
SGXPECTRE: Stealing Intel Secrets from SGX
Enclaves via Speculative Execution

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, Ten H. Lai

Department of Computer Science and Engineering

The Ohio State University

{chen.4329, chen.4825, xiao.465}@osu.edu

{yinqian, zlin, lai}@cse.ohio-state.edu

Abstract—Speculative execution side-channel vulnerabilities
in micro-architecture processors have raised concerns about
the security of Intel SGX. To understand clearly the security
impact of this vulnerability against SGX, this paper makes the
following studies: First, to demonstrate the feasibility of the
attacks, we present SGXPECTRE Attacks (the SGX-variants of
Spectre attacks) that exploit speculative execution side-channel
vulnerabilities to subvert the confidentiality of SGX enclaves.
We show that when the branch prediction of the enclave code
can be influenced by programs outside the enclave, the control
flow of the enclave program can be temporarily altered to
execute instructions that lead to observable cache-state changes.
An adversary observing such changes can learn secrets inside
the enclave memory or its internal registers, thus completely
defeating the confidentiality guarantee offered by SGX. Second,
to determine whether real-world enclave programs are impacted
by the attacks, we develop techniques to automate the search
of vulnerable code patterns in enclave binaries using symbolic
execution. Our study suggests that nearly any enclave program
could be vulnerable to SGXPECTRE Attacks since vulnerable
code patterns are available in most SGX runtimes (e.g., Intel
SGX SDK, Rust-SGX, and Graphene-SGX). Third, we apply
SGXPECTRE Attacks to steal seal keys and attestation keys from
Intel signed quoting enclaves. The seal key can be used to decrypt
sealed storage outside the enclaves and forge valid sealed data;
the attestation key can be used to forge attestation signatures.
For these reasons, SGXPECTRE Attacks practically defeat SGX’s
security protection. Finally, we evaluate Intel’s existing counter-
measures against SGXPECTRE Attacks and discusses the security
implications.

I. INTRODUCTION

Intel’s Software Guard eXtensions (SGX) improves ap-

plication security by removing privileged code from the

trusted computing base (TCB). At a high level, SGX provides

software applications shielded execution environments, called

enclaves, to run private code and operate sensitive data, where

both the code and data are isolated from the rest of the

software systems. Even privileged software such as operating

systems and hypervisors are not allowed to directly inspect or

manipulate the memory inside the enclaves. Although SGX

is still in its infancy, the promise of shielded execution has

encouraged researchers and practitioners to develop various

new applications to utilize these features (e.g., [3], [55],

[22], [64], [93], [75], [58], [74], [96]), and new software

tools or frameworks (e.g., [6], [5], [73], [25], [77], [46],

[88], [79], [71], [67], [54]) to help developers adopt this

emerging programming paradigm. Most recently, SGX has

been adopted by commercial public clouds, such as Azure

confidential computing [63], [2], aiming to protect cloud data

against compromised operating systems or hypervisors, or

even “malicious insiders with administrative privilege” [63].

However, the recently disclosed CPU vulnerabilities due to

the out-of-order and speculative execution [23] have raised

many questions and concerns about the security of SGX.

Particularly, the so-called Meltdown [48] and Spectre at-

tacks [44] have demonstrated that an unprivileged application

may exploit these vulnerabilities to extract memory content

that is only accessible to privileged software. The developers

have been wondering whether SGX will hold its original

security promises given these hardware bugs [35].

In this paper, we particularly study Spectre-like attacks

against SGX enclaves. We aim to answer the following re-

search questions: (1) Is SGX vulnerable to Spectre attacks?

(2) As Spectre attacks require vulnerable code patterns in

the target software, do such code patterns exist in real-world

enclave programs? (3) What are the consequences of the

attacks? (4) Is SGX completely broken due to these hardware

bugs? The answers to these questions are critically important

to the adoption of the SGX technology and commercialization

of SGX-based applications in the future; they are also valuable

to the research community in understanding SGX’s threat

model.

In this paper, we first explore techniques to conduct
SGXPECTRE Attacks. SGXPECTRE is the term we coined for

the SGX-variants of the Spectre attacks. This is to differentiate

from other variants of Spectre attacks. At a high level, SGX-

PECTRE exploits the race condition between the speculatively

executed memory references and the latency of the branch

resolution, in order to generate side-channel observable cache

traces and consequently read memory content. Specifically,

we explore how branch targets can be injected into SGX

enclaves, how registers inside enclaves can be controlled by

the outside world, how information can be leaked through side

channels, and how the adversary could increase the probability

of winning the race condition. These techniques are the key

components for successfully performing SGXPECTRE Attacks.

To the best of our knowledge, they have never been studied in
previous works.

142

2019 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2019, Guoxing Chen. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00020

Second, we develop techniques to automate the search of
vulnerabilities in enclave binaries. We observe SGXPECTRE

Attacks are enabled by two types of code gadgets in the

enclave binary. To help the enclave developers detect vulner-

abilities in their code, we develop binary analysis tools to

symbolically execute enclave code and automatically identify

such gadgets from enclave binaries. As a result, we found

both types of gadgets exist in widely used SGX runtimes,

such as Intel SGX SDK, Rust-SGX SDK, and Graphene-

SGX library OS. Therefore any enclave program built with

these runtimes would be vulnerable to SGXPECTRE Attacks.

To our knowledge, our tool is the first to perform symbolic
execution on enclave binary (which we have open-sourced
on GitHub). It is also the first tool to automatically detect
software vulnerabilities that enable Spectre-like attacks. We
expect our study will inspire future research.

Third, we demonstrate end-to-end attacks to validate the
fidelity of SGXPECTRE Attacks and extract Intel’s secrets.
Particularly, we show that the adversary could learn the content

of the enclave memory as well as its register values from a

victim enclave. An even more alarming consequence is that

SGXPECTRE Attacks can be leveraged to steal secrets belong-

ing to Intel SGX platforms, such as provisioning keys, seal
keys, and attestation keys. For example, we have demonstrated

that SGXPECTRE Attacks are able to read memory from the

quoting enclave developed by Intel and extract Intel’s seal key,

which can be used to decrypt the sealed EPID blob to extract

the attestation key (i.e., EPID private key). With an attestation

key, the adversary could compromise a large group of SGX

platforms that share the same EPID public key. Our work was
one of the first to demonstrate the extraction of Intel’s secrets.

Fourth, we investigate the security implication of SGX-

PECTRE Attacks on the SGX ecosystem. We enumerate all

derived keys and in-memory secrets of Intel’s SGX platforms,

and study how Intel mitigate the threats to these in-memory

secrets by having them depending on the version of the

microcode of the SGX platform. This paper contributes to the
overall understanding of the security implications of SGXPEC-

TRE Attacks and similar attacks targeting the confidentiality
of SGX platforms.

The rest of the paper is organized as follows: Sec. II intro-

duces key concepts of Intel processor micro-architectures to set

the stage of our discussion. Sec. III discusses the threat model.

Sec. IV presents a systematic exploration of attack vectors in

enclaves and techniques that enable practical attacks. Sec. V

presents a symbolic execution tool for searching instruction

gadgets in enclave programs in an automated manner. Sec. VI

shows end-to-end SGXPECTRE Attacks against enclave run-

times that lead to a complete breach of enclave confidentiality.

Sec. VII discusses and evaluates countermeasures against the

attacks. Sec. VIII discusses the security implications of side

channels on SGX platforms. Sec. IX discusses related work

and Sec. X concludes the paper.

II. BACKGROUND

A. Intel Processor Internals

Out-of-order execution. Modern CPUs implement deep

pipelines so that multiple instructions can be executed at the

same time. Because instructions do not take equal time to

complete, the order of the instructions’ execution and their

order in the program may differ. This form of out-of-order

execution requires taking special care of instructions whose

operands have inter-dependencies, as these instructions may

access memory in orders constrained by the program logic.

To handle the potential data hazards, instructions are retired

in order, resolving any inaccuracy due to the out-of-order

execution at the time of retirement.

Speculative execution. Speculative execution shares the same

goal as out-of-order execution, but differs in that speculation

is made to speed up the program’s execution when the control

flow or data dependency of the future execution is uncertain.

One of the most important examples of speculative execution

is branch prediction. When a conditional or indirect branch

instruction is met, because checking the branch condition or

resolving the branch target may take time, a prediction is

made, based on its history, to prefetch instructions first. If the

prediction is correct, speculatively executed instructions may

retire; otherwise, mis-predicted execution will be rewinded.

The micro-architectural component that enables speculative

execution is the branch prediction unit (BPU), which consists

of several hardware components that help predict conditional

branches, indirect jumps and calls, and function returns. For

example, branch target buffers (BTB) are typically used to

predict indirect jumps and calls, and return stack buffers (RSB)

are used to predict near returns. These micro-architectural

components, however, are shared between softwares running

on different security domains (e.g., user space vs. kernel space,

enclave mode vs. non-enclave mode), thus leading to the

security issues that we present in this paper.

Implicit caching. Implicit caching refers to the caching of

memory elements, either data or instructions, that are not

due to direct instruction fetching or data accessing. Implicit

caching may be caused in modern processors by “aggressive

prefetching, branch prediction, and TLB miss handling” [31].

For example, mis-predicted branches will lead to the fetching

and execution of instructions, as well as data memory reads

or writes from these instructions, that are not intended by the

program. Implicit caching is one of the root causes of the CPU

vulnerabilities studied in this paper.

B. Intel SGX

Intel SGX is an architecture extension in recent Intel proces-

sors aiming to offer strong application security by providing

primitives such as memory isolation, memory encryption,

sealed storage, and remote attestation. An important concept

in SGX is the secure enclave. An enclave is an execution

environment created and maintained by the processor so that

only applications running in it have a dedicated memory region

143

that is protected from all other software components. Both

confidentiality and integrity of the memory inside enclaves

are protected from the untrusted system software.

To enter the enclave mode, the software executes the

EENTER leaf function by specifying the address of Thread

Control Structure (TCS) inside the enclave. TCS holds the

location of the first instruction to execute inside the enclave.

Multiple TCSs can be defined to support multi-threading

inside the same enclave. Registers used by the untrusted

program may be preserved after EENTER. The enclave runtime

determines the proper control flow depending on the register

values (e.g., differentiating ECall from ORet).

