potential
call targets and to enforce that only calls to functions in this
set are possible at runtime.

Our current approach to implement indirect function calls
and returns with SCFP is shown in Figure E} In total, two
patch values have to be applied on every indirect control-
flow transfer. The idea of this scheme is to use the first
patch (e.g., Patch4y) to reach a constant cryptographic

Function D | | Function E Function C

Function A

Figure 5. Example of a simple patching convention for indirect function
calls. Functions A and C can call both, functions D and E at runtime.

intermediate state, which is then updated to the actual entry
state of the called function using the second patch value
(e.g., Patchp1). The constant intermediate state can be freely
chosen at encryption time and permits to restrict indirect calls
to targets which were encrypted for the same intermediate
state.

In summary, for the patching convention in Figure [5]
two patch values are required for every indirect function
call site as well as for every function which can be called
indirectly. At runtime, in total four patches get applied for
every indirect function call.

At the first glance, using four patch values for one indirect
function call may seem excessive given that two patches
would already suffice to build a functioning CFI scheme.
However, using less patch values necessarily introduces
undesired collisions into the SCFP state which weakens
the confidentiality and authenticity properties of the scheme.

2.5. Initial State Derivation

In sponge-based AE ciphers with known permutation, the
initial state is comparable to the key in regular encryption
schemes. It is common to derive this initial state z; from a se-
cret key k£ and public nonce /N by applying their permutation
f (e.g., z1 = f(N]k)). Conceptually, we recommend using a
similar approach for deriving the initial state in SCFP. This
ensures that, even when k is a device-specific fixed master
key, every program for that device is still encrypted under a
different initial state. Optionally, additional information like,
for example, the start address or the program vendor can be
used during the derivation of the initial state.

Note that binding initial states to the machine key also
serves as software diversification. Namely, in case successful
exploits against SCFP should be found in a program on a
certain device, they cannot simply be transferred to other
devices executing the same program.

2.6. Interrupt Handling

Unlike regular function calls, which are performed at
precisely defined points during program execution, interrupts
can occur at virtually any time. It is therefore impossible to
determine a unique differential update value for all the states
which permit to call an interrupt handler. We cope with this
problem in SCFP by treating interrupt handlers similar to the

initial program entry point. Therefore, we derive a new AE
cipher state to re-initialize SCFP when entering the interrupt
handler. On the other hand, the SCFP state that is active
before entering the interrupt handler is, similar to the old
program counter, saved in an internal processor register. For
the operating system, the SCFP state is therefore simply
one additional register which has to be saved and restored
during context switches. Note however that, to ensure that
the confidentiality of the SCFP state is maintained at all
times, the old state value which is stored in the processor
register should be encrypted or similarly protected.
Implementing interrupt handling in this way effectively
separates the protection of interrupt handlers from the
regular code. This means that interrupts can be processed
successfully even when a regular program executes pseudo
random instructions due to an attack. On handler entry, this
separation is desirable as it allows us to recover from errors
in software as well as to perform scheduling of programs via
the operating system. On handler exit, on the other hand, we
want to propagate errors occurring during the execution of
the interrupt handler into the execution of the regular code.
We achieve this behavior by enforcing that the internal
SCFP state has a predefined secret value when returning
from the interrupt handler. Similar to the state derivation on
interrupt entry, the secret handler exit state can, for example,
again be computed from the key, the nonce, and the address
of the interrupt handler. When returning to the regular code
execution, the hardware can then simply combine the current
state z, the expected exit state e, and the state from before
the interrupt entry zen¢ry from the register to calculate the
next state z’, e.g., 2’ = 2@ e® Zentry. By doing so, the entry
value is only restored (2’ = zepnyry) correctly as next state if
also the handler execution has been genuine (z == e).

2.7. Fast Error Recovery

As SCFP ensures security even without explicit fault
checks, SCFP eliminates the existence of a single point of
failure. Namely, the probability of random code execution
in SCFP to be meaningful is extremely low. While this
is one major benefit of SCFP, it may still be desirable to
provide a timely way to perform error recovery after the
processor started to execute a random instruction sequence.
Interestingly, the execution of pseudo random instructions in
the error case already provides one way to permit error
recovery since the processor is able to identify invalid
instructions. The concrete detection probability follows a
geometric distribution and can be computed when the ISA
of the processor is known. More concretely, given the
probability p;,, for a random instruction to be invalid, the
expected detection latency [is computed as I = 1/pine.
However, considering that modern ISAs are often quite dense,
recovery latency can be comparably high.

Faster recovery can be achieved when additional redun-
dancy bits are verified on the execution of every single
instruction. Sponges permit to implement this additional
integrity verification in an efficient and secure way by simply
checking the desired amount of state bits. No additional

Co Po Cl P1
F\J_/ AN r r"\l/ T\ r
£lo A 1 Flt A 2 f
Xo' ﬁ Xl_,xll * X,
I:’atchO Patch

Figure 6. Decryption using a duplex construction similar to the one used in
SpongeWrap.

permutation calls, but only a marginally bigger permutation
is required. The strength, i.e., the number of bits, for this
verification can be freely chosen, but is typically rather weak
for a single instruction. However, the continuous nature
of this check compensates for this weakness quite fast. In
general, the number of asserted bits allows to trade off
between the code size overhead and the recovery latency.

3. Sponge Constructions for SCFP

SCFP relies on a scalable and strong sponge-based
authenticated encryption cipher. This section introduces two
eligible sponge-based constructions and presents arguments
for their security as well as guidelines for parameter selection.

3.1. Constructions

Cryptographic sponges have become quite popular since
Keccak has been announced as the winner of the SHA-3
competition. However, sponges can also be used to build
other cryptographic primitives. The Keccak designers them-
selves, for example, already proposed an AE mode called
SpongeWrap [11] early on and still pursue the idea with
Keyak [[14] and Ketje [13] in the ongoing CAESAR competi-
tion [[10]]. The other numerous sponge-based submissions [3],
(81, [231], 28], [36], [37] to the competition further support
this research direction.

