
Rethinking Location Privacy for
Unknown Mobility Behaviors

Simon Oya
Signal Processing in Communications Group

Signal Theory and Communications Dept.
University of Vigo

Vigo, Spain

simonoya@gts.uvigo.es

Carmela Troncoso
SPRING Lab

EPFL
Lausanne, Switzerland

carmela.troncoso@epfl.ch

Fernando Pérez-González
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Abstract—Location Privacy-Preserving Mechanisms (LPPMs)
in the literature largely consider that users’ data available for
training wholly characterizes their mobility patterns. Thus, they
hardwire this information in their designs and evaluate their
privacy properties with these same data. In this paper, we aim
to understand the impact of this decision on the level of privacy
these LPPMs may offer in real life when the users’ mobility data
may be different from the data used in the design phase. Our
results show that, in many cases, training data does not capture
users’ behavior accurately and, thus, the level of privacy provided
by the LPPM is often overestimated. To address this gap between
theory and practice, we propose to use blank-slate models for
LPPM design. Contrary to the hardwired approach, that assumes
known users’ behavior, blank-slate models learn the users’
behavior from the queries to the service provider. We leverage
this blank-slate approach to develop a new family of LPPMs,
that we call Profile Estimation-Based LPPMs. Using real data, we
empirically show that our proposal outperforms optimal state-of-
the-art mechanisms designed on sporadic hardwired models. On
non-sporadic location privacy scenarios, our method is only better
if the usage of the location privacy service is not continuous.
It is our hope that eliminating the need to bootstrap the
mechanisms with training data and ensuring that the mechanisms
are lightweight and easy to compute help fostering the integration
of location privacy protections in deployed systems.

I. INTRODUCTION

In the last decade, the research community has progressed

significantly in the theoretical study and development of

Location Privacy-Preserving Mechanisms (LPPMs) [1]–[4],

including a number of optimal defense proposals [2]–[9]. In

practice, however, there are few LPPMs deployed, and the

most popular ones are not effective at protecting the users’

privacy, since they either build countermeasures that only

protect against naive trilateration attacks [10] or implement

algorithms [11] that are known to be suboptimal [8], [12]. A

potential reason for the lack of adoption and deployment of

the new and effective LPPMs proposed by academia is that

they require mobility traces in order to bootstrap their design.

In practice, gathering mobility data that is sufficient, up-to-

date, and truly representative of a particular user’s behavior is

complicated. In most cases, user behavior is to some degree

unknown, and it is not clear how the latest LPPMs perform

when built upon data that does not completely describe the

user’s mobility behavior.

Chatzikokolakis et al. [8] already claim that a fair assess-

ment of LPPMs requires the separation between the train-
ing dataset used for design, and the testing dataset used

for evaluation. Yet, their design strategy, as the rest of the

previous works, hardwires the training mobility model into

the mechanism and they do not quantify how much privacy is

lost in practice when the users’ mobility characteristics differs

from the training data.

In this work, we aim at understanding the privacy loss

associated to this discrepancy between design and deployment

phases. We study both sporadic cases, where users occasion-

ally query the Location Based Service (LBS) and thus every

time their location is independent from previous LBS uses; and

continuous cases, where users’ actual location at a certain time

depends on previously visited locations. We find that, since

the design strategies in previous works hardwire the training

information on the LPPMs they produce, they cannot adapt

to behavioral patterns not available in the training data. We

empirically show that, indeed, previous analyses overestimate

the protection of the optimal LPPMs when they are evaluated

on mobility profiles different from the training data.

In response to this problem, we introduce a new design

strategy that builds on what we call blank-slate models for user

mobility. Contrary to hardwired models, blank-slate models

do not fix their parameters based on training data, but learn

these parameters as they observe the user behavior. We take

the particular case of sporadic location privacy and leverage

a blank-slate model to build a new family of defenses that

we call Profile Estimation-Based LPPMs (PEB-LPPMs). Like

traditional LPPMs, these mechanisms are initialized with

training data. However, as the user queries the LBS, they

adapt their parameters. Thus, they are more adequate for those

users whose behavior is not well-represented in the training

data. We empirically compare PEB-LPPMs with state-of-the-

art LPPMs using real data. Our evaluation confirms that PEB-

LPPMs are more effective than traditional hardwired models

when the testing data cannot be fully characterized a-priori by

the training data.