Asynchronous Enclave eXit (AEX). When interrupts, ex-

ceptions, and VM exits happen during the enclave mode,

the processor will save the execution state in the State Save

Area (SSA) of the current enclave thread, and replace it

with a synthetic state to prevent information leakage. After

the interrupts or exceptions are handled, the execution will

be returned (through IRET) from the kernel to an address

external to enclaves, which is known as Asynchronous Exit

Pointer (AEP). The ERESUME leaf function will be executed

to transfer control back to the enclave by filling the RIP with

the copy saved in the SSA.

Remote Attestation. SGX remote attestation is used by en-

claves to prove to the ISV (i.e., the enclave developer) that

a claimed enclave is running inside an SGX enabled proces-

sor. An anonymous signature scheme, called Intel Enhanced
Privacy ID (EPID) [40], is used to produce the attestation

signature. The attestation key (i.e., EPID private key) cannot

be directly accessed by an attested enclave, otherwise a mali-

cious enclave could generate any valid attestation signature to

deceive the remote party. Hence, Intel issues two privileged

enclaves, called the provisioning enclave and the quoting
enclave to manage the attestation key and sign attestation data.

Sealed storage. Enclaves can encrypt and integrity-protect

some secrets, e.g., the attestation key, via sealing to store the

secrets outside the enclave, e.g., on a non-volatile memory.

The encryption key used during the sealing process is called

the seal key, which is derived via EGETKEY instruction.

C. Cache Side Channels

Cache side channels leverage the timing difference between

cache hits and cache misses to infer the victim’s memory

access patterns. Typical examples of cache side-channel at-

tacks are PRIME+PROBE and FLUSH+RELOAD attacks. In

PRIME+PROBE attacks [61], [60], [94], [57], [1], [76], [50],

[39], by pre-loading cache lines in a cache set, the adversary

expects that her future memory accesses (to the same memory)

will be served by the cache, unless evicted by the victim

program. Therefore, cache misses will reveal the victim’s

cache usage of the target cache set. In FLUSH+RELOAD

attacks [20], [91], [92], [7], [95], [4], the adversary shares

some physical memory pages (e.g., through dynamic shared

libraries) with the victim. By issuing clflush on certain

virtual addresses that are mapped to the shared pages, the

1 i f (x < a r r a y 1 s i z e)
2 y = a r r a y 2 [a r r a y 1 [x] ∗ 4096] ;

Listing 1. An example of bounds check bypass [44]

adversary can flush the shared cache lines out of the entire

cache hierarchy. Therefore, RELOADs of these cache lines

will be slower because of cache misses, unless they have been

loaded by the victim into the cache. In these ways, the victim’s

memory access patterns can be revealed to the adversary.

D. Spectre Attacks

Spectre attacks [44], [23] leverage hardware vulnerabilities

due to speculative execution to extract memory content that

should not be accessible by the adversary. Originally there

were two variants of Spectre attacks: bounds check bypass and

branch target injection. The first variant targets the conditional

branch prediction. An example of this variant is shown in

Listing 1: A conditional branch is used to check whether input

x is within the bounds of the array (line 1 in Listing 1).

However, when the value of x is out-of-bounds, due to the

misprediction of the conditional branch (i.e., by the hardware

branch prediction unit), speculative out-of-bounds memory

access may happen before the bounds check is resolved,

which triggers implicit caching (loading a particular memory

address of array2 to CPU cache) that reflects the out-of-

bounds memory content of array1. The adversary could then

leverage cache side channels to learn the state of the implicit

caching and infer the data values.

The second variant targets the indirect branch prediction.

Particularly, the adversary first manipulates the branch target

buffer (BTB) such that when the victim process executes a

indirect branch instruction, the BTB will mispredict the target

address to speculatively execute code that could never be

executed by normal control flows. Similar to the first variant

of Spectre attacks, sensitive data can be extracted using cache

side channels. As the code patterns in Listing 1 rarely exist

in real-world code, this paper explores the second variant of

Spectre attacks on SGX.

III. THREAT MODEL

In this paper, we consider an adversary with the system

privilege of the machine that runs on the processor with

SGX support. Specifically, we assume the adversary has the

following capabilities.

• Complete OS control: We assume the adversary has com-

plete control over the entire OS, including re-compiling the

kernel and rebooting the OS with arbitrary arguments.

• Interacting with the targeted enclave: We assume the adver-

sary is able to launch the targeted enclave with a software

program under her control and to enter the enclaves with

parameters under her control.

• Launching and controlling another enclave: we assume the

adversary is able to run another enclave that she completely

controls in the same process or another process. This

144

Fig. 1. A simple example of SGXPECTRE Attacks. The gray blocks represent
code or data outside the enclave. The white blocks represent enclave code or
data.

implies that the enclave can poison any BTB entries used

by the targeted enclave.

We assume the binary code of the targeted enclave is already

known to the adversary and does not change during execution.

Therefore, we assume that the adversary is primarily interested

in extracting the secrets that have been provisioned into the

enclaves, either by Intel or by regular enclave developers.

IV. SGXPECTRE ATTACKS

A. A Simple Example

Steps of an SGXPECTRE Attack are illustrated in Fig. 1.

Step � is to poison the branch target buffer, such that when

the enclave program executes a branch instruction at a specific

address, the predicted branch target is the address of enclave

instructions that may leak secrets. For example, in Fig. 1, to

trick the ret instruction at address 0x02560 in the enclave to

speculatively return to the secret-leaking instructions located

at address 0x07642, the code to poison the branch prediction

executes an indirect jump from the source address 0x02560
to the target address 0x07642 multiple times. We will discuss

branch target injection in more details in Sec. IV-B.

Step � is to prepare a CPU environment to increase

the chance of speculatively executing the secret-leaking in-

structions before the processor detects the mis-prediction and

flushes the pipeline. Such preparation includes flushing the

victim’s branch target address (to delay the retirement of the

targeted branch instruction or return instruction) and depleting

the RSB (to force the CPU to predict return address using

the BTB). Flushing branch targets cannot use the clflush

instruction, as the enclave memory is not accessible from

outside (We will discuss alternative approaches in Sec. IV-E).

The code for depleting the RSB (shown in Fig. 1) pushes the

address of a ret instructions 16 times and returns to itself

repeatedly to drain all RSB entries.

Step � is to set the register values used by the speculatively

executed secret-leaking instructions, such that they will read

enclave memory targeted by the adversary and leave cache

traces that the adversary could monitor. In this simple example,

the adversary sets r14 to 0x106500, the address of a 2-

byte secret inside the enclave, and sets r15 to 0x610000,

the base address of a monitored array outside the enclave.

The enclu instruction with rax=2 is executed to enter the

enclave. We will discuss methods to pass values into the

enclaves in Sec. IV-C.

Step � is to trigger the enclave code. Because of the BTB

poisoning, instructions at address 0x07642 will be executed

speculatively while the target of the ret instruction at ad-

dress 0x02560 is being resolved. The instruction “movzwq
(%r14), %rbx” loads the 2-byte secret data into rbx, and

“mov (%r15, %rbx, 1), %rdx” touches one entry of

the monitored array dictated by the value of rbx.

Step � is to examine the monitored array using a

FLUSH+RELOAD side channel and extract the secret values.

Techniques to do so are discussed in details in Sec. IV-D.

B. Injecting Branch Targets into Enclaves

The branch prediction units in modern processors typically

consist of:

• Branch target buffer: When an indirect jump/call or a

conditional jump is executed, the target address will be

cached in the BTB. The next time the same indirect

jump/call is executed, the target address in the BTB will

be fetched for speculative execution. Modern x86-64 archi-

tectures typically support 48-bit virtual address and 40-bit

physical address [31], [41]. For space efficiency, many Intel

processors, such as Skylake, use only the lower 32-bit of

a virtual address as the index and tag of a BTB entry.

• Return stack buffer: When a near Call instruction with

non-zero displacement1 is executed, an entry with the

address of the instruction sequentially following it will be

created in the return stack buffer (RSB). The RSB is not

affected by far Call, far Ret, or Iret instructions. Most

processors that implement RSB have 16 entries [17]. On

Intel Skylake or later processors, when RSB underflows,

BTBs will be used for prediction instead.

Poisoning BTBs from outside. To temporarily alter the

control-flow of the enclave code by injecting branch targets,

the adversary needs to run BTB poisoning code outside the

targeted enclave, which could be done in one of the following

ways (as illustrated in Fig. 2).

1Call instructions with zero displacements will not affect the RSB,
because they are common code constructions for obtaining the current RIP
value. These zero displacement calls do not have matching returns.

145

Fig. 2. Poisoning BTB from the same process or a different process

• Branch target injection from the same process. The ad-

versary could poison the BTB by using code outside the

enclave but in the same process. Since the BTB uses only

the lower 32 bits of the source address to index a BTB

entry, the adversary could reserve a 232 = 4GB memory

buffer, and execute an indirect jump instruction (within

the buffer) whose source address (e.g., 0x7fff00002560) is

the same as the branch instruction in the target enclave

(i.e., 0x02560) in the lower 32 bits, and target address

(e.g., 0x7fff00007642) is the same as the secret-leaking

instructions (i.e., 0x07642) inside the target enclave in the

lower 32 bits.

• Branch target injection from a different process. The ad-

versary could inject the branch targets from a different

process. Although this attack method requires a context

switch in between of the execution of the BTB poisoning

code and targeted enclave program, the advantage of this

method is that the adversary could encapsulate the BTB

poisoning coding into another enclave that is under his

control. This allows the adversary to perfectly shadow the

branch instructions of the targeted enclave program (i.e.,
matching all bits in the virtual addresses).

It is worth noting that address space layout randomization

can be disabled by the adversary to facilitate the BTB poi-

soning attacks. On a Lenovo Thinkpad X1 Carbon (4th Gen)

laptop with an Intel Core i5-6200U processor (Skylake), we

have verified that for indirect jump/call, the BTB could be

poisoned either from the same process or a different process.

For the return instructions, we only observed successful poi-

soning using a different process (i.e., perfect branch target

matching). To force return instructions to use BTB, the RSB

needs to be depleted before executing the target enclave code.