Considering the success and general properties of
sponges, the following discusses two sponge-based construc-
tions which have been adapted to support the patching of
SCFP. This approach allows us to profit from the substantial
amount of cryptanalysis performed on the various sponge
constructions and the underlying permutations. In general,
we therefore recommend well-analyzed permutations like
Keccak-p. However, a more detailed discussion on suitable
instantiations of SCFP, including permutations, can be found

in [Section 4l

3.1.1. SpongeWrap-like Decryption Mode. The first con-
struction, shown in Figure @ is based on the duplex con-
struction, which has been introduced and proven to be secure
in [11]. This duplex construction is used in SpongeWrap
for both encryption and decryption. When executing strictly

Patch
0

F’atch1

Figure 7. Decryption in an APE-like construction.

sequential code, where no patching is required (Patch; = 0),
AE on the instruction stream is identical to SCFP. However,
for generic code SCFP must also implement branching.
Therefore, additional support for the injection of patch values
has to be added to the construction. Both the rate and the
capacity of sponge make up the previously described SCFP
state z and must be modifiable by such a patch.

From the security point of view, these patch values can
be considered as Associated Data (AD). AD denotes data
that is authenticated, but not encrypted. It has been shown
by Mennink et al. [35] as well as Sasaki and Yasuda [38]]
that it is secure to absorb AD into the capacity of a keyed
sponge. Considering that the construction in Figure [6] is a
keyed full-state duplex sponge construction, it is therefore
secure to inject the patch values into the capacity. Updating
the rate with the patch is secure as well given that the rate
is under the control of an attacker via the ciphertext in any
case.

The SpongeWrap-like construction has two neat features.
First, its implementation is comparably simple since en-
cryption is identical to decryption. Second, the construction
provides great flexibility as it permits to calculate and place
patch values on arbitrary places in the CFG. However, there
are also some drawbacks which have to be considered. For
example, an attacker might be able to precisely control the
first fault given that errors in the ciphertext directly propagate
into the plaintext (AC; = APF;). In a known plaintext attack,
this might even permit to inject one specific instruction before
the plaintexts of subsequent instructions are randomized.

Note also that, if the control-flow merges at instruction ¢
and patches are not applied directly before the merge point in
the control-flow graph (i.e., Patch;_; = 0), all instructions
directly preceding the merge point (F;_;) have to be identical.
This is due to the fact that, as soon as the instruction at
the merge point is fixed (i.e., P; and C}), also the plaintext
of the predecessor P;_; is determined by the dependency
over the rate part of the sponge (P; = C; @ f.(Pi—1|z}_1)).
However, this link can be broken by performing patches
solely at merge points of the CFG instead of placing them
freely.

3.1.2. APE-like Decryption Mode. The second construc-
tion is inspired by another AE mode of operation called
APE [4]]. The layout of the APE construction itself is similar

to the duplex construction in SpongeWrap. However, APE is
not inverse free, i.e., the inverse permutation f~! is needed
for encryption when the permutation f is used for decryption.
Moreover, the indices of the cipher- and plaintexts have been
rearranged compared to SpongeWrap. Namely, in APE, the
plaintext P;, corresponding to a ciphertext C;, is calculated
as P = Cit1 @ fr(Cilay).

The APE-inspired mode we propose in Figure [7] is
calculated as P; = f,.(C;|z;) and modifies APE in two ways.
First, P;’s dependency on C;;; is removed. This solves
the problem of the SpongeWrap-like mode where attackers
can inject one specific instruction if they know the original
value. Moreover, this modification makes our construction
behave more like a block cipher than a stream cipher. Second,
patching capabilities for the capacity are introduced to make
the construction suitable for SCFP. Note that the APE-like
construction is superior to the SpongeWrap-like mode in
this regard. It only needs patching of the sponge’s capacity
which corresponds to the SCFP state z. On the other hand,
the sponge rate is not chained any more.

The main drawback of the APE-like construction is that
it is less flexible, because the position of patches is fixed.
Patches always have to be positioned at branching points in
the control-flow graph. This is a result of the encryption that
has to be performed in inverse direction to the decryption
(i.e., inverse to the execution sequence).

3.2. Parameter selection

It has been shown that the duplex construction [[11]]
as well as the APE construction [4] are secure against
generic attacks which do not exploit properties of the
underlying permutation. The complexity of such attacks is
lower bounded by 2%/ and depends on the capacity size x.
To provide s-bit security, £ must thus be chosen as z > 2 - s.

The size of the sponge rate depends on the actual
implementation. The majority of the rate is needed for the
decryption of the instructions. The instruction size ¢ depends
on the ISA and is typically 16 or 32 bits. However, additional
rate bits may be used for fast error recovery. To enable fast
error recovery of n bits without leaking parts of the plaintext
nor reduction of the security, a rate of » = ¢ + n bits, and
hence a permutation size of b = ¢ + n + x bits is needed.

The proofs in [5]], [12]] show that also smaller capacity
sizes can result in cryptographic security. These results can be
used to either reduce the permutation size while maintaining
the security level, or to increase the security of a fixed
permutation. However, a limit on the data complexity, which
strongly depends on the actual implementation, is required to
benefit from these refined proofs. We therefore refrain from
proposing parameters based on the proofs in [3], [12] and
leave the exploitation to implementers knowing the respective
system characteristics.

4. Instantiations

The flexibility of SCFP allows to tailor its protection
level to the needs of the respective application by choosing

a suitable permutation for the sponge-based AE scheme. In
this section, we hence introduce three different instantiations
of SCFP. First, AEE uses a large, unkeyed permutation to
yield confidentiality and authenticity of the program binary
as well as CFI to prevent fault, code reuse, and code-injection
attacks. Second, IE uses a small, unkeyed permutation to form
a lightweight CFI scheme to prevent code-reuse and fault
attacks only. Third, the use of a small, keyed permutation in
AEE-Light yields small overhead, CFI and IP protection in
trade for weaker authenticity. We first discuss the properties
of unkeyed permutations used in AEE and IE, and then
proceed with keyed permutations utilized in AEE-Light.