To summarize, our contributions are:

• We empirically show that hardwiring the characteristics of a
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dataset into Location Privacy Preserving Mechanisms [1]–[9],

[13] yields mechanisms that do not adequately protect users

whose behavior deviates from that observed in training.

• We propose blank-slate models for user mobility in location

privacy. Contrary to hardwired models, these models treat

the user mobility as an unknown variable that is learned a-

posteriori as the user queries the LBS. Therefore, they enable

the design of LPPMs that are effective when the user behavior

changes with respect to the one observed when designing the

mechanism.

• We leverage a blank-slate sporadic mobility model to de-

velop a new LPPM design technique, that we call Profile

Estimation-Based (PEB). PEB-LPPMs adapt to the user behav-

ior by performing a Maximum Likelihood Estimation (MLE)

of the mobility profile given past observations, and are suitable

for both sporadic and non-sporadic location protection.

• We compare PEB-LPPMs with optimal state-of-the-art de-

signs developed using hardwired sporadic and Markov models.

PEB-LPPMs always outperform optimal sporadic hardwired

LPPMs, and sometimes they even outperform optimal LPPMs

based on Markov models if the training data does not correctly

capture the mobility behavior of the users of the testing set.

• To carry out this comparison we extend efficient remapping

techniques used in optimal sporadic LPPMs [8] to build

optimal non-sporadic Markov-based LPPMs [7], [13]. This

considerably reduces the computational cost of building non-

sporadic LPPMs and allows us to evaluate them empirically.

The paper is structured as follows. In Sect. II we introduce

our system model and notation, as well as the evaluation

framework that we use in the paper. Section III presents the

sporadic and Markov mobility models. Then, in Sect. IV,

we explain how previous works use these mobility models,

hardwired on training data, to build optimal LPPMs. We

train and evaluate these optimal LPPMs with real data in

Sect. V, showing that there is a gap between their theoretical

performance and their actual performance in the testing set.

We introduce blank-slate models and our technique to develop

PEB-LPPMs in Sect. VI, and evaluate it in Section VII.

Finally, Sect. VIII summarizes related work and Sect. IX

concludes.

II. OVERVIEW OF THE LOCATION PRIVACY PROBLEM

In this section, we first provide an abstraction of the location

privacy problem and introduce our notation. Then, we present

our framework for design and evaluation of LPPMs.

A. Problem Statement and Notation

As in previous works [1], [5], [8], [9], we consider the

scenario where an individual, the user, sends queries to an

LBS provider and receives responses with the information

she desires. We consider that there is a passive adversary
observing the locations inside the user queries. This adversary

can be an honest-but-curious LBS or an eavesdropper. The

adversary’s goal is to infer private information from the

locations in user queries [14], [15]. To protect herself the user

obfuscates her locations using an LPPM, and sends these fake

Real
locations

Obfuscated
locations

LPPM

Estimated
locations

User Adversary

Attack

Fig. 1: Abstraction of the location privacy problem.

locations in the queries. By doing so, the user trades in quality

of service for privacy.

We illustrate the location privacy problem in Fig. 1. We

use ρ to denote the total number of queries sent by the user

to the LBS, and refer to each query by its query number

r ∈ {1, 2, . . . , ρ}. We use xr ∈ X to denote the real location

associated with the r-th query, i.e., the location the user wants

to query about. We use x
.
= [x1, . . . , xρ] ∈ X ρ to denote the

vector of all the real locations, and xr .
= [x1, . . . , xr] ∈ X r

to denote the vector of all the real locations up to query

number r. Likewise, we use zr ∈ Z to denote the r-th fake

location reported and define the vectors z and zr. The real

and fake locations are also called input and output locations

respectively. Finally, we use x̂r ∈ X̂ to denote the adversary’s

estimation of xr.

In this work, we assume that X , Z and X̂ are discrete sets

of locations (i.e., the users can only report locations in a grid).

We do this for computational simplicity and for compatibility

with previous proposals [5], [7], [13]. However, all of our

findings can be extended to other scenarios (e.g., Z = R
2 is

the plane [9], Z is a discrete set of cloaking regions [16], or a

powerset of points of interest [6]). We use x1, x2, . . . , x|X | to

denote each of the discrete locations in X . Finally, we use p
generally to denote the probability mass function of a discrete

random variable, or the probability density function when the

variable is continuous. E{·} denotes the expectation.