Interestingly, as shown in Fig. 1, a near call is made in

enclave_entry(), which could have filled the RSB, but

we still could inject the return target of the return instruction at

0x02560 with BTB. We speculate that this is an architecture-

specific implementation. A more reliable way to deplete the

RSB is through the use of AEX as described in Sec. VI-A.

C. Controlling Registers in Enclaves

Because all registers are restored by hardware after

ERESUME, the adversary is not able to control any register

inside the enclave when the control returns back to the enclave

after an AEX. In contrast, most registers can be set before the

EENTER leaf function and remain controlled by the adversary

Fig. 3. EENTER and ECall table lookup

after entering the enclave mode until modified by the enclave

code. Therefore, the adversary might have a chance to control

some registers in the enclave after an EENTER.

The SGX developer guide [32] defines ECall and OCall
to specify the interaction between the enclave and external

software. An ECall, or “Enclave Call”, is a function call

to enter enclave mode; an OCall, or “Outside Call”, is a

function call to exit the enclave mode. Returning from an

OCall is called an ORet. Both ECalls and ORets are

implemented through EENTER by the SGX SDK. As shown in

Fig. 3, the function enter_enclave() is called by the en-

clave entry point, enclave_entry(). Then depending on

the value of the edi register, do_ecall() or do_oret()
will be called. The do_ecall() function is triggered to

call trts_ecall() and get_function_address() in

a sequence and eventually look up the ECall table. Both

ECall and ORet can be exploited to control registers in

enclaves.

D. Leaking Secrets via Side Channels

The key to the success of SGXPECTRE Attacks lies in the

fact that speculatively executed instructions trigger implicit

caching, which is not properly rewinded when the incorrectly

issued instructions are discarded by the processor. Therefore,

these side effects of speculative execution on CPU caches can

be leveraged to leak information from inside the enclave.

Cache side-channel attacks against enclave programs have

been studied recently [66], [8], [21], [19], all of which

demonstrated that a program runs outside the enclave may

use PRIME+PROBE techniques [76] to infer secrets from the

enclave code, only if the enclave code has secret-dependent

memory access patterns. Though more fine-grained and less

noisy, FLUSH+RELOAD techniques [91] cannot be used in

SGX attacks since enclaves do not share memory with the

external world.

Different from these studies, however, SGXPECTRE Attacks

may leverage these less noisy FLUSH+RELOAD side channels

to leak information. Because the enclave code can access data

outside the enclave directly, an SGXPECTRE Attack may force

the speculatively executed memory references inside enclaves

to touch memory locations outside the enclave, as shown in

Fig. 1. The adversary can flush an array of memory before the

attack, such as the array from address 0x610000 to 0x61ffff,

146

Fig. 4. Best scenarios for winning a race condition. Memory accesses D1, I1,
D2, D3 are labeled next to the related instructions. The address translation
and data accesses are illustrated on the right: The 4 blocks on top denote
the units holding the address translation information, including TLBs, paging
structures, caches (for PTEs), and the memory; the 4 blocks at the bottom
denote the units holding data/instruction. The shadow blocks represent the
units from which the address translation or data/instruction access are served.

and then reload each entry and measure the reload time to

determine if the entry has been touched by the enclave code

during the speculative execution.

Other than cache side-channel attacks, previous work has

demonstrated BTB side-channel attacks, TLB side-channel

attacks, DRAM-cache side-channel attacks, and page-fault

attacks against enclaves. In theory, some of these venues

may also be leveraged by SGXPECTRE Attacks. For instance,

although TLB entries used by the enclave code will be flushed

when exiting the enclave mode, a PRIME+PROBE-based TLB

attack may learn that a TLB entry has been created in a

particular TLB set when the program runs in the enclave mode.

Similarly, BTB and DRAM-cache side-channel attacks may

also be exploitable in this scenario. However, page-fault side

channels cannot be used in SGXPECTRE Attacks because the

speculatively executed instructions will not raise exceptions.

E. Winning a Race Condition

At the core of an SGXPECTRE Attack is a race between

the execution of the branch instruction and the speculative

execution: data leakage will only happen when the branch

instruction retires later than the speculative execution of the

secret-leaking code. Fig. 4 shows a desired scenario for win-

ning such a race condition in an SGXPECTRE Attack: The

branch instruction has one data access D1, while the specula-

tive execution of the secret-leaking code has one instruction

fetch I1 and two data accesses D2 and D3. To win the

race condition, the adversary should ensure that the memory

accesses of I1, D2 and D3 are fast enough. However, because

I1 and D2 fetch memory inside the enclave, and as TLBs

and paging structures used inside the enclaves are flushed

at AEX or EEXIT, the adversary could at best perform the

address translation of the corresponding pages from caches

(i.e., use cached copies of the page table). Fortunately, it can

be achieved by performing Step � in Fig. 1 multiple times. It

is also possible to preload the instructions and data used in I1

and D2 into the L1 cache to further speed up the speculative

execution. As D3 accesses memory outside the enclave, it is

possible to preload the TLB entry of the corresponding page.

However, data of D3 should be loaded from the memory.

Meanwhile, the adversary should slow down D1 by forcing

its address translation and data fetch to happen in the memory.

However, this step has been proven technically challenging.

First, it is difficult to effectively flush the branch target (and the

address translation data) to memory without using clflush
instruction. Second, because the return address is stored in

the stack frames, which is very frequently used during the

execution, evicting return addresses must be done frequently.

In the attack described in Sec. VI, we leveraged an additional

page fault to suspend the enclave execution right before the

branch instruction and flush the return target by evicting all

cache lines in the same cache set.

V. ATTACK GADGETS IDENTIFICATION

In this section, we show that any enclave programs devel-

oped with existing SGX SDKs are vulnerable to SGXPECTRE

Attacks. In particular, we have developed an automated pro-

gram analysis tool that symbolically executes the enclave code

to examine code patterns in SGX runtimes, and have identified

those code patterns in every runtime library we have examined,

including Intel’s SGX SDK [36], Rust-SGX [14], Graphene-

SGX [77]. In this section, we present how we search these

gadgets in greater detail.

A. Types of Gadgets

In order to launch SGXPECTRE Attacks, two types of code

patterns are needed. The first type of code patterns consists of

a branch instruction that can be influenced by the adversary

and several registers that are under the adversary’s control

when the branch instruction is executed. The second type

of code patterns consists of two memory references close

to each other and collectively reveal some enclave memory

content through cache side channels. Borrowing the term used

in return-oriented programming [68] and Spectre attacks [44],

we use gadgets to refer to these patterns. More specifically, we

name them Type-I gadgets and Type-II gadgets, respectively.

Type-I gadgets: branch target injection. A gadget is a

sequence of instructions that are executed sequentially during

one run of the enclave program (but not necessarily con-

secutive in the memory layout). A Type-I gadget is such

an instruction sequence that starts from the entry point of

EENTER (dubbed enclave_entry()) and ends with one

of the following instructions: (1) near indirect jump, (2) near

indirect call, or (3) near return. EENTER is the only method

for the adversary to take control of registers inside enclaves.

During an EENTER, most registers are preserved by the hard-

ware; they are left to be sanitized by the enclave software. If

any of these registers is not overwritten by the software before

one of the three types of branch instructions is met, a Type-I

gadget is found. An example of a Type-I gadget is shown in

Listing 2, which is excerpted from libsgx_trts.a of Intel

SGX SDK. In particular, line 49 in Listing 2 is the first return

147

1 0000000000003662 <e n c l a v e e n t r y >:
2 3662 : cmp $0x0 ,% r a x
3 3666 : j n e 3709 <e n c l a v e e n t r y +0xa7>
4 366 c : xor %rdx ,% rdx
5 366 f : mov %gs : 0 x8 ,% r a x
6 3676 : 00 00
7 3678 : cmp $0x0 ,% r a x
8 367 c : j n e 368d <e n c l a v e e n t r y +0x2b>
9 367 e : mov %rbx ,% r a x

10 3681 : sub $0x10000 ,% r a x
11 3687 : sub $0x2b0 ,% r a x
12 368d : xchg %rax ,% r s p
13 368 f : push %r c x
14 3690 : push %rbp
15 3691 : mov %rsp ,% rbp
16 3694 : sub $0x30 ,% r s p
17 3698 : mov %rax ,−0x8(% rbp)
18 369 c : mov %rdx ,−0x18(% rbp)
19 36 a0 : mov %rbx ,−0x20(% rbp)
20 36 a4 : mov %r s i ,−0x28(% rbp)
21 36 a8 : mov %r d i ,−0x30(% rbp)
22 36 ac : mov %rdx ,% r c x
23 36 a f : mov %rbx ,% rdx
24 36 b2 : c a l l q 1 f20 <e n t e r e n c l a v e>
25 . . .
26

27 0000000000001 f20 <e n t e r e n c l a v e >:
28 1 f20 : push %r13
29 1 f22 : push %r12
30 1 f24 : mov %r s i ,% r13
31 1 f27 : push %rbp
32 1 f28 : push %rbx
33 1 f29 : mov %rdx ,% r12
34 1 f 2 c : mov %edi ,% ebx
35 1 f 2 e : mov %ecx ,% ebp
36 1 f30 : sub $0x8 ,% r s p
37 1 f34 : c a l l q b60 <s g x i s e n c l a v e c r a s h e d>
38 . . .
39

40 0000000000000 b60 <s g x i s e n c l a v e c r a s h e d >:
41 b60 : sub $0x8 ,% r s p
42 b64 : c a l l q 361b <g e t e n c l a v e s t a t e>
43 . . .
44

45 000000000000361 b <g e t e n c l a v e s t a t e >:
46 361b : l e a 0 x213886(% r i p) ,% r c x # 216 ea8 <

g e n c l a v e s t a t e>
47 3622 : xor %rax ,% r a x
48 3625 : mov (% r c x) ,% eax
49 3627 : r e t q

Listing 2. An example of a Type-I gadget

instruction encountered by an enclave program after EENTER.

When this near return instruction is executed, several registers

can still be controlled by the adversary, including rbx, rdi,

rsi, r8, r9, r10, r11, r14, and r15.