4.1. Unkeyed Permutations

When instantiating SCFP with unkeyed permutations,
the cryptographic security properties of SCFP are solely
determined by the size of the sponge capacity z. Neglecting
the proofs in [S]], [12], a security level of s bits requires a
sponge capacity of 2s bits. However, these are generic results
without consideration of the actual application.

In particular, the cryptographic security level s is mainly
determined by collisions in the cryptographic state. These
can generically be exploited in Time-Memory Trade-Off
(TMTO) attacks with birthday bound complexity 2%/ and
eventually allow state recovery and thus IP theft or forgery.
However, to perform these TMTO attacks, the attacker must
also be able to observe the output of the sponge, which is
not the case for SCFP. Namely, the instructions decrypted
by SCFP are internally processed by the processor and
never directly revealed to the attacker. As a result, the
complexity for state recovery for SCFP is 2% in practice. In
a similar way, the probability of arbitrary state collisions in a
binary encrypted and authenticated with SCFP is in general
determined by the birthday bound, i.e., 2-%/2 However,
attackers do not have access to the decrypted instructions
and the internal state when using SCFP. Attackers are thus
unable to observe and detect internal state collisions. Hence,
meaningful exploitation of internal state collisions for SCFP
is equivalent to state recovery and has complexity 2% as well.

Software Attack Complexity. These considerations have
a significant impact on the actual attack complexities for
code injection and code-reuse attacks when SCFP is in
place, i.e., the CFI properties of SCFP. Namely, attackers
performing code injection or code-reuse attacks require
precise control over the executed instructions to succeed.
For example, attackers can modify a single instruction with
success probability 27, but will neither be able to observe
whether they hit the right instruction, nor be able to modify
the internal state such that all successive instructions remain
the same. This means that the attacker must adapt all succes-
sive instructions too, because the processor will otherwise
execute random instructions. However, precise manipulation
of n instructions has even higher complexity, namely 2"".
Alternatively, attackers can try to learn the internal state to
correctly encrypt and inject their own program. However,
this has complexity 2. A different example are modified
jump targets in code-reuse attacks. As attackers manipulate

addresses to jump to well-defined instructions in the binary,
the x-bit patch values must be adapted accordingly. However,
finding a correct patch value has complexity 2% too.

Fault Attack Complexity. The CFI properties of SCFP
also increase the attack complexities for fault injection
attacks that manipulate control flow or instructions prior
to the decode stage. For example, simple instruction skips or
repetition have a success probability of 27*. The same prob-
ability applies to arbitrary control-flow errors, e.g., caused
by a randomly faulted program counter. On the other hand,
performing a specific control-flow transfer via faults is as
hard as forcing the = capacity bits and the program counter
(e.g., 32 bits) to the desired value. However, this is non-
trivial since the sponge state is secret and must be extracted
or brute forced first. Furthermore, being able to control that
many bits precisely is quite hard in practice.

Instead of altering the control flow, fault attackers can
also try to manipulate code by injecting bit flips. For example,
attackers can use clock or power glitches to inject random bit
flips into code. However, it takes roughly 2" tries to hit one
specific instruction with random bit flips. Therefore, another
approach is to use a small and limited number of precise bit
flips in the fault attack instead. Yet, exploiting precise bit
flips in the encoded value is as hard as utilizing a differential
characteristic of the permutation. Only precise bit flips in
the plain instruction can be exploited directly. However,
regardless of whether random or precise bit flips are injected,
bit flips in code modify the sponge state as well. This
randomizes the sponge output of all subsequent instructions
and therefore prevents further exploitation. Moreover, SCFP
can also protect the plain instructions against fault attacks
as well by feeding the decoder signals back into the sponge
state.

Depending on the concrete security level s and choice of
sponge parameters r and x, we identify two different types
of SCFP instances using unkeyed permutations. First, AEE
denotes instances with cryptographic security levels, i.e., at
least 80 bits, that offer CFI as well as confidentiality and
authenticity of software IP. Second, IE denotes instances
below cryptographic security levels to enforce CFI only.

4.1.1. Authentic Encrypted Execution. AEE features cryp-
tographic security levels for encrypting and authenticating
code. This automatically defeats adversaries which wiretap
the communication to the external memory chips without
any need for further code encryption and/or authentication.
Moreover, software attacks are made harder too. As other
CFI schemes, AEE hampers return- and jump-oriented pro-
gramming attacks. The strong encryption and authentication
further mitigates both code injection and code-disclosure
attacks. AEE is therefore a replacement for established
software attack countermeasures like DEP/W"X, CFI, and
R"X. In addition, by enforcing CFI AEE also prevents fault
attacks on the processor chip that aim at instruction or control-
flow manipulation.

From a cryptographic perspective, AEE requires a per-
mutation size of at least 192 bits to yield 80-bit security
for a 32-bit instruction set. One suitable permutation to

instantiate AEE hence is Keccak-p[200,12] [14] with 200-
bit state size and 12 rounds as used in Keyak. The exceeding
8 bits increase the capacity and thus the security level to
84 bits. However, as elaborated before, the specifics of AEE
result in a complexity of 216 for state recovery, control-
flow hijacking, and fault attacks on control flow. Similarly,
a single instruction can be successfully manipulated from
software or using fault attacks with complexity 232, but the
internal 168-bit state will cause the execution of random
instructions afterwards.

4.1.2. Infective Execution. Contrary to AEE, IE uses a
small permutation and thus, from a cryptographic point of
view, cannot provide a strong level of security. In particular,
IE behaves like a context-sensitive Instruction-Set Random-
ization (ISR) rather than authenticated encryption. IE thus
fails to ensure confidentiality and authenticity of software IP.
However, the parameterization of IE forms a practical CFI
scheme that considerably complicates code-reuse attacks as
well as fault attacks on the processor chip itself. Yet, the
concrete instantiation of IE is highly application specific.