Now, we explain how real, obfuscated, and estimated loca-

tions are generated. The real locations x are chosen by the user

as she queries the LBS. In some scenarios, the user makes a

sporadic usage of the LBS (e.g., location check-in, location-

tagging, or applications for finding nearby points-of-interest or

friends). This means that the real locations of two queries (e.g.,

xr and xs, with r �= s) are not temporally dependent. In other

scenarios, however, the location of the user in consecutive

check-ins is correlated (e.g., a user that reports her location

frequently, such as running apps or WhatsApp’s live location

sharing).

In order to generate obfuscated locations z from the real

locations x the user employs an LPPM f . We study the

online location privacy setting, in which the user expects to

get the service from the LBS right away. In this case, the

LPPM is modeled as a probabilistic function that maps a real
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location xr ∈ X , and possibly other information available to

the user up to that point (i.e., xr−1 and zr−1), to a value

zr ∈ Z . We use f to denote the probability density function

that characterizes the LPPM. Hence, we can write p(z|x) as

p(z|x) =
ρ∏

r=1

p(zr|zr−1,x) =

ρ∏
r=1

f(zr|zr−1,xr) . (1)

where the first equality is the chain rule of probability and

the second equality reflects the online setting assumption, i.e.,

the user generates zr given xr and zr−1, but independently

of future locations xr+1, xr+2, etc. We also refer to f as the

obfuscation mechanism.

Finally, the adversary generates the estimated locations

using an attack h. We assume that the adversary knows the

obfuscation mechanism f and she uses it to design her attack

h. We treat h as a deterministic function that takes a vector

of obfuscated locations zr and produces an estimate x̂s of a

(possibly past) real location xs (s ≤ r). We use x̂s(zr) to

denote the estimate produced from zr using h. We do not

consider randomized attacks, since the goal of the adversary

is to choose her estimation so as to minimize a specific privacy

metric, which can be achieved with deterministic attacks.

LPPM types: Depending on how much information they use

to generate obfuscated locations, LPPMs can offer stronger

privacy guarantees at the cost of introducing complexity in

the design. In this paper we study the following LPPM types

that can accommodate all previous proposals in the literature:

1) Full LPPMs are the most generic LPPM in the online

location privacy setting (see (1)), i.e., f(zr|zr−1,xr).
They generate each obfuscation location zr (perhaps

randomly) using all the information available to the user,

i.e., the previous and current input locations xr, and the

previously released obfuscated locations zr−1.

2) Output-based LPPMs, f(zr|zr−1, xr), generate the ob-

fuscated location using only the current real location xr

and all the previous obfuscated locations zr−1. These

are a sub-type of full LPPMs.

3) Memoryless LPPMs, f(zr|xr), generate each obfuscated

location using the current real location xr only. These

are a sub-type of output-based LPPMs.

We note that the framework in [1] considers LPPMs of the

full type in its theoretical setup, but the evaluation studies only

memoryless LPPMs. Memoryless LPPMs are used in sporadic

location privacy and works that consider a single location

release [3], [5], [6], [8], [9], [17]. Output-based LPPMs are

typically used in non-sporadic location privacy works [7], [13]

and, to the best of our knowledge, no optimal full-LPPM has

been proposed due to the computational complexity inherent

to its design.

The notation used in the paper is summarized in Table I.

B. Design and Evaluation Framework

We now describe a framework that instantiates the abstrac-

tion above. This framework extends ideas from [1], [8]. It

consists of two steps: the design step, where the user designs

TABLE I: Summary of notation

Symbol Meaning
ρ Total number of queries.
xr Real location of the user in the r-th query.
zr Obfuscated location of the user in the r-th query.
xr (or zr) Vector of real (or obfuscated) locations up to query r.
x (or z) Vector of all real (or obfuscated) locations.
X (or Z) Set of all possible real (or obfuscated) locations.
h Adversary’s attack.
x̂s(zr) Adversary’s estimate of the real location xs using zr .

f LPPM or obfuscation mechanism (pdf that generates zr).
f(zr|zr−1,xr) Full LPPM.
f(zr|zr−1, xr) Output-based LPPM.
f(zr|xr) Memoryless LPPM.

dQ(xr, zr) Quality loss when reporting zr given xr .