Type-II gadgets: secret extraction. A Type-II gadget is a

sequence of instructions that starts from a memory reference

instruction that loads data in the memory pointed to by register

regA into register regB, and ends with another memory

reference instruction whose target address is determined by

the value of regB. When the control flow is redirected to a

Type-II gadget, if regA is controlled by the adversary, the first

memory reference instruction will load regB with the value

of the enclave memory chosen by the adversary. Because the

entire Type-II gadget is speculatively executed and eventually

discarded when the branch instruction in the Type-I gadget

retires, the secret value stored in regB will not be learned by

the adversary directly. However, as the second memory refer-

ence will trigger the implicit caching, the adversary can use a

1 0000000000005 c10 <d l f r e e >:
2 . . .
3 607 f : mov 0x38(% r s i) ,% e d i
4 6082 : mov %r d i ,% r c x
5 6085 : l e a (%rbx ,% r d i , 8) ,% r d i
6 6089 : cmp 0 x258(% r d i) ,% r s i
7 . . .

Listing 3. An example of a Type-II gadget

FLUSH+RELOAD side channel to extract the value of regB.

An example of a Type-II gadget is illustrated in Listing 3,

which is excerpted from the libsgx_tstdc.a library of

Intel SGX SDK. Assuming rsi is a register controlled by

the adversary, the first instruction (line 3) reads the content

of memory address pointed to by rsi+0x38 to edi. Then

the value of rbx+rdi×8 is stored in rdi (line 5). Finally,

the memory address at rdi+0x258 is loaded to be compared

with rsi (line 6). To narrow down the range of rdi+0x258,

it is desired that rbx is also controlled by the adversary. We

use regC to represent these base registers like rbx.

B. Symbolically Executing SGX Code

Although a skillful developer can manually read the source

code or even the disassembled binary code of an enclave

program and runtime libraries to identify exploitable gadgets,

such an effort is very tedious and error-prone. It is highly

desirable to leverage automated software tools to scan an

enclave binary to detect any gadgets, and eliminate them

before deploying them to untrusted SGX machines.

To this end, we devise a dynamic symbolic execution

technique to enable automated identification of SGXPECTRE

Attack gadgets. Symbolic execution [43] is a program testing

and debugging technique in which symbolic inputs are sup-

plied instead of concrete inputs. Symbolic execution abstractly

executes a program and concurrently explores multiple exe-

cution paths. The abstract execution of each execution path

is associated with a path constraint that represents multiple

concrete runs of the same program that satisfy the path con-

ditions. Using symbolic execution techniques, we can explore

multiple execution paths in enclave programs to find gadgets

of SGXPECTRE Attacks.

Symbolic execution of an enclave function. We design a tool

built atop the angr [72], a popular binary analysis framework

to perform the symbolic execution. To avoid the path explosion

problem in symbolically executing a large enclave program

(or a large SGX runtime such as Graphene-SGX), our tool

allows the user to specify an arbitrary enclave function to

start the symbolic execution. During the symbolic execution,

machine states are maintained internally to represent the status

of registers, stacks, and the memory; instructions update the

machine states represented with symbolic values while the

execution makes forward progress. The exploration of an

execution path terminates when the execution returns to this

entry function or detects a gadget. To symbolically execute

an SGX enclave binary, we have extended angr to handle:

(1) the EEXIT instruction, by putting the address of the

148

enclave entry point, enclave_entry(), in the rip register

of its successor states; (2) dealing with instructions that are

not already supported by angr, such as xsave, xrstore,

repz, and rdrand.

C. Gadget Identification

Identifying Type-I gadgets. The key requirement of a Type-I

gadget is that before the execution of the indirect jump/call

or near return instruction, the values of some registers are

controlled (directly or indirectly) by the adversary, which can

only be achieved via EENTER. We consider two types of Type-

I gadget separately: ECall gadgets and ORet gadgets.

To detect ECall gadgets, the symbolic execution starts

from the enclave_entry() function and stops when a

Type-I gadget is found. During the path exploration, edi
register is set to a value that leads to an ECall.

To detect ORet gadgets, the symbolic execution starts

from a user-specified function inside the enclave. Once an

OCall is encountered, the control flow is transferred to

enclave_entry() and the edi register is set to a value

that leads to an ORet. At this point, all other registers are

considered controlled by the adversary and thus are assigned

symbolic values. An ORet gadget is found if an indirect

jump/call or near return instruction is encountered and some

of the registers still have symbolic values. The symbolic

execution continues if no gadgets are found until the user-

specified function finishes.

Identifying Type-II gadgets. To identify Type-II gadgets, our

tool scans the entire enclave binary and looks for memory

reference instructions (i.e., mov and its variants, such as

movd and movq) that load register regB with data from

the memory location pointed to by regA. Both regA and

regB are general registers, such as rax, rbx, rcx, rdx, r8
- r15. Once one of such instructions is found, the following

N instructions (e.g., N = 10) are examined to see if there

is another memory reference instruction (e.g., mov, cmp) that

accesses a memory location pointed to by register regD. If

so, the instruction sequence is a potential Type-II gadget. It is

desired to have a register regC used as the base address for the

second memory reference. However, we also consider gadgets

that do not involve regC, because they are also exploitable.

Once we have identified a potential gadget, it is executed

symbolically using angr. The symbolic execution starts from

the first instruction of a potential Type-II gadget, and regB
and regC are both assigned symbolic values. At the end of

the symbolic execution of the potential gadget, the tool checks

whether regD contains a derivative value of regB, and when

regC is used as the base address of the second memory

reference, whether regC still holds its original symbolic

values. A potential gadget is a true gadget if the checks pass.

We use either [regA, regB, regC] or [regA, regB] to

represent a Type-II gadget.

D. Experimental Results of Gadget Detection

We run our symbolic execution tool on three well-known

SGX runtimes: the official Intel Linux SGX SDK (ver-

sion 2.1.102.43402), Rust-SGX SDK (version 0.9.1), and

Graphene-SGX (commit bf90323). In all cases, a minimal

enclave with a single empty ECall was developed for anal-

ysis, because gadgets detected in a minimal enclave binary

will appear in any enclave code developed using these SDKs.

When the enclave binary becomes more complex, the size

of the resulting enclave binary will grow to include more

components of the SDK libraries, and the number of available

gadgets will also increase. For example, a simple OCall
implementation of printf() introduces three more Type-

II gadgets. In addition, the code written by the enclave author

might also introduce extra exploitable gadgets.

To detect ECall Type-I gadgets, the symbolic execution

starts from the enclave_entry() function in all three

runtime libraries. To detect ORet Type-I gadgets, in Intel

SGX SDK and Rust-SGX SDK, we started our analysis from

the sgx_ocall() function, which is the interface defined

to serve all OCalls. In contrast, Graphene-SGX has more

diverse OCall sites. In total, there are 37 such sites as defined

in enclave_ocalls.c. Unlike in other cases where the

symbolic analysis completes instantly due to small function

sizes, analyzing these 37 OCall sites consumes more time:

the median running time of analyzing one OCall site was 39

seconds; the minimum analysis time was 8 seconds; and the

maximum was 340 seconds.

The results for Type-I gadgets are summarized in Table I.

In Table I, column 2 shows the type of the gadget, whether

it being an indirect jump, indirect call, or return; column 3

shows only the gadget’s end address (because Type-I gadgets

always start at the enclave_entry()), which is the address

of an branch instruction, represented using the function name

the instruction is located and its offset; column 4 shows the

registers that are under the control of the adversary when the

branch instructions are executed. For example, the first entry

in Table I shows an indirect jump gadget, which is located in

do_ecall() (with an offset of 0x118). By the time of the

indirect jump, the registers that are still under the control of

the adversary are rdi, r8, r9, r10, r11, r14 and r15.

Due to space limit, Type-II gadgets are not listed in the

paper. The results are highlighted as follows: For Type-II

gadgets of the form [regA, regB, regC] (which means at

the time of memory reference, two registers, regB and regC,

are controlled by the adversary), we have found 6 gadgets in

Intel’s SGX SDK, 6 gadgets in Rust-SGX, and 18 gadgets

in Graphene-SGX. For Type-II gadgets of the form [regA,

regB], we have found 6, 86, and 180 such gadgets in these

three runtime libraries, respectively.

VI. STEALING ENCLAVE SECRETS

In this section, we demonstrate two end-to-end SGXPECTRE

Attacks against SGX enclave programs. In the first exam-

ple, we show how SGXPECTRE Attacks could read register

values from arbitrary enclave program developed using Intel

SGX SDK [36]. In the second example, we demonstrate

the extraction of Intel’s secrets (e.g., attestation keys) using

SGXPECTRE Attacks. Both experiments were conducted on a

149

Category End Address Controlled Registers

Intel SGX SDK

indirect jump <do ecall>:0x118 rdi, r8, r9, r10, r11, r14, r15
indirect call — —

return

<get enclave state>:0xc rbx, rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<sgx is enclave crashed>:0x16 rbx, rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<get thread data>:0x9 rbx, rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
< ZL16init stack guardPv>:0x21 rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<do ecall>:0x21 rsi, r8, r9, r10, r11, r12, r13, r14, r15
<enter enclave>:0x62 rbx, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<restore xregs>:0x2b rsi, r8, r9, r10, r11, r12, r14, r15
<do rdrand>:0x11 r8, r9, r10, r11, r12, r14, r15
<sgx read rand>:0x46 rbx, r8, r9, r10, r11, r12, r14, r15

Rust SGX SDK

indirect jump <do ecall>:0x118 rdi, r9, r10, r11, r12, r13, r14, r15
indirect call — —

return

< ZL14do init threadPv>:0x109 rdi, r9, r10, r11, r12, r13, r14, r15
<do ecall>:0x21 rsi, r8, r9, r10, r11, r12, r13, r14, r15
<do ecall>:0x63 rsi, r8, r9, r10, r11, r12, r13, r14, r15
< ZL16init stack guardPv>:0x21 rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
< ZL16init stack guardPv>:0x69 rdi, r8, r9, r10, r11, r12, r13, r14, r15
<enter enclave>:0x55 rbx, rsi, r8, r9, r10, r11, r12, r13, r14, r15
<restore xregs>:0x2b rsi, r8, r9, r10, r11, r12, r13, r14, r15
<elf tls info>:0xa0 rbx, rdx, rsi, r9, r10, r11, r14, r15
<get enclave state>:0xc rdx, rdi, r8, r9, r10, r11, r12, r14, r15
<get thread data>:0x9 rbx, rdi, rsi, r8, r9, r10, r11, r12, r13, r14, r15
< morestack>:0xe r8, r9, r10, r11
<asm oret>:0x64 r8, r9, r10, r11
< memcpy>:0xa3 rax, rbx, rdi, r9, r10, r11, r14, r15
< memset>:0x1d rax, rbx, rdx, rdi, r9, r10, r11, r14, r15
< intel cpu features init body>:0x42b rbx, rdx, rdi, r9, r10, r11, r14, r15