For a 32-bit ISA, IE can, for example, be instantiated with
50-bit state size and the Keccak-p[50,12] [14] permutation
(i.e., 12 rounds as in Keyak). Using two bits for fast error
recovery gives a sponge rate r = 34bits and a sponge
capacity z = 16 bits, which also corresponds to the size of
the patch values. From a cryptographic perspective, this IE
instance yields merely 8-bit security. However, the probability
for successful code injection and manipulation of control
flow still is 2716,

The main drawback of IE is that an attacker with access
to the encrypted binary can easily perform state recovery
offline, in our example with complexity 2'6. State recovery
eventually breaks the CFI property of IE for software
attackers. Namely, a software attacker knowing the secret,
internal IE state can compute correct ciphertexts and patch
values, and inject these into the code from within software
when performing code injection or reuse attacks. However,
the complexity of physical fault injection on the processor
chip itself is still high enough for the parameterization of IE.
Nevertheless, to ensure CFI for software attackers as well,
access to the encrypted binary must be limited. While this
restricts the attacker compared to the original threat model
in access control can easily be enforced using two
different mechanisms: (1) by using execute-only memory,
software attackers lose online access to the encrypted binary,
and (2) by storing the binary in on-chip memory, attackers
with physical access cannot read the encrypted binary any
more. As a result, IE is particularly interesting for tiny IoT
devices without external memory and for smart cards. Note
however that state recovery, code analysis, and wide-spread
deployment of attacks can easily be mitigated by using
a different seed for IE on every device as this causes the
internal states, patch values, ciphertexts, and positions of state
collisions to change. Moreover, note that the probabilities for
manipulating control flow stated above are enough to enforce
CFI and are indeed in the range of entropy estimations of

other techniques to prevent code-reuse attacks, e.g., software
diversification [18]].

4.2. Keyed Permutations

AEE enforces its security properties by using a suffi-
ciently large permutation and thus capacity. However, a
sponge capacity providing cryptographic security levels also
implies larger AEE patch values and thus memory overhead.
On the other hand, IE yields lower memory overhead by
using a small permutation, but cannot sufficiently protect
software IP and its authenticity. For this reason, an SCFP
instance with low memory overhead, but with similar security
properties as AEE, is desirable. One approach to tackle this
problem are keyed permutations.

When using a keyed permutation, the security of SCFP
does not only depend on the sponge capacity x, but also on
the security level s, of the permutation itself. As for AEE
and IE, the authenticity when using keyed permutations is
determined by the sponge capacity z, i.e., the authenticity
level is /2 bits. However, the complexity of learning the
plaintext of the encrypted binary is 2*T*¢ and thus also
depends on the security guarantees of the permutation with
respect to the permutation key.

4.2.1. Authentic Encrypted Execution Light. We build on
this observation and introduce AEE-Light to denote SCFP
instances based on keyed permutations. AEE-Light offers the
same security bounds as AEE with respect to authenticity and
CFI. For example, control flow hijacking and fault attacks
on control flow have complexity 2%, whereas successful
injection of a single instruction has complexity 2". On the
other hand, successful recovery of the software IP or the
internal state from the encrypted image has complexity 2% ¢,
By using a permutation with sufficiently high security level
sp, the confidentiality of software IP is hence guaranteed and
state recovery, code injection, and meaningful forgery are
prevented. In particular, even if an attacker recovers the z-bit
internal state, meaningful injection or forgery of more than
one instruction still has complexity 2°» as the permutation
key is unknown to the attacker.

For 32-bit instructions, a suitable choice for the keyed
permutation is the 64-bit block cipher PRINCE [16], which
uses a 128-bit key to offer s, = 96-bit security. This results in
a sponge capacity z = 32 bits. State recovery using this AEE-
Light instance has complexity 2!2% and is thus infeasible.
This effectively protects the software IP and prevents both
code injection and analysis. Contrary to that, IE from before
uses a similarly small permutation but cannot guarantee
any of these features without further techniques to hide the
encrypted binary. However, while the cryptographic level of
authenticity guaranteed by this instance of AEE-Light is only
16 bits, meaningful code-reuse attacks and forgery are much
harder. Namely, the expected complexity to find the correct
patch value is 232, which is enough to enforce CFI and to
prevent code-reuse and physical fault attacks. Besides, the
sp = 96-bit security of the permutation further hardens any
attempts to tamper with the software binary in a meaningful

TABLE 1. EXAMPLES OF SCFP INSTANCES FOR A 32-BIT ISA AND THE RESPECTIVE ATTACK COMPLEXITIES.

Parameters [bit] ‘

Cryptographic

‘ Attack Complexity [bit]

Permutation z Sp Security [bit][] | CIAP] CRA[] ESIPE FAIS Type
Keccak-p[200,12] | 168 — 84 168 168 168 163 AEE
Keccak-p[50,12] | 16 — 8 16 16 16 16 IE
PRINCE 32 96 16 128 32 128 32 | AEE-Light

“Random collisions in the capacity x have birthday-bound complexity and limit the achievable authenticity, i.e., /2 bits.

bRequires the recovery of capacity and permutation key, i.e., x + sp bits.

“Requires to find and inject the correct patch values, i.e., = bits.

dCIA: Code-Injection Attacks; CRA: Code-Reuse Attacks; ESIP: Extraction of Software IP; FAIS: Fault Attack with Instruction Skips

way. In particular, even though one single instruction can be
manipulated with complexity 232, meaningful modification
of multiple instructions is significantly harder since both
the internal AEE-Light state and the permutation key are
unknown to the attacker.