Q(f, s) Average quality loss metric at query number r (2).
dP (xr, x̂r) Adv. error when the adversary estimates xr as x̂r .
PAE(f, h, r, s) Avg. adv. error of x̂s given zr and attack h (5).

Performance reqs.

User

Pe
rf

or
m

an
ce

m
et

ri
cs

Design Evaluation

Empirical
evaluation

Mobility model

Testing
set

LPPM
design

Training
set

Fig. 2: LPPM design and evaluation framework.

the LPPM f ; and the evaluation step, where the performance

of f is evaluated empirically. The framework is represented in

Fig. 2.

Design Step: In this step, the user studies the location privacy

problem and builds the LPPM f . We assume that the user

has access to a training set. She derives her design according

to some performance requirements, in terms of privacy and

utility metrics (e.g., maximizing privacy while keeping the

utility level above some bounds). Also, the user does not

know the adversary’s attack h, so she designs the LPPM

considering a worst case adversary. In order to compute the

privacy and utility metrics, the user needs a model for the

joint distribution p(x, z) = p(x) · p(z|x). The first term, p(x),
is the joint distribution of the real locations of the user. The

user derives this distribution by training her mobility model

with the training set information. The second term, p(z|x), is

determined by the LPPM f , as in (1).

Evaluation Step: In this step, the performance of f against

one or more attacks h is assessed empirically using a test-
ing set. Following Kerckhoffs principle, we assume that the

adversary knows the user LPPM, and uses an optimal attack,

i.e., an attack that minimizes the privacy metric. To develop the

worst-case attack we assume that the adversary knows mobility

statistics about the testing set (e.g., the actual probability

distribution that models x), a common assumption in related

works [1], [5], [7], [9].
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The testing set contains real traces of locations x from a

location privacy dataset. The outputs z are probabilistically

generated using f and x. Then, the estimations x̂s (s =
1, 2, . . . ) are calculated using h and z. The privacy and utility

performance of the LPPM is assessed empirically based on x,

z and x̂s.

Note that there is a fundamental difference between the

design and the evaluation steps, regarding the treatment of the

real locations x. The design step is carried out by studying the

problem analytically, and this is done by assuming a particular

mobility model for the real locations p(x). The evaluation step,

on the contrary, is carried out empirically with real samples

of x. Ideally, the user wants her mobility model to closely

resemble her real behavior, so that her theoretical analyses

translate well into practice. However, finding a realistic model

for x is a very complicated task due to the unpredictability

and complexity of user behavior. Notice that this is not an

issue for the generation of z. This is because these samples

are generated by p(z|x), which is completely characterized by

the obfuscation mechanism and is the same in the design and

evaluation steps.

Main Differences with Previous Work: This framework

takes ideas from the literature, but also adds some contri-

butions. The framework by Shokri et al. [1] considers an

adversary that designs her attack based on the evaluation data,

but does not evaluate LPPMs designed to maximize privacy.

The separation between training and testing data is considered

for the first time in [8], but there is no quantification of

the privacy loss associated to users’ whose mobility profiles

diverge from the training data.

In this work, we integrate the training/testing separation as

part of the framework. We also consider the selection of a

model for the real locations p(x) as a crucial part of the

designing step, which was considered as given by previous

works [1]–[9], [13]. Finding a suitable theoretical model for

the user mobility p(x) and fitting it to the training data is part

of the LPPM design process. However, we cannot take for

granted that the actual locations of the user in practice x will

follow the theoretical model that she considered for design,

and thus the performance of the LPPM in practice might differ

from the theoretical performance.

C. Performance Metrics

We quantify the performance of LPPMs using privacy and

utility (or quality loss) metrics. In this work, we use the

average quality loss as utility metric, and the average adversary

error as privacy metric. These metrics are the most popular

in the user-centric location privacy literature [1]–[5], [7]–[9],

[13], [18]. We now define these metrics, and explain how

to compute them analytically given a model of p(x), and

empirically given samples of pairs (x, z).