Graphene-SGX

indirect jump — —
indirect call < DkGenericEventTrigger>:0x20 r9, r10, r11, r13, r14, r15

return

< DkGetExceptionHandler>:0x30 rdi, r8, r9, r10, r11, r12, r13, r14, r15
<get frame>:0x84 r8, r9, r10, r11, r12, r13, r14, r15
< DkHandleExternelEvent>:0x55 rdi, r8, r9, r10, r11, r12, r13, r14, r15
< DkSpinLock>:0x27 rbx, rdi, r8, r9, r10, r11, r12, r13, r14, r15
<sgx is within enclave>:0x23 rdi, rsi, r8, r12, r13, r14
<handle ecall>:0xcd rdi, rsi, r8
<handle ecall>:0xd5 rdx, rdi, rsi, r8

TABLE I
SGXPECTRE ATTACK TYPE-I GADGETS IN POPULAR SGX RUNTIME LIBRARIES.

Fig. 5. Exploiting Intel SGX SDK. The blocks with dark shadows represent
instructions or data located in untrusted memory. Blocks without shadows are
instructions inside the target enclave or the .data segment of the enclave
memory.

Lenovo Thinkpad X1 Carbon (4th Gen) laptop with an Intel

Core i5-6200U processor and 8GB memory.

A. Reading Register Values from Arbitrary Enclaves

We first demonstrate an attack that enables the adversary

to read arbitrary register values inside an arbitrary enclave

program written with Intel SGX SDK [36], because this is

Intel’s official SDK. Rust-SGX was developed based on the

official SDK and thus can be exploited in the same way. For

demonstration purposes, the enclave program we developed

has only one ECall function that runs in a busy loop. We

verified that our own code does not contain any Type-I or

Type-II gadgets in itself. The exploited gadgets, however, are

located in the runtime libraries of SDK version 2.1.102.43402
(compiled with gcc version 5.4.020160609), which are listed

in Listing 2 and Listing 3.

This attack is possible because during AEX, the values of

registers are stored in the SSA before exiting the enclave.

As the SSA is also a memory region inside the enclave and

its address is fixed when loading the enclave, the privileged

adversary could leverage SGXPECTRE Attacks to read register

values in the SSA during an AEX. This attack is especially

powerful as it allows the adversary to frequently interrupt

the enclave execution with AEX [81] and take snapshots of

its SSAs to single-step trace its register values during its

150

execution.

In particular, the attack is shown in Fig. 5. In Step �, the

targeted enclave code is loaded into an enclave that is created

by a malicious program controlled by the adversary. After

EINIT, the malicious program starts a new thread (denoted

as the victim thread) to issue EENTER to execute the enclave

code. The enclave code only runs in a busy loop. But in reality,

the enclave program might complete a remote attestation and

establish trusted communication with its remote owner. In Step
�, the adversary triggers frequent interrupts to cause AEXs

from the targeted enclave. During an AEX, the processor stores

its register values into the SSA, exits the enclave and invokes

the system software’s interrupt handler. Before the control is

returned to the enclave program via ERESUME, the adversary

pauses the victim thread’s execution at the AEP, a piece of

instructions in the untrusted runtime library that takes control

after IRet.

In Step 	, the main thread of the adversary-controlled

program sets (through a kernel module) the reserved bit

in the PTE of the enclave memory page that holds

g_enclave_state, a global variable used by Intel SGX

SDK to track the state of the enclave, e.g., initialized or

crashed states. As shown in Listing 2, this global variable

is accessed right before the ret instruction of the Type-I

gadget (i.e., the memory referenced by rcx in the instruction

“mov (%rcx),%eax”. In Step
, the main thread poisons

the BTB, prepares registers (i.e., rsi and rdi), and executes

EENTER to trigger the attack. Note that rbx will be set to

rdi by the time the ret instruction is executed (line 34 in

Listing 2), in such a way we can control rsi and rbx when

speculatively executing Type-II gadget. To poison the BTB,

the adversary creates an auxiliary enclave program in another

process containing an indirect jump with the source address

equals the address of the ret instruction in the Type-I gadget,

and the target address the same as the start address of the

Type-II gadget in the victim enclave. The process that runs in

the auxiliary enclave is pinned onto the same logical core as

the main thread. To trigger the BTB poisoning code, the main

thread calls sched_yield() to relinquish the logical core

to the auxiliary enclave program.

In Step �, after the main thread issues EENTER to get

into the enclave mode, the Type-I gadget will be executed

immediately. Because a reserved bit in the PTE is set, a page

fault is triggered when the enclave code accesses the global

variable g_enclave_state. In the page fault handler, the

adversary clears the reserved bit in the PTE, evicts the stack

frame that holds the return address of the ret instruction

from cache by accessing 2, 000 memory blocks whose virtual

addresses have the same lower 12-bits as the stack address.

The RSB is depleted right before ERESUME from the fault

handling, so that it will remain empty until the ret instruction

of Type-I gadget is executed. In Step �, due to the extended

delay of reading the return address from memory, the processor

speculatively executes the Type-II gadget (as a result of

the BTB poisoning and RSB depletion). After the processor

detects the mis-prediction and flushes speculatively executed

instructions from the pipeline, the enclave code continues to

execute. However, because rdi is set as a memory address in

our attack, it is an invalid value for the SDK as rdi is used

as the index of the ECall table. The enclave execution will

return with an error quickly after the speculative execution.

This artifact allows the adversary to repeatedly probe into

the enclave. In Step
, the adversary uses FLUSH+RELOAD

techniques to infer the memory location accessed inside the

Type-II gadget. One byte of SSA can thus be leaked. The main

thread then repeats Step 	 to Step
 to extract the remaining

bytes of the SSA.

In our Type-I gadget, the get_enclave_state() func-

tion is very short as it contains only 4 instructions. Since

calling into this function will load the stack into the L1 cache,

it is very difficult to flush the return address out of the cache

to win the race condition. In fact, our initial attempts to

flush the return address all failed. Triggering page faults to

flush the return address resolves the issue. However, directly

introducing page faults in every stack access could greatly

increase the amount of time to carry out the attack. Therefore,

instead of triggering page faults on the stack memory, the page

fault is enforced on the global variable g_enclave_state
which is located on another page. In this way, we can flush

the return address with only one page fault in each run.

In our Type-II gadget, the first memory access reads 4 bytes

(32 bits). It is unrealistic to monitor 232 possible values using

FLUSH+RELOAD. However, if we know the value of lower 24

bits, we can adjust the base of the second memory access (i.e.,
rbx) to map the 256 possible values of the highest 8 bits to the

cache lines monitored by the FLUSH+RELOAD code. Once all

32 bits of the targeted memory are learned, the adversary shifts

the target address by one byte to learn the value of a new byte.

We found in practice that it is not hard to find some initial

consecutively known bytes. For example, the unused bytes in

an enclave data page will be initialized as 0x00, as they are

used to calculate the measurement hash. Particularly, we found

that there are 4 reserved bytes (in the EXINFO structure) in the

SSA right before the GPRSGX region (which stores registers).

Therefore, we can start from the reserved bytes (all 0s), and

extract the GPRSGX region from the first byte to the last. As

shown in Fig. 5, all register values, including rax, rbx, rcx,

rdx, r8 to r15, rip, etc, can be read from the SSA very

accurately. To read all registers in the GPRSGX region (184
bytes in total), our current implementation takes 414 to 3677
seconds to finish. On average, each byte can be read in 6.6
seconds. We believe our code can be further improved.

Although the demonstrated attack only targets the register

values, we note reading other enclave memory follows exactly

the same steps. The primary constraint is that the attack is

much more convenient if three consecutive bytes are known.

To read the .data segments, due to data alignment, some

bytes are reserved and initialized as 0s, which can be used

to bootstrap the attack. In addition, some global variables

have limited data ranges, rendering most bytes known. To read

the stack frames, the adversary could begin with a relatively

small address which is likely unused and thus is known to

151

be initialized with 0xcc. In this way, the adversary can start

reading the stack frames from these known bytes.

B. Stealing Intel Secrets

Next, we show how to steal Intel secrets, such as seal keys

and attestation keys, from Intel’s prebuilt and signed quoting

enclave, i.e., libsgx_qe.signed.so (version 2.1.2). All

the attacks described below have been empirically validated

on a Lenovo Thinkpad X1 Carbon (4th Gen) laptop with an

Intel Core i5-6200U processor.

The demonstrated attack involves first extracting seal keys

of the quoting enclave and then decrypting sealed storage

blob for the attestation keys. More particularly, the adversary

could use SGXPECTRE Attacks to read the seal keys from

the enclave memory when it is being used during sealing

or unsealing operations. In our demonstration, we targeted

Intel SDK API sgx_unseal_data() used for unsealing

a sealed blob. The sgx_unseal_data() API works as

follows: firstly, it calls sgx_get_key() function to derive

the seal key and then store it temporarily on the stack in

the enclave memory. Secondly, with the seal key, it calls

sgx_rijndael128GCM_decrypt() function to decrypt

the sealed blob. Finally, it clears the seal key (by setting

the memory range storing the seal key on the stack to

0s) and returns. Hence, to read the seal key, the adversary

suspends the execution of the victim enclave when function

sgx_rijndael128GCM_decrypt() is being called, by

setting the reserved bit of the PTE of the enclave code page

containing sgx_rijndael128GCM_decrypt(). The ad-

versary then launches SGXPECTRE Attacks to read the stack

and extract the seal key.