4.3. Discussion

summarizes the exemplary instances of AEE,
AEE-Light, and IE. In detail, shows the respective
cryptographic security as well as the actual attack com-
plexities for code injection, code-reuse attacks, extraction
of software IP, and instruction skips using fault attacks.
AEE is the strongest variant with 168-bit security for all
considered attacks. At the further end, IE is the smallest
variant and offers merely 16-bit security for the mentioned
attacks. However, this suffices to enforce CFI and prevent
code reuse as well as fault attacks on control flow when the
code binary remains hidden. As a trade-off between these two,
AEE-Light uses keyed permutations to simultaneously attain
small 32-bit patch values, i.e., low memory overhead, and
good security properties. In particular, AEE-Light provides
128-bit security in terms of IP recovery and code injection,
whereas its security level with respect to code reuse and
control-flow fault attacks is 32 bits and thus sufficiently high
for CFL.

5. Evaluation

While SCFP protects software and its execution from a
large set of attacks, SCFP also has an impact on performance
in practice. In this section, we determine this performance
impact by analyzing binary size increase and execution time
overhead of AEE-Light implemented on a RISC-V processor.
Our results demonstrate the practicality of SCFP with a size
overhead of 19.8 % and a performance overhead of 9.1 %
on average.

5.1. Architecture

The basis of our evaluation hardware is the RISCY core
which is part of the PULPino [24] System on Chip (SoC).
RISCY is an in-order implementation of the RISC-V ISA [42]
with four pipeline stages. More concretely, our processor
supports the RV32IM subset of the ISA with privilege

architecture version 1.9 and has been extended with optional
SCFP support. When SCFP is enabled, AE decryption is
performed in an additional pipeline stage between instruction
fetching and decoding. The processor therefore has four
pipeline stages when SCFP is disabled and five when SCFP
is active.

As SCFP instance, an AEE-Light configuration with
a 64-bit sponge state and the PRINCE block cipher as
a keyed permutation in an APE-like sponge construction
has been implemented. Since our processor supports both
normal code execution and SCFP-protected execution, seven
custom control-flow instructions have been added. These
new instructions have similar semantics as the existing condi-
tional branch (BEQ, BNE, BLT, BLTU, BGE, BGEU)
and jump (JAL, JALR) instructions, but additionally ap-
ply patch values as needed. In particular, our protected
conditional branch instructions (BPEQ, BPNE, BPLT,
BPLTU, BPGE, BPGEU) always apply a patch when the
branch is taken. On the other hand, our protected jump
instructions (JALP, JALRP) apply either one or two patch
values depending on the alignment of the target address.
The respective patch values used by these instructions are
embedded within the encrypted binary as constants in the
.text section and are located next to the branch/jump
instruction they belong to.

We furthermore designed a SoC, containing our modified
processor with a design frequency of 100 MHz, in a UMC
65 nm technology, which is currently manufactured as an
Application Specific Integrated Circuit (ASIC). Within this
ASIC, our processor occupies 90 kGE of which around 32 %
are due to the SCFP implementation. With 91 %, the majority
of this overhead is due to the fully unrolled, single cycle
PRINCE implementation. Note that extending the RISC-V
core with SCFP did not change the target frequency of
100 MHz.

5.2. Software Translation

Our toolchain, which generates binaries for our custom
processor in AEE-Light mode, is at the moment rather simple.
We employ the standard RISC-V GNU toolchain which
we only extended with assembling support for our custom
instructions. Additionally, a post-processing tool has been
developed which consumes the final elf binary in order to
perform the encryption of the code and to fill in the required
patch values.

Since the C compiler has not been extended with SCFP
support, this toolchain natively can only handle assembler
code which contains placeholders for the patch values and
uses our protected control-flow instructions. However, due to
the way we designed our instruction-set extension, we can
quite easily support the protection of C programs via simple
textual replacement of instructions on the assembly level.

More concretely, at the moment, when compiling C
code for our processor, we first compile the C code to
assembly, where we replace all ordinary control-flow in-
structions through the protected counterparts and embed
NOP instructions as placeholders for the patch values. The
resulting assembly files are then assembled and linked.
Finally, the resulting elf file is processed using our post-
processing tool which emits the encrypted binary.

This simple flow already suffices to demonstrate the
practicality of SCFP. Note however, given that the compiler
is not aware of SCFP, also the code has not been optimized
for the correct cost model (e.g., loops get more expensive due
to the patching). We therefore consider the proper integration
of SCFP into the compiler as future work and expect that
even better performance can be achieved with an optimized
compiler which is aware of SCFP.

5.3. Results

We used our software toolchain to instrument, com-
pile and encrypt a set of C benchmarks to evaluate our
implementation of AEE-Light. As benchmarks, we used
several programs from the PULPino repository [24]]: AES in
CBC mode (aes_cbc), a 2-dimensional matrix convolution
(conv2d), 100 runs of dhrystone, a finite response filter
(£ir), a fast Fourier transform (£ £t), and an implementation
of the inflection point method (ipm). Moreover, we used
two implementation variants of the elliptic curve point
multiplication (SECP192R1) that were internally available
at our department. Both ecc and ecc_opt are pure
C implementations targeted at microcontrollers. However,
while ecc uses a generic implementation of the underlying
multi-precision integer arithmetic, the multi-precision integer
arithmetic in ecc_opt uses completely unrolled loops and
only works for the specific elliptic curve. We compiled all
programs at optimization level —03. Since the manufactured
ASIC is not yet available at our department, all runtime values
have been determined using cycle accurate HDL simulation.

shows the results of our evaluation of code
size and execution time. In particular, compares the
unprotected, standard executables of our benchmark programs
with the executables protected and encrypted via our instance
of AEE-Light. Both program versions have been executed
on our modified processor which features either a four stage
(i.e., baseline) or a five stage (i.e., AEE-Light) pipeline.

For our set of benchmarks, it shows that the overhead in
code size due to the inserted patch values ranges between
14.8 % and 25.6 % and averages to 19.8 %. This overhead
is mainly affected by the number of branches and function
calls in the binary. On the other hand, the runtime overhead
ranges between 3.8 % and 14.9 % and averages to 9.1 %. This

TABLE 2. EVALUATION RESULTS OF AEE-LIGHT IN HDL SIMULATION.