Utility Metric: Average Quality Loss. The average quality

loss measures how much quality the user loses on average by

reporting obfuscated locations instead of real ones [2], [3], [5],

[7]–[9], [13], [18]. Let dQ(x, z) be a point-to-point distance

function that measures the loss incurred by revealing z when

the real location is x. The average loss at query r given LPPM

f is

Q(f, r)
.
= E{dQ(xr, zr)} , (2)

where the expectation is taken over realizations of xr and

zr. Given a distribution p(x), we can compute this metric

theoretically as

Q
theo

(f, r) =
∑
xr∈X

∑
zr∈Z

p(xr) · p(zr|xr) · dQ(xr, zr) , (3)

where p(xr) and p(zr|xr) can be obtained analytically from

p(x) and p(z|x).
Empirically, we can compute this metric by averaging the

distance between xr and zr over multiple simulations, i.e.,

Q
prac

(f, r) = Eemp{dQ(xr, zr)} , (4)

where Eemp{·} denotes the empirical mean.

The typical choice for the distance function dQ(·) is the

Euclidean distance. However, dQ(·) can be tailored to the

particular application where we want to provide location

privacy. For example, in an application to find nearby points of

interest within a city, the Manhattan distance is appropriate to

measure the walking distance to go from x to z. In that case,

Q would represent the average amount of extra meters that

the user has to walk to reach the desired point of interest. In

a ride-sharing app, however, dQ(x, z) can represent the extra

time or money that the user loses by reporting z instead of

her real location x. We can also use semantic metrics based

on the location tags of x and z, etc.

Privacy Metric: Average Adversary Error. The average

adversary error is defined as the mean error incurred by an

adversary that estimates the user real locations using an attack

h [1]–[5], [7]–[9], [13], [18]. Let dP (x, x̂) be a function

that quantifies how much privacy the user has when her real

location is x and the location estimated by the adversary is x̂.

Typically, dP (·) is the Euclidean distance, but it can adapted

to a particular application. Consider that the adversary has

observed r outputs (zr) and wants to estimate the location

xs with s ≤ r. For this, she uses an attack h that produces

an estimation x̂s(zr). The average adversary error at query r
regarding xs can be defined as

PAE(f, h, r, s)
.
= E{dP (xs, x̂s(zr))} , (5)

where the expectation is taken over xs and zr (the attack is

deterministic, i.e., x̂s is a function of zr). Given a mobility

model p(x), this metric can be computed analytically as

PtheoAE (f, h, r, s) =
∑

xr∈X r

∑
zr∈Zr

p(xr)p(zr|xr)dP (x
s, x̂s(zr)) .

(6)

Empirically, for each realization of x and z, we obtain the

adversary estimation x̂s(zr), and then compute the average

adversary error as

PpracAE (f, h, r, s) = Eemp{dP (xs, x̂s(zr))} . (7)
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We acknowledge that there are other privacy metrics, e.g.,

the conditional entropy [9] and geo-indistinguishability [18].

In our empirical evaluation in Sect. VII-C we discuss how our

findings affect those metrics.

III. MOBILITY MODELS FOR LPPM DESIGN

As we explained before, in order to design LPPMs, the

user needs to assume a model that characterizes her mobility

behavior, i.e., a model for p(x). In this section, we explain the

main mobility models assumed in the literature: the sporadic
mobility model, and the Markov model (non-sporadic). We

do not claim that there is a correct mobility model for p(x)
that the user should follow. However, it is true that LPPMs

optimized for a certain model will perform better when the

actual user location traces follow such model. In other words,

models that are closer to the real behavior of the user are more

useful.

A. Sporadic Model

The sporadic location privacy model assumes that the real

locations of the user in two different queries, i.e., xr and xs,

are not temporally dependent. As we argued before, this makes

sense in some scenarios where the user requests information

from the LBS infrequently (e.g., a user that queries for the

weather in her area is not likely to perform the another query

in a short period of time).

The sporadic model characterizes p(x) using a parameter

called the mobility profile, denoted by π (Fig. 3, left, and

Fig. 4). The mobility profile is an abstraction that represents

the long-term user behavior, i.e., the probability with which

the user visits each location x ∈ X . Thus, given π, we can

write

p(x|π) =
ρ∏

r=1

p(xr|π) =
ρ∏

r=1

π(xr) , (8)

where we have used π(x) to denote the probability that the

user’s real location is x given the profile π.