To decrypt the sealed blob, the adversary could export the

seal key and then use an AES-128-GCM decryption algorithm

implemented by herself. This may happen outside the enclave

or on a different machine, because the SGX hardware is no

longer involved in the process. We have validated the attacks

on our testbed.

Extracting the seal key of the quoting enclave. The quot-

ing enclave has two ECall functions: verify_blob(),

which is used to verify the sealed EPID blob, and

get_quote(), which is used to generate a quote

on behalf of an attested enclave for remote attesta-

tion. Particularly, verify_blob() calls an internal func-

tion verify_blob_internal(), which further calls the

sgx_unseal_data() API to unseal the EPID blob. So we

targeted the verify_blob() ECall function, suspended

its execution when sgx_rijndael128GCM_decrypt()
was being called, and read the stack to obtain the quoting

enclave’s seal key. These steps have been described in the

previous paragraphs.

Extracting attestation key. After running the provisioning

protocol with Intel’s provisioning service, an attestation key

(i.e., EPID private key) is created and then sealed in an EPID

blob by the provisioning enclave and stored on a non-volatile

memory. Though the location of the non-volatile memory is

not documented, during remote attestation, SGX still relies on

the untrusted OS to pass the sealed EPID blob into the quoting

enclave. This offers the adversary a chance to obtain the sealed

EPID blob. With the extracted seal key of the quoting enclave,

we could decrypt the sealed EPID blob to extract the EPID

private key.

After obtaining the attestation key, the adversary could

use this EPID private key to generate an anonymous group

signature and pass the remote attestation. This means the

adversary can now impersonate any machine in the EPID

group. Moreover, the adversary could also use the attestation

key completely outside the enclave and trick the ISVs to

believe their code runs inside an enclave. This attack has been

validated in our experiments, by generating a valid signature

of a quote from an ISV’s enclave without running it on SGX.

We note here that one challenge we have addressed in

attacking the Intel signed quoting enclave is that the TCS

number of the quoting enclave is set to 1, which means the

adversary has to use the same TCS to enter the enclaves.

SGXPECTRE Attacks are still possible as the number of SSAs

per TCS is 2, which is designed to allow the victim to run

exception handlers within the enclave when the exception

could not be resolved outside the enclave during AEXs.

However, this also enables the adversary to EENTER into

the enclave during an AEX, thus launching the SGXPECTRE

Attack to steal the secrets being used by the quoting enclave.

VII. EVALUATING EXISTING COUNTERMEASURES

Hardware patches. To mitigate branch target injection at-

tacks, Intel has released microcode updates to support the

following three features [34].

• Indirect Branch Restricted Speculation (IBRS): IBRS re-

stricts the speculation of indirect branches [38]. Software

running in a more privileged mode can set a model-specific

register (MSR), IA32_SPEC_CTRL.IBRS, to 1 by using

the WRMSR instruction, so that indirect branches will not be

controlled by software that was executed in a less privileged

mode or by a program running on the other logical core

of the physical core. By default, on machines that support

IBRS, branch prediction inside the SGX enclave cannot be

controlled by software running in the non-enclave mode.

• Single Thread Indirect Branch Predictors (STIBP): STIBP

prevents branch target injection from software running on

the neighboring logical core, which can be enabled by

setting the IA32_SPEC_CTRL.STIBP MSR to 1.

• Indirect Branch Predictor Barrier (IBPB): IBPB is an

indirect branch control command that establishes a barrier

to prevent the branch targets after the barrier from being

controlled by code before the barrier. The barrier can be

established by setting the IA32_PRED_CMD.IBPB MSR.

Particularly, IBRS provides a default mechanism that pre-

vents branch target injection. To validate the claim, we devel-

oped the following tests: First, to check if the BTB is cleansed

during EENTER or EEXIT, we developed a dummy enclave

code that trains the BTB to predict address A for an indirect

152

jump. After training the BTB, the enclave code uses EEXIT
and a subsequent EENTER to switch the execute mode once

and then executes the same indirect jump but with address B
as the target. Without the IBRS patch, the later indirect jump

will speculatively execute instructions in address A. However,

with the patch, instructions in address A will not be executed.

Second, to test if the BTB is cleansed during ERESUME,

we developed another dummy enclave code that will always

encounter an AEX (by introducing page faults) right before

an indirect call. In the AEP, another BTB poisoning enclave

code will be executed before ERESUME. Without the patch, the

indirect call speculatively executed the secret-leaking gadget.

The attack failed after patching.

Third, to test the effectiveness of the hardware patch under

Hyper-Threading, we tried poisoning the BTB using a program

running on the logical core sharing the same physical core. The

experiment setup was similar to our end-to-end case study in

Sec. VI, but instead of pinning the BTB poisoning enclave

code onto the same logical core, we pinned it onto the sibling

logical core. We observed some secret bytes leaked before the

patch, but no leakage after applying the patch.

Therefore, from these tests, we can conclude that SGX

machines with microcode patch will cleanse the BTB during

EENTER and during ERESUME, and also prevent branch

injection via Hyper-Threading, thus they are immune to SGX-

PECTRE Attacks.

Retpoline. Retpoline is a pure software-based solution to

Spectre attacks [78], which has been developed for major

compilers, such as GCC [89] and LLVM [9]. Because modern

processors have implemented separate predictors for function

returns, such as Intel’s return stack buffer [26], [27], [28], [29],

[30] and AMD’s return-address stack [41], it is believed that

these return predictors are not vulnerable to Spectre attacks.

Therefore, the key idea of retpoline is to replace indirect jumps

or indirect calls with returns to prevent branch target injection.

However, in recent Intel Skylake/Kabylake processors, on

which SGX is supported, when the RSB is depleted, the BPU

will fall back to generic BTBs to predict a function return. This

allows poisoning of return instructions. Therefore, Retpoline

is useless by itself in preventing SGXPECTRE Attacks.

VIII. IS SGX BROKEN?

In the previous sections, we have shown that SGXPECTRE

Attacks lead to confidentiality breaches for both Intel’s en-

claves and developers’ enclaves. In this section, we aim to

understand the security implications of SGXPECTRE Attacks

(as well as other similar attacks due to speculative or out-of-

order execution [80]): Is SGX completely broken under these

threats?

A. Intel’s Secrets

As demonstrated in this paper, all secrets in the memory

(or registers saved in the SSA during AEX) can be extracted

by SGXPECTRE Attacks. We believe all secrets that are

exposed in the enclave memory (even only temporarily) can

be exfiltrated by these attacks. While all secrets in developers’

Fig. 6. Intel’s secrets and key derivation.

enclaves are exposed, however, not all Intel’s secrets can be

stolen in the same manner. Specifically, Intel’s secrets for its

SGX platforms can be found in Fig. 6. Next, we explain in

details how these secrets are affected by SGXPECTRE Attacks.

Intel’s root secrets. For Intel’s infrastructure services to trust

an SGX machine, during the manufacturing process, Intel

generates a root provisioning key at its internal key generation

facility, and burns it into the e-fuse of an SGX machine. The

root provisioning key is also stored in an Intel’s database to be

referenced by Intel’s provisioning service. As such, the root

provisioning key serves as a shared secret that is only known

by Intel and the underlying SGX machine [40]. A 128-bit

root seal key is generated inside the processor chip during the

manufacturing process [31]. This root seal key is not known

by Intel. For improving security, these two keys can only

be accessed through the EGETKEY instruction and EREPORT
instruction, but never exported to enclaves’ protected memory.

Derived keys. Derived secrets of an SGX platform include the

provisioning key, the provisioning seal key, the report keys,

the seal keys, the EINIT token key. The provisioning key

is the secret used to establish trust during the provisioning

protocol; the provisioning seal key is a symmetric key used

to generate an encrypted backup copy of the attestation key

to be stored in Intel’s provisioning service; the EINIT token

key is used only by the launch enclave to sign the EINIT
token of a legitimate enclave. A report key is a symmetric

key possessed by each enclave. The EREPORT instruction

is used by an enclave to generate a report of its execution

context and produce a CMAC tag of the report using the

report key of a specified enclave (e.g., the quoting enclave).

However, the report key is not exported to the memory in this

process as it is kept secret to the specified enclave; it can only

be exported to the memory by the owner enclave using the

EGETKEY instruction. A seal key is used by an enclave to

encrypt and decrypt the sealed storage; therefore, there could

be multiple seal keys for each enclave, which can be identified

using their KEYID. It is also possible for enclaves from the

same ISV to share the seal keys. All of these derived secrets

153

can be exposed in the enclave memory, either by developers’
enclaves or Intel’s enclaves (e.g., quoting enclaves and launch
enclaves). Therefore, SGXPECTRE Attacks are able to extract
all of them.

EPID signing keys for attestation. In the EPID provision-

ing protocol, the SGX platform first sends a message to

Intel’s provisioning service that contains the platform identifier

(PPID) and the trusted computing base (TCB) version. Upon

receiving the message, Intel’s provisioning service verifies

the PPID and selects an EPID group for the SGX platform.

Intel assigns SGX platforms with the same CPU type and

the same TCB version the same EPID group, which contains

millions of machines [40]. Intel’s provisioning service then

sends the EPID group public key to the SGX platform. With

the group public key, the provisioning enclave runs an EPID

join protocol with Intel’s provisioning service to generate an

EPID private key. The EPID private key is sealed using Intel’s

seal key for later use. Each TCB version only requires running

the provisioning protocol once. Breach of one EPID private
key might invalidate the entire EPID group. Unfortunately,
the EPID private key is also an in-memory secret that can
be extracted by SGXPECTRE Attacks, as demonstrated in this
paper.

Summary. The relationship among these keys are illustrated in

Fig. 6. The gray boxes represent secrets only in the hardware

and firmware, and the white boxes represent secrets exposed

to memory. Dashed boxes represent values that are known to

the platform, some of which are used to derive secrets. We can

see that all Intel’s secrets, except the root seal key and root

provisioning key, can be exposed by SGXPECTRE Attacks.