Code Size (text + data) Runtime
Baseline Overhead Baseline Overhead
[kB] [%] [kCycles] [%]
aes_cbc 10.0 14.8 43.4 9.5
conv2d 4.6 25.6 54 4.8
dhrystone 7.5 20.1 50.6 14.4
ecc 9.3 21.0 4282 9.2
ecc_opt 9.6 20.1 3032 3.8
fir 5.5 20.9 24.0 9.5
fft 7.1 16.8 45.6 7.0
ipm 8.8 19.4 4.5 14.9
Average 19.8 9.1

runtime overhead is significantly lower than the code size
overhead and mainly depends on the number of branches
and function calls that are effectively taken during runtime.
This becomes especially visible for the two implementations
of elliptic curves. Namely, as the inner loops are unrolled in
ecc_opt, the number of executed branches drops massively
from 170k taken branches to 20k and hence the runtime
overhead for ecc_opt is much lower than for ecc. On the
other hand, ecc and ecc_opt yet have very similar code
size and code overhead.

Summarizing, the figures in indicate that AEE-
Light can protect against a wide range of IoT threats with
practical overheads. In addition, our AEE-Light instance
features a low expected detection latency for execution errors
of merely two cycles, because the RISC-V instruction set
we implemented is quite sparse (~75 % invalid encodings).
However, note that using a more sophisticated toolchain for
generating AEE-Light executables can lead to even smaller
overheads.

6. Related Work

In general, other CFI schemes as well as work on Trusted
Execution Environments (TEEs) can be considered related
to SCFP. However, most techniques provide vastly different
security guarantees given that they are designed to counteract
software attacks only.

Control-Flow Integrity. Numerous CFI schemes have
been introduced in the last 30 years. However, techniques
providing fine-grained CFI and code integrity, as required to
detect physical attacks, are quite rare [22].

SOFIA [20], [21]] is probably the most relevant technique
from this category. SOFIA does not only encrypt the program,
but prevents the execution of any tampered instruction via
MAC checks. Unfortunately, this is rather costly. The average
overhead of the PRINCE-based SOFIA implementation with
64-bit tags in terms of clock cycles and code size is 141 %
and 203 %, respectively. On the other hand, an AEE-Light
implementation with 64-bit sponge capacity is expected to
yield less overheads, i.e., roughly 20 % and 40 % for runtime
and code size, respectively. Note that, considering that the
number and position of patches does not change when the
sponge state/patch size is increased, extrapolating our results
for a given program provides an exact overhead number for

the program size and a plausible estimate for the performance
overhead.

Another common approach to enforce CFI is to augment
the processor with hardware monitors [[7], [33]], [43]. Typi-
cally, these monitors continuously check that the processor
behaves as expected and raise an alert when an error
is observed. The disadvantage of this approach is that
deciding between correct and incorrect behavior (1-bit of
information) effectively introduces a single point of failure
for the error detection. As a result, implementing a reliable
monitor becomes a challenge on its own. Additionally, these
techniques can only provide integrity/authenticity and do not
offer confidentiality.

Trusted Execution Environment. TEEs typically also
provide confidentiality and authenticity for code. However,
TEEs operate on a completely different level of granularity
than SCFP. The authenticated encryption in Intel SGX [34]],
for example, only ensures that the code and data in memory
is protected against tampering. Physical faults in caches
or on processor internal buses, on the other hand, are still
possible. Also, SGX does not prevent common software
attack techniques like code-reuse attacks within enclaves.
Therefore, additional CFI schemes are needed to reach similar
properties as SCFP for code.

7. Conclusion

IoT devices are exposed to a wide range of attacks,
such as code injection, code-reuse attacks, fault attacks,
and IP theft. While there are suitable countermeasures
for each of these attacks, nowadays’ IoT devices hardly
implement any protection mechanism. On the other hand, it
requires several of the existing countermeasures to mitigate
all of the mentioned attacks. However, a combination of
different countermeasures is hard to analyze and may result
in overheads that are too large for IoT devices.

To overcome this limitation, this work introduced Sponge-
based Control-Flow Protection (SCFP). SCFP uses sponge-
based authenticated encryption to encrypt and authenticate
software with instruction-level granularity. During runtime,
a hardware extension continuously decrypts instructions
at the latest possible point before the processor’s decode
stage. As a result, SCFP effectively protects confidentiality
and authenticity of the software IP, and provides fine-
grained CFI to prevent code injection, code reuse, and
control-flow fault attacks on the processor chip. The CFI
enforced by SCFP is compatible with interrupts and standard
operating systems. To emphasize the flexibility of SCFP,
we further introduced three different instances of SCFP for
different application purposes. While AEE provides all secu-
rity features at cryptographic levels of security, AEE-Light
reduces the level of software authenticity in trade for smaller
memory overhead. In addition, IE is a very lightweight CFI
scheme without any guarantees w.r.t. software authenticity
and confidentiality. Finally, we demonstrated the practicality
of SCFP by extending a RISC-V processor core with an
instance of AEE-Light and evaluating a set of benchmarks.
Our evaluations indicate that AEE-Light is suitable for many

IoT scenarios with low code size and runtime overheads of
19.8 % and 9.1 % on average, respectively.

Acknowledgements

We thank Florian Mendel and Christoph Dobraunig for
their helpful comments and many fruitful discussions. Fur-
thermore, we thank Frank K. Giirkaynak, Germain Haugou,
Beat Muheim, and Prof. Luca Benini from the Institute
for Integrated Systems (IIS) at ETH Zurich for supervising
David Schaffenrath during his time at ETH Zurich and for
manufacturing the ASIC.

This project has received
funding from the European

* X %
Research Council (ERC) un- J :
der the European Union’s * *
Horizon 2020 research and esropean research council * % X

Established by the European

innovation programme (grant
agreement No 681402).