This model has been widely used in the literature [2], [5],

[8], [9], mainly for its simplicity: using the fact that two check-

ins xr and xs are independent allows the user to design LPPMs

that only need the current input xr to generate the next output

zr.

B. Continuous Model: Markov

In some scenarios, the sporadic model for user mobility is

not appropriate. For example, when a user queries the LBS

continuously (e.g., live location sharing in social networks),

we cannot assume that the location xr+1 is independent of the

previous one xr (e.g., because physical constraints such as the

user speed or roads existence and direction). In those cases,

continuous models that specify the dependencies between the

real locations are more adequate to design LPPMs.

The most typical model in this scenario is the Markov

model. As its name suggests, this model characterizes xr

as a Markov chain. More specifically, Markov models are

defined by two parameters: an initial mobility profile π0, and

a transition matrix M (Fig. 3, right, and Fig. 4). The initial

Fig. 3: Sporadic (left) and

Markov (right) models of

user mobility.

Meaning
π Mobility profile

p(xr|π) = π(xr)
π0 Initial mob. prof.

p(x1|π0) = π0(x
1)

M Transition matrix.

p(xr+1|xr,M) =
M(xr+1|xr)

Fig. 4: Notation and meaning

of the model parameters.

profile models the probability of the first location of the user,

i.e., p(x1|π0) = π0(x
1). The transition matrix M is a |X |×|X |

matrix whose (r, r − 1)-th element characterizes p(xr
i |xr−1

j ),
regardless of r > 1. We use M(xr|xr−1) to denote the

probability that the user transitions from location xr−1 to xr

according to the matrix M . The probability of a trace p(x)
according to the Markov model is thus

p(x|π0,M) =

ρ∏
r=1

p(xr|xr−1, π0,M)

= π0(x
1) ·

ρ∏
r=2

M(xr|xr−1) . (9)

The Markov model has been widely used in non-sporadic

location privacy, due to its simplicity [7], [13]. Note that in

the Markov model, the user’s mobility behavior only depends

on her current location, and not the past trace. It is possible

to define more complicated models for continuous location

release (e.g., characterize p(xr|xr−1)), but since these are

rarely used, we do not consider them in this work.

C. Hardwiring Training Data into the Mobility Model

After the user chooses one model to design her LPPM, she

has to decide how to estimate the parameters of that model

(i.e., π in the sporadic model, π0 and M in the Markov

model). In the literature, to the best of our knowledge, all of

the proposals rely on some training information to determine

these parameters [1], [2], [4], [5], [7]–[9], [13], [19]. After

this training phase, the model parameters remain fixed during

the evaluation. We call the models that are built in this

way hardwired models. Hardwired models are tailored to the

training data a-priori during training, and their parameters

are never updated or adapted for users that deviate from the

training data behavior. Therefore, the LPPMs designed with

these models will be optimal in practice if the users’ behavior

is perfectly captured by the training data. If this is not the

case, or if the training data is insufficient or nonexistent, it is

reasonable that the LPPMs designed with hardwired models

will perform worse than expected. We confirm this conjecture

later in Section V.

IV. LPPM DESIGN IN HARDWIRED MODELS

In this section, we overview previous approaches to design

LPPMs leveraging hardwired models for user mobility. We
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consider optimal LPPM designs, i.e., defense mechanisms

that, under a certain mobility model, maximize the privacy

metric PAE against the best possible attack given a constraint

on the maximum average loss Q allowed. We note that,

given a mobility model, there is a familiy of LPPMs that

are all optimal (i.e., all of them achieve the maximum PAE
given a constraint on Q), as proven in [9]. However, there

are no universally optimal LPPMs in practice, i.e., when

evaluated with testing data against an optimal attack. Thus,

it is important to keep in mind that, even if two members of

a family of optimal LPPMs perform equally in theory, they

might perform differently in practice.

We explain LPPM design for the r-th release: the user

is at location xr and wants to query the LBS by releasing

an obfuscated location zr. The user knows all her previous

real and obfuscated locations, i.e., xr−1 and zr−1, and the

LBS/adversary knows the previously released locations zr−1.

The optimal LPPM design problem can be written mathemat-

ically as

f = argmax
f

min
h

PAE(f, h, r, r) ,

subject to Q(f, r) ≤ Qmax.
(10)

Note that f must satisfy some additional constraints since it

is a probability density function, but we have omitted those

from (10) for simplicity. Also, we have considered just the case

where the user wants to protect her current location at time r.