B. Defense via Centralized Attestation Services

Defenses by Intel’s attestation service. Although the IBRS

microcode patch defeats SGXPECTRE Attacks, unpatched pro-

cessors remain vulnerable. The key to the security of the SGX

ecosystem is whether attestation measurements and signatures

from processors without the IBRS patch can be detected during

remote attestation. Indeed, Intel’s attestation service arbitrates

every attestation request from the ISV, detects attestation

signatures generated from unpatched CPUs, and responses to

the ISV with an error message indicating outdated CPUSVN
(see Table II). Therefore, the combination of the microcode

patches and defenses by Intel’s attestation service has been an

effective defense against SGXPECTRE Attacks (and also the

Foreshadow attack [80]).

Implications for developer enclaves. Despite the defense,

developers should be aware of the security implications of run-

ning (or having run) an enclave on unpatched SGX processors.

First, any secret provisioned to an unpatched processor can be

leaked. This includes secrets in enclaves that are provisioned

before the remote attestation, or after the remote attestation if

the ISV chooses to ignore the error message returned by the

attestation service. Moreover, because the ISV enclave’s seal

key can be compromised by SGXPECTRE Attacks, any secret

sealed by an enclave run on an unpatched processor can be

Result Description Trustworthy

OK EPID signature was verified correctly and the TCB level

of the SGX platform is up-to-date.

Yes

SIGNATURE INVALID EPID signature was invalid. No

GROUP REVOKED EPID group has been revoked. No

SIGNATURE REVOKED EPID private key used has been revoked by signature. No

KEY REVOKED EPID private key used has been directly revoked (not by

signature).

No

SIGRL VERSION MISMATCH SigRL version does not match the most recent version of

the SigRL.

No

GROUP OUT OF DATE EPID signature was verified correctly, but the TCB level

of SGX platform is outdated.

Up to ISV

CONFIGURATION NEEDED EPID signature was verified correctly, but but additional

configuration of SGX platform may be needed

Up to ISV

TABLE II
ATTESTATION RESULTS [33]

decrypted by the adversary. Furthermore, any legacy sealed

secrets become untrustworthy, as they could be forged by the

adversary using the stolen seal key.

Second, as the EPID private key used in the remote at-

testation can be extracted by the attacker, the attacker can

provide a valid signature for any SGX processors in the

EPID group [40]. With the attestation key, it is also possible

for the attacker to run the enclave code entirely outside

the enclave and forge a valid signature to fool the ISV. As

shown in Table II, Intel currently rely on ISV to make their

own decisions after receiving this error message. An error

message during attestation with GROUP_OUT_OF_DATE or

CONFIGURATION_NEEDED implies that the enclave cannot

be trusted at all.

IX. RELATED WORK

Spectre. Our work is closely related to the recently demon-

strated Spectre attacks [44], [23]. A variety of attack scenar-

ios have been demonstrated, including cross-process mem-

ory read [44], kernel memory read from user processes,

and host memory read from KVM guests [23]. While these

attacks mainly abuse BTB, Spectre-like attacks using other

micro-architectural components, such as Return Stack Buffer

(RSB) [52] and Store To Load (STL) [24] have also been

demonstrated. Further, NetSpectre [65] demonstrated that re-

mote adversaries could launch Spectre-like attacks over net-

work.

In the context of SGX, O’Keeffe et al. [59] demonstrated

a Spectre-like attack, particularly the bounds check bypass

variant, against SGX enclaves, and Koruyeh et al. [45] demon-

strated a Spectre attack using RSB against SGX enclaves. Both

attacks are only proof-of-concept, which target uncommon

enclave codes that are specially developed by the authors.

In contrast, in this paper we systematically investigate the

security of SGX enclaves due to vulnerable speculative execu-

tion, by enumerating attack vectors and techniques, developing

binary analysis tools for automated gadget identification, and

demonstrating end-to-end attacks against arbitrary enclaves. A

particular difference in this paper is that we demonstrate suc-

cessful extraction of Intel’s secrets from Intel signed enclaves.

Meltdown. Meltdown attacks [48] are another micro-

architectural side-channel attacks that exploit implicit caching

to extract secret memory content that is not directly readable

by the attack code. Different from Spectre attacks, Meltdown

154

attacks leverage the feature of out-of-order execution to ex-

ecute instructions that should have not been executed. An

example given by Lipp et al. [48] showed that an unprivileged

user program could access an arbitrary kernel memory element

and then visit a specific offset in an attacker-controlled data

array, in accordance with the value of the kernel memory

element, to load data into the cache. Because of the out-of-

order execution, instructions after the illegal kernel memory

access can be executed and then discarded when the kernel

memory access instruction triggers an exception. However, due

to implicit caching, the access to the attacker-controlled data

array will leave traces in the cache, which will be captured by

subsequent FLUSH+RELOAD measurements. Similar attacks

can be performed to attack Xen hypervisor when the guest

VM runs in paravirtualization mode [48].

Foreshadow and L1TF. Concurrent to our work, Van Bulck

et al. [80] introduced a Meltdown-style attack, called Fore-

shadow, against SGX enclaves. The Foreshadow attack lever-

ages a new hardware vulnerability called L1 Terminal Fault

(L1TF) [37] to read any enclave memory that resided in L1

cache. Both Foreshadow and SGXPECTRE can be used to ex-

tracts Intel’s secrets from Intel signed enclaves. However, these

two attacks exploit different types of hardware vulnerabilities.

Though both Foreshadow and SGXPECTRE have been patched

by microcode updates, they would motivate researchers to

rethink SGX’s security model in future research.

Micro-architectural side channels on SGX. SGXPECTRE

Attacks are variants of micro-architectural side-channel attacks

on SGX, in which the adversary illegally learns secrets inside

SGX enclaves. Although it has already been demonstrated that

by observing execution traces of an enclave program left in the

CPU caches [66], [8], [21], [19], branch target buffers [47],

DRAM’s row buffer contention [85], page-table entries [82],

[85], and page-fault exception handlers [90], [70], a side-

channel adversary with system privileges may infer sensitive

data from the enclaves, these traditional side-channel attacks

are only feasible if the enclave program already has secret-

dependent memory access patterns. In contrast, the conse-

quences of SGXPECTRE Attacks are far more concerning.

Side-channel defenses. Existing countermeasures to side-

channel attacks can be categorized into three classes: hard-

ware solutions, system solutions, and application solutions.

Hardware solutions [86], [87], [15], [53], [51], [12] require

modification of the processors, which are typically effective,

but are limited in that the time window required to have

major processor vendors to incorporate them in commercial

hardware is very long. System solutions only modify system

software [42], [83], [49], [97], but as they require trusted

system software, they cannot be directly applied to SGX.

Application solutions are potentially applicable to SGX.

Previous work generally falls into three categories: First, using

compiler-assisted approaches to eliminate secret-dependent

control flows and data flows [56], [11], [70], or to diversify or

randomize memory access patterns at runtime to conceal the

true execution traces [13], [62]. However, as the vulnerabilities

in the enclave programs that enable SGXPECTRE Attacks are

not caused by secret-dependent control or data flows, these

approaches are not applicable. Second, using static analysis or

symbolic execution to detect cache side-channel vulnerabilities

in commodity software [16], [84]. However, these approaches

model secret-dependent memory accesses in a program; they

are not applicable in the detection of the gadgets used in

our attacks. Third, detecting page-fault attacks or interrupt-

based attacks against SGX enclave using Intel’s hardware

transactional memory [69], [10], [18]. These approaches can

be used to detect frequent AEX, but still allowing secret leaks

in SGXPECTRE Attacks.

Randomization SGX-Shield [67] implemented fine-grained

ASLR for enclave programs. It uses a secure in-enclave

loader to perform randomization. However, the randomization

process itself involves accesses to the enclave memory and

thus can be learnt by SGXPECTRE Attacks. Hence, such ran-

domization based mitigation has limited effect on SGXPECTRE

Attacks.

X. CONCLUSION

In this paper, we studied techniques to perform SGXPECTRE

Attacks, developed a symbolic execution tool to automatically

detect exploitable gadgets, demonstrated end-to-end attacks

to show how secrets (including Intel’s secrets) can be ex-

tracted, and discussed the security implications on the SGX

ecosystems. Our study concludes that SGXPECTRE Attacks are

powerful to extract any in-memory secrets from SGX enclaves

(including register values that are stored in memory during

AEX), but also points out Intel’s control of enclave attestation

provides a layer of defense that effectively mitigates such

vulnerabilities via microcode updates.

ACKNOWLEDGMENTS

The work was supported in part by the NSF grants 1750809,

1718084, 1834213, and 1834215.

REFERENCES

[1] O. Aciiçmez, “Yet another microarchitectural attack: exploiting I-
Cache,” in 2007 ACM workshop on Computer security architecture,
2007, pp. 11–18.

[2] Alicloud, “ECS bare metal instance,” 2018, https://www.alibabacloud.
com/product/ebm.

[3] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
technology for cpu based attestation and sealing,” in 2nd HASP, 2013.

[4] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute!
a fast, cross-vm attack on AES,” in Cryptology ePrint Archive, 2014.

[5] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “Scone: Secure linux
containers with intel SGX,” in 12th USENIX OSDI, 2016.

[6] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with Haven,” ACM Transactions on Computer Systems,
vol. 33, no. 3, Aug. 2015.

[7] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom, ““Ooh Aah... Just
a Little Bit”: A small amount of side channel can go a long way,” in
Cryptology ePrint Archive, 2014.

[8] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi, “Software grand exposure: SGX cache attacks are practical,”
in 11th USENIX Workshop on Offensive Technologies, 2017.

[9] C. Carruth, “Retpoline patch for LLVM,” https://reviews.llvm.org/
D41723, 2018.

155

[10] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged
side-channel attacks in shielded execution with Déjá Vu,” in ACM Asia
Conference on Computer and Communications Security, 2017.

[11] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in 30th IEEE Symposium on Security and Privacy,
2009.

[12] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Security
Symposium, 2016.

[13] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwart-
ing cache side-channel attacks through dynamic software diversity,” in
Network and Distributed System Security Symposium, 2015.

[14] Y. Ding, R. Duan, L. Li, Y. Cheng, Y. Zhang, T. Chen, T. Wei, and
H. Wang, “Poster: Rust SGX SDK: Towards memory safety in Intel
SGX enclave,” in ACM Conference on Computer and Communications
Security, 2017.