References

[1] “Mirai botnet,” 2016. [Online]. Available: http://github.com/jgamblin/
Mirai- Source-Code

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
Integrity Principles, Implementations, and Applications,” ACM Trans.
Inf. Syst. Secur., vol. 13, no. 1, pp. 4:1-4:40, Nov. 2009.

[3] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel,
B. Mennink, N. Mouha, Q. Wang, and K. Yasuda, “PRIMATEs
v1.02 Submission to the CAESAR Competition,” Sep. 2014. [Online].
Available: http://primates.ae/

[4] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink,
N. Mouha, and K. Yasuda, “APE: Authenticated Permutation-Based
Encryption for Lightweight Cryptography,” in Fast Software Encryp-
tion, ser. LNCS. Springer Berlin Heidelberg, Mar. 2014, no. 8540,
pp. 168-186.

[5]1 E. Andreeva, J. Daemen, B. Mennink, and G. V. Assche, “Security of
Keyed Sponge Constructions Using a Modular Proof Approach,” in
Fast Software Encryption, ser. LNCS. Springer Berlin Heidelberg,
2015, vol. 9054, pp. 364-384.

[6] Anton Cherepanov, ESET, “Win32/industroyer: A new threat
for industrial control systems,” 2017. [Online]. Avail-
able: https://www.welivesecurity.com/wp-content/uploads/2017/06/
‘Win32_Industroyer.pdf

[7]1 D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-assisted
run-time monitoring for secure program execution on embedded
processors,” IEEE Trans. VLSI Syst., vol. 14, no. 12, pp. 1295-1308,
2006. [Online]. Available: https://doi.org/10.1109/TVLSI.2006.887799

[8] J.-P. Aumasson, P. Jovanovic, and S. Neves, “NORX v1,” Mar. 2014.

[9] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” 2004, IACR Cryptology
ePrint Archive, Report 2004/100.

[10] D. J. Bernstein, “CAESAR: Competition for Authenticated
Encryption: Security, Applicability, and Robustness,” Jan. 2016.
[Online]. Available: http://competitions.cr.yp.to/caesar.html

[11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Duplexing the
sponge: single-pass authenticated encryption and other applications,”
2011, cryptology ePrint Archive, Report 2011/499.

[12] ——, “On the security of the keyed sponge construction,” SKEW,
2011. [Online]. Available: http://sponge.noekeon.org/SpongeKeyed.pdf

http://github.com/jgamblin/Mirai-Source-Code
http://github.com/jgamblin/Mirai-Source-Code
http://primates.ae/
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf
https://doi.org/10.1109/TVLSI.2006.887799
http://competitions.cr.yp.to/caesar.html
http://sponge.noekeon.org/SpongeKeyed.pdf

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer,
“CAESAR submission: KETJE v1,” Mar. 2014. [Online]. Available:
http://ketje.noekeon.org/

, “CAESAR submission: KEYAK v2,” Dec. 2015. [Online].
Available: http://keyak.noekeon.org/

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented Pro-
gramming: A New Class of Code-reuse Attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’11. New York, NY, USA: ACM, 2011, pp.
30-40.

J. Borghoff, A. Canteaut, T. Giineysu, E. B. Kavun, M. Knezevic,
L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger,
P. Rombouts, S. S. Thomsen, and T. Yalgin, “PRINCE - A
low-latency block cipher for pervasive computing applications -
extended abstract,” in Advances in Cryptology - ASIACRYPT 2012
- 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings, ser. Lecture Notes in Computer Science, X. Wang
and K. Sako, Eds., vol. 7658. Springer, 2012, pp. 208-225. [Online].
Available: https://doi.org/10.1007/978-3-642-34961-4_14

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in 24th
USENIX Security Symposium (USENIX Security 15). Washington,
D.C.: USENIX Association, Aug. 2015, pp. 161-176.

A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava,
J. Koo, S. Bagchi, and M. Payer, “Protecting bare-metal embedded
systems with privilege overlays,” in 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.
IEEE Computer Society, 2017, pp. 289-303. [Online]. Available:
https://doi.org/10.1109/SP.2017.37

C. Cowan, “Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks,” in Proceedings of the 7th USENIX
Security Symposium, San Antonio, TX, USA, January 26-29, 1998,
A. D. Rubin, Ed. USENIX Association, 1998. [Online]. Available:
https://www.usenix.org/conference/7th-usenix- security-symposium/
stackguard-automatic-adaptive-detection-and- prevention

R. de Clercq, J. Gotzfried, D. Ubler, P. Maene, and 1. Verbauwhede,
“SOFIA: software and control flow integrity architecture,” Computers
& Security, vol. 68, pp. 16-35, 2017. [Online]. Available:
https://doi.org/10.1016/j.cose.2017.03.013

R. de Clercq, R. D. Keulenaer, B. Coppens, B. Yang, P. Maene,
K. D. Bosschere, B. Preneel, B. D. Sutter, and I. Verbauwhede,
“SOFIA: software and control flow integrity architecture,” in 2016
Design, Automation & Test in Europe Conference & Exhibition,
DATE 2016, Dresden, Germany, March 14-18, 2016, L. Fanucci and
J. Teich, Eds. IEEE, 2016, pp. 1172-1177. [Online]. Available:
http://ieeexplore.ieee.org/document/7459489/

R. de Clercq and I. Verbauwhede, “A survey of hardware-based
control flow integrity (CFI),” CoRR, vol. abs/1706.07257, 2017.
[Online]. Available: http://arxiv.org/abs/1706.07257

C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schliffer, “ASCON
v1.1 Submission to the CAESAR Competition,” Aug. 2015. [Online].
Available: http://ascon.iaik.tugraz.at/

ETH Zurich, “Pulpino source repository,” 2017. [Online]. Available:
https://github.com/pulp- platform/pulpino

N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,”
White paper, Symantec Corp., Security Response, vol. 5, no. 6, 2011.