We note however that the user could set other goals, like trying

to protect the privacy of future location releases PAE(f, h, r, s)
for s > r, past locations (s < r), or a combination of both.

Our findings could be adapted to such cases, but we do not

study them here for simplicity and space restrictions.

We also limit ourselves to optimal output-based LPPMs, i.e.,

defenses that can be characterized by f(zr|zr−1, xr) and do

not depend on previous inputs xr−1. We do this to avoid the

computational issues that stem from the fact that, in order to

guarantee that an LPPM is optimal, the user has to assess

its privacy against an optimal attack. In order to do this

with a full-LPPM f(zr|zr−1,xr), she has to characterize the

posterior probability of the secret locations after releasing the

obfuscated locations, i.e., p(xr|zr−1). If x ∈ X and X is

discrete, this requires handling |X |r values, which quickly

becomes unfeasible for any computer (e.g., in a small map

with |X | = 200 discrete locations, if we represent a float with

4 bytes, to protect only r = 8 locations we would need over

1 million Terabytes). Since measuring the privacy against an

optimal adversary is unfeasible in full-type LPPMs, we do not

consider them in our design approaches.

Note that this computational issue is not a problem in

output-based LPPMs. This is because, in this case, to as-

sess the performance against an optimal adversary the user

internally computes p(xr|zr−1). She only needs to handle |X |
parameters for this, since zr−1 have been seen in the past by

both the user and the adversary, so they can be treated as fixed

parameters at time r.

Below, we explain how to compute optimal LPPMs in the

sporadic and Markov hardwired models.

A. LPPM Design in the Hardwired Sporadic Model

In the literature, we find many works that study LPPM

design under the sporadic hardwired model for user mo-

bility. Most works consider that the LPPM belongs to the

memoryless type f(zr|xr), either for tractability [5], [9] or

because they focus on single queries [2], [8]. In Appendix A,

we formally prove that, in the hardwired model, a properly

designed LPPM of the memoryless type does not provide less
privacy than an LPPM of the full type f(zr|zr−1,xr). This

means that considering full-type or output-based LPPMs just

complicates the problem and does not provide any advantage

over memoryless LPPMs.

There are two main approaches to compute optimal LPPMs

in sporadic models:

Linear Programming Approaches. Shokri et al. provide a

technique to design optimal LPPMs given any pair of functions

dP (·) and dQ(·) [5]. This approach consists on solving a linear

program, which can only be done, for computational reasons,

if the spaces of real (X ) and obfuscated (Z) locations are

discrete. The program receives the mobility profile π which

determines the distribution of xr, and returns an optimal

LPPM f(zr|xr). If the number of discrete locations is N ,

the linear program contains N(N + 1) bounded variables,

N2 + 1 inequality constraints, and N equality constraints.

Therefore, finding an optimal obfuscation mechanism using

linear programming is only feasible if the number of discrete

locations is modest.

Also, Oya et al. showed in [9] that the algorithm used to

solve the linear program greatly affects the performance of

the resulting LPPM in terms of other privacy metrics (e.g.,

the conditional entropy). The recommendation in [9] is to use

an interior-point algorithm, rather than a simplex algorithm.

Remapping Techniques. In [8], Chatzikokolakis et al. pro-

pose a technique called optimal remapping that provides

an average loss improvement for any memoryless LPPM,

without reducing privacy. They proposed this method under the

hardwired sporadic mobility model. We describe this technique

briefly, since we use it in this work. Let f̃ be an obfuscation

mechanism, and let z̃r be an obfuscated location generated

from xr using such LPPM. Before reporting z̃r, the user can

compute the posterior p(xr|z̃r) using π(xr) and f̃ . With this

posterior, she can compute an alternative obfuscated location

zr:

zr = argmin
zr

∑
xr∈X

p(xr|z̃r) · dQ(xr, zr) . (11)

By reporting zr (instead of z̃r), the user achieves a reduction

on her average loss (if the mobility profile π of the sporadic

model used to compute (11) is close to her real behavior).