[15] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,” ACM Trans. Archit. Code Optim., vol. 8, no. 4, Jan.
2012.

[16] G. Doychev, D. Feld, B. Köpf, and L. Mauborgne, “CacheAudit: A tool
for the static analysis of cache side channels,” in 22st USENIX Security
Symposium, 2013.

[17] A. Fog, “The microarchitecture of Intel, AMD and VIA cpus: An
optimization guide for assembly programmers and compiler makers,”
Copenhagen University College of Engineering, 2017.

[18] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “SGX-LAPD: Thwarting
controlled side channel attacks via enclave verifiable page faults,”
in International Symposium on Research in Attacks, Intrusions and
Defenses, 2017.

[19] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
Intel SGX,” in EUROSEC, 2017.

[20] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing
access-based cache attacks on AES to practice,” in 32nd IEEE Sym-
posium on Security and Privacy, 2011, pp. 490–505.

[21] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels for
untrusted operating systems,” in USENIX ATC, 2017.

[22] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software solutions,”
in 2nd HASP, 2013.

[23] J. Horn, “Reading privileged memory with a side-
channel,” https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html, 2018.

[24] ——, “speculative execution, variant 4: speculative store bypass,” https:
//bugs.chromium.org/p/project-zero/issues/detail?id=1528, 2018.

[25] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in 12th USENIX
OSDI, 2016.

[26] Intel, “Method and apparatus for implementing a speculative return stack
buffer,” US Patent, Intel Corporation, US5964868, 1999.

[27] ——, “Method and apparatus for predicting target addresses for return
from subroutine instructions utilizing a return address cache,” US Patent,
Intel Corporation, US6170054, 2001.

[28] ——, “Return address predictor that uses branch instructions to track
a last valid return address,” US Patent, Intel Corporation, US6253315,
2001.

[29] ——, “System and method of maintaining and utilizing multiple return
stack buffers,” US Patent, Intel Corporation, US6374350, 2002.

[30] ——, “Return register stack target predictor,” US Patent, Intel Corpora-
tion, US6560696, 2003.

[31] ——, “Intel 64 and IA-32 architectures software developer’s
manual, combined volumes:1,2A,2B,2C,3A,3B,3C and 3D,”
https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf, 2017.

[32] ——, “Intel software guard extensions developer guide,”
https://download.01.org/intel-sgx/linux-2.0/docs/Intel SGX Developer
Guide.pdf, 2017, intel SGX Linux 2.0 Release.

[33] ——, “Attestation service for Intel software guard extensions (Intel
SGX): API documentation,” https://software.intel.com/sites/default/files/
managed/7e/3b/ias-api-spec.pdf, 2018.

[34] ——, “Intel analysis of speculative execution side channels,” 2018,
revision 1.0, January 2018.

[35] ——, “Intel developer zone: Forums,” https://software.intel.com/en-us/
forum, 2018.

[36] ——, “Intel SGX SDK,” https://github.com/intel/linux-sgx, 2018.

[37] ——, “L1 terminal fault,” 2018, https://software.intel.com/
security-software-guidance/software-guidance/l1-terminal-fault.

[38] ——, “Speculative execution side channel mitigations,” http://kib.kiev.
ua/x86docs/SDMs/336996-001.pdf, 2018, revision 1.0, January 2018.

[39] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies VM sandboxing—and its application
to AES,” in 36th IEEE Symposium on Security and Privacy, May 2015.

[40] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel
Software Guard Extensions: EPID Provisioning and Attestation Ser-
vices,” Intel, Tech. Rep, Tech. Rep., 2016.

[41] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The AMD
opteron processor for multiprocessor servers,” IEEE Micro, vol. 23,
no. 2, pp. 66–76, March 2003.

[42] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: system-
level protection against cache-based side channel attacks in the cloud,”
in 21st USENIX Security Symposium, 2012.

[43] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[44] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[45] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th USENIX WOOT. USENIX Association, 2018.

[46] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber,
and C. Fetzer, “Sgxbounds: Memory safety for shielded execution,” in
12th European Conference on Computer Systems. ACM, 2017.

[47] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in 26th USENIX Security Symposium, 2017, pp. 557–574.

[48] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium, 2018.

[49] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in cloud
computing,” in 22nd IEEE Symposium on High Performance Computer
Architecture, 2016.

[50] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 36th IEEE Symposium on Security
and Privacy, May 2015.

[51] F. Liu and R. B. Lee, “Random fill cache architecture,” in 47th
IEEE/ACM Symposium on Microarchitecture, 2014.

[52] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” ArXiv e-prints, Jul. 2018.

[53] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: rethinking
timekeeping and performance monitoring mechanisms to mitigate side-
channel attacks,” in 39th Annual International Symposium on Computer
Architecture, 2012.

[54] S. Matetic, K. Kostiainen, A. Dhar, D. Sommer, M. Ahmed, A. Ger-
vais, A. Juels, and S. Capkun, “Rote: Rollback protection for trusted
execution,” Cryptology ePrint Archive, Report 2017/048, 2017.

[55] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar, “Innovative instructions and soft-
ware model for isolated execution,” in 2nd HASP, 2013.

[56] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: automatic detection and removal of control-flow
side channel attacks,” in 8th international conference on Information
Security and Cryptology, 2005.

[57] M. Neve and J.-P. Seifert, “Advances on access-driven cache attacks on
AES,” in 13th international conference on Selected areas in cryptogra-
phy, 2007, pp. 147–162.

[58] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors,” in 25th USENIX Security Symposium, 2016.

[59] D. O’Keeffe, D. Muthukumaran, P.-L. Aublin, F. Kelbert, C. Priebe,
J. Lind, H. Zhu, and P. Pietzuch, “Sgxspectre,” https://github.com/lsds/
spectre-attack-sgx, 2018.

156

[60] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of AES,” in 6th Cryptographers’ track at the RSA
conference on Topics in Cryptology, 2006, pp. 1–20.

[61] C. Percival, “Cache missing for fun and profit,” in 2005 BSDCan, 2005.
[62] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels

through obfuscated execution,” in 24th USENIX Security Symposium,
2015.

[63] M. Russinovich, “Introducing azure confidential com-
puting,” 2017, https://azure.microsoft.com/en-us/blog/
introducing-azure-confidential-computing/.

[64] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in 36th IEEE Symposium on Security and Privacy, 2015.

[65] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Netspectre: Read
arbitrary memory over network,” CoRR, vol. abs/1807.10535, 2018.
[Online]. Available: http://arxiv.org/abs/1807.10535

[66] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using SGX to conceal cache attacks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment:
14th International Conference, DIMVA 2017, Bonn, Germany, July 6-7,
2017, Proceedings. Springer International Publishing, 2017.

[67] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“SGX-Shield: Enabling address space layout randomization for SGX
programs,” in The Network and Distributed System Security Symposium,
2017.

[68] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in 14th ACM Conference on
Computer and Communications Security, 2007.

[69] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
controlled-channel attacks against enclave programs,” in Network and
Distributed System Security Symposium, 2017.

[70] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 2016.

[71] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
linux applications with SGX enclaves,” in The Network and Distributed
System Security Symposium, 2017.

[72] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[73] R. Strackx and F. Piessens, “Ariadne: A minimal approach to state
continuity,” in 25th USENIX Security Symposium, 2016.

[74] S. Tamrakar, J. Liu, A. Paverd, J.-E. Ekberg, B. Pinkas, and N. Asokan,
“The circle game: Scalable private membership test using trusted hard-
ware,” in ACM on Asia Conference on Computer and Communications
Security. ACM, 2017.

[75] F. Tramer, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi, “Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge,”
Cryptology ePrint Archive, Report 2016/635, 2016.

[76] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
AES, and countermeasures,” J. Cryptol., vol. 23, no. 2, pp. 37–71, Jan.
2010.

[77] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical library
OS for unmodified applications on SGX,” in USENIX ATC, 2017.

[78] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886, 2018.

[79] D. Tychalas, N. G. Tsoutsos, and M. Maniatakos, “SGXCrypter: IP

protection for portable executables using intel’s SGX technology,” in
22nd Asia and South Pacific Design Automation Conference, 2017.

[80] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, 2018.

[81] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical
attack framework for precise enclave execution control,” in Proceedings
of the 2Nd Workshop on System Software for Trusted Execution, ser.
SysTEX’17. New York, NY, USA: ACM, 2017, pp. 4:1–4:6.

[82] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in Proceedings of the 26th USENIX
Security Symposium. USENIX Association, 2017.

[83] V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based defenses
against cross-VM side-channels,” in 23th USENIX Security Symposium,
2014.

[84] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “Cached: Identifying
cache-based timing channels in production software,” in 26th USENIX
Security Symposium. Vancouver, BC: USENIX Association, 2017.

[85] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in SGX,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[86] Z. Wang and R. B. Lee, “Covert and side channels due to processor ar-
chitecture,” in 22nd Annual Computer Security Applications Conference,
2006.

[87] ——, “New cache designs for thwarting software cache-based side
channel attacks,” in 34th annual international symposium on Computer
architecture, 2007.

[88] S. Weiser and M. Werner, “SGXIO: Generic trusted i/o path for Intel
SGX,” arXiv preprint, arXiv:1701.01061, 2017.

[89] D. Woodhouse, “Retpoline patch for GCC,” http://git.infradead.org/
users/dwmw2/gcc-retpoline.git, 2018.

[90] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 640–656.

[91] Y. Yarom and K. E. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in 23rd USENIX Security
Symposium, 2014, pp. 719–732.

[92] Y. Yarom and N. Benger, “Recovering OpenSSL ECDSA nonces using
the FLUSH+RELOAD cache side-channel attack,” in Cryptology ePrint
Archive, 2014.

[93] F. Zhang, E. Cecchetti, K. Croman, A. Juels, , and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in 23rd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016.

[94] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in ACM Conference on
Computer and Communications Security, 2012.

[95] ——, “Cross-tenant side-channel attacks in PaaS clouds,” in ACM
Conference on Computer and Communications Security, 2014.

[96] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in 14th USENIX NSDI, 2017.

[97] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in 23rd ACM Conference on Com-

puter and Communications Security, 2016.

157