A. Francillon, D. Perito, and C. Castelluccia, “Defending embedded
systems against control flow attacks,” in Proceedings of the First ACM
Workshop on Secure Execution of Untrusted Code, ser. SecuCode *09.
New York, NY, USA: ACM, 2009, pp. 19-26. [Online]. Available:
http://doi.acm.org/10.1145/1655077.1655083

Free60.org, 2012. [Online]. Available: http://free60.org/wiki/Reset_
Glitch_Hack

D. Gligoroski, H. Mihajloska, S. Samardjiska, H. Jacobsen, M. El-
Hadedy, R. E. Jensen, and D. Otte, “mr—Cipher v2.0,” Aug. 2015.

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” arXiv:1507.06955 [cs],
Jul. 2015.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), Jun. 2014, pp. 361-372.

T. Korak and M. Hofler, “On the Effects of Clock and Power Supply
Tampering on Two Microcontroller Platforms,” in 2014 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), Sep. 2014,
pp. 8-17.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in /1th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 14, Broomfield, CO, USA,
October 6-8, 2014., J. Flinn and H. Levy, Eds. USENIX Association,
2014, pp. 147-163. [Online]. Available: |https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/kuznetsov

S. Mao and T. Wolf, “Hardware support for secure processing in
embedded systems,” IEEE Trans. Computers, vol. 59, no. 6, pp. 847—
854, 2010. [Online]. Available: https://doi.org/10.1109/TC.2010.32

F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “Innovative
instructions and software model for isolated execution,” in
Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy. ACM, 2013,
pp. 1-1. [Online]. Available: https://software.intel.com/en-us/articles/
innovative-instructions-and-software- model-for-isolated-execution

B. Mennink, R. Reyhanitabar, and D. Vizar, “Security of Full-State
Keyed and Duplex Sponge: Applications to Authenticated Encryption,”
2015, cryptology ePrint Archive, Report 2015/541.

P. Morawiecki, K. Gaj, E. Homsirikamol, K. Matusiewicz, J. Pieprzyk,
M. Rogawski, M. Srebrny, and M. Wojcik, “ICEPOLE v1,” Mar. 2014.

M.-J. O. Saarinen and B. B. Brumley, “STRIBOBr2: "WHIRLBOB”
Second Round CAESAR Algorithm Tweak Specification,” Sep. 2015.
[Online]. Available: http://www.stribob.com/

Y. Sasaki and K. Yasuda, “How to Incorporate Associated Data in
Sponge-Based Authenticated Encryption,” in Topics in Cryptology
- CT-RSA 2015, ser. LNCS, vol. 9048. San Francisco, CA, USA:
Springer International Publishing, 2015, pp. 353-370.

H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security,
ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 552-561.

H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,”
in Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS 2004, Washington, DC, USA,
October 25-29, 2004, V. Atluri, B. Pfitzmann, and P. D.
McDaniel, Eds. ACM, 2004, pp. 298-307. [Online]. Available:
http://doi.acm.org/10.1145/1030083.1030124

P. Team, “Pax address space layout randomization (aslr),” 2003.

A. Waterman and K. Asanovic, “The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Version 2.2,” EECS Department,
University of California, Berkeley, Tech. Rep., May 2017.
[Online]. Available: https://content.riscv.org/wp-content/uploads/2017/
05/riscv-spec-v2.2.pdf

M. Werner, E. Wenger, and S. Mangard, ‘“Protecting the control
flow of embedded processors against fault attacks,” in Smart Card
Research and Advanced Applications - 14th International Conference,
CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised
Selected Papers, ser. Lecture Notes in Computer Science, N. Homma
and M. Medwed, Eds., vol. 9514. Springer, 2015, pp. 161-176.
[Online]. Available: https://doi.org/10.1007/978-3-319-31271-2_10

K. D. Wilken and J. P. Shen, “Continuous signature monitoring:
low-cost concurrent detection of processor control errors,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 9, no. 6, pp. 629-641,
1990. [Online]. Available: http://dx.doi.org/10.1109/43.55193

http://ketje.noekeon.org/
http://keyak.noekeon.org/
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1109/SP.2017.37
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://doi.org/10.1016/j.cose.2017.03.013
http://ieeexplore.ieee.org/document/7459489/
http://arxiv.org/abs/1706.07257
http://ascon.iaik.tugraz.at/
https://github.com/pulp-platform/pulpino
http://doi.acm.org/10.1145/1655077.1655083
http://free60.org/wiki/Reset_Glitch_Hack
http://free60.org/wiki/Reset_Glitch_Hack
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://doi.org/10.1109/TC.2010.32
https://software.intel.com/en-us/articles/innovative-instructions-and-software-model-for-isolated-execution
https://software.intel.com/en-us/articles/innovative-instructions-and-software-model-for-isolated-execution
http://www.stribob.com/
http://doi.acm.org/10.1145/1030083.1030124
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://doi.org/10.1007/978-3-319-31271-2_10
http://dx.doi.org/10.1109/43.55193

	1 Introduction
	2 Overall Concept
	2.1 Threat Model and Assumptions
	2.2 Architecture
	2.3 Authenticated Encryption and Control Flow
	2.4 Patch Handling, Placement and Calculation
	2.4.1 Direct Calls
	2.4.2 Indirect Calls

	2.5 Initial State Derivation
	2.6 Interrupt Handling
	2.7 Fast Error Recovery

	3 Sponge Constructions for scfp
	3.1 Constructions
	3.1.1 SpongeWrap-like Decryption Mode
	3.1.2 APE-like Decryption Mode

	3.2 Parameter selection

	4 Instantiations
	4.1 Unkeyed Permutations
	4.1.1 aee
	4.1.2 ie

	4.2 Keyed Permutations
	4.2.1 aeelight

	4.3 Discussion

	5 Evaluation
	5.1 Architecture
	5.2 Software Translation
	5.3 Results

	6 Related Work
	7 Conclusion
	References