Also, note that no information about the previous or current

input is used in the remapping (since the posterior is computed

only using the current output and π, which are known to the

adversary). This means that, by performing this “remapping”
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from z̃r to zr, the privacy of the resulting LPPM cannot

decrease.
Later, in [9], Oya et al. proved that if the distance func-

tions used to measure privacy and utility are the same (i.e.,

dP (·) ≡ dQ(·)), the LPPM that results from remapping any
LPPM is optimal in the hardwired sporadic mobility model.

This technique can even be applied to design LPPMs when

their output space is the plane Z ≡ R
2. Overall, solving (11) is

much faster than solving the linear program mentioned above,

although it only yields optimal LPPMs if dP (·) ≡ dQ(·).
B. LPPM Design in the Hardwired Markov Model

In the Markov model, the input locations x1, x2, . . . are

correlated. This creates dependencies between past released

locations zr−1 and the current location xr, that the user must

take into account when designing the LPPM.
To the best of our knowledge, the only approach to compute

optimal LPPMs under the Markov mobility model consists on

solving a linear program [7], [13]. We explain this approach,

and then extend the remapping techniques of sporadic models

so that we can efficiently design optimal LPPMs under the

Markov model.

Linear Programming Approaches. Theodorakopoulos et

al. [13] extend the linear programming approach of [5] to the

non-sporadic location privacy case. They propose a framework

where the user can specify which obfuscated location(s) she

wants to generate at time r, which real locations she wants

to protect, and which obfuscated locations were released to

the LBS in the past. In their implementation, they specifically

consider a Markov model for user mobility. In the case we

are studying, where the user wants to release zr to protect xr

and zr−1 have already been released, the approach works as

follows.
For the first release (r = 1), the user just takes the initial

profile π0(x
1) and solves a linear program analogous to the

sporadic location privacy one [5]. This produces an LPPM

f(z1|x1) that maximizes the privacy metric given a quality

loss constraint. Then, she computes the posterior p(x1|z1)
using π0(x

1) and Bayes’ formula, and uses it to obtain the

probability distribution of the next real location given the

released location: p(x2|z1) = ∑
x1∈X M(x2|x1) · p(x1|z1).

For the next releases (r > 1), the steps are analogous, but

they use p(xr|zr−1) instead of π0. Particularly, before the r-

th query the user knows p(xr|zr−1). With this probability

distribution, the user can solve a linear program to find an

optimal LPPM f(zr|zr−1, xr). Then, she can compute the

posterior using Bayes’ formula:

p(xr|zr) = f(zr|zr−1, xr) · p(xr|zr−1)∑
x̃r∈X f(zr|zr−1, x̃r) · p(x̃r|zr−1)

, (12)

and update it for the next step using the Markov transition

matrix:

p(xr+1|zr) =
∑
xr∈X

M(xr+1|xr) · p(xr|zr) . (13)

In [7], [13], the authors evaluate their LPPMs theoretically,

i.e., they compute the average adversary error and average loss

that the user would have if she followed the Markov model

using the analytical expressions (3) and (6). For example, they

compute f(z2|z1, x2) for all possible values of z2, z1, x2.

Therefore, for computational reasons, they do not evaluate the

performance of these LPPMs for more than r = 3 consecutive

locations. During an empirical evaluation, however, one does

not need to store all possible values of these variables. Since

the past obfuscated locations zr−1 are known both to the user

and the adversary, the user can just compute f(zr|zr−1, xr)
by assuming that zr−1 is fixed. Therefore, the computational

cost of computing this Markov-based LPPM in each query is

the same as solving the linear program in the sporadic case.

Remapping Techniques. Even though the complexity of the

linear programming approach in the Markov scenario is the

same as in the sporadic scenario, if the number of discrete

locations we consider is not small, finding an optimal LPPM is

still computationally expensive. To solve this issue, we extend

the remapping techniques to the Markov scenario. To the best

of our knowledge, this is the first time these techniques are

extended beyond the sporadic location privacy scenario.

Assume that, at the time of the r-th location release, the

user has computed p(xr|zr−1) according to the Markov model.

Let f̃ be any memoryless-LPPM f̃(z̃r|xr). The user uses this

LPPM to generate a temporary z̃r, and then computes the

posterior

p(xr|z̃r, zr−1) =
f̃(z̃r|xr) · p(xr|zr−1)∑

x̃r∈X f̃(z̃r|x̃r) · p(x̃r|zr−1)
. (14)

With this posterior, she can then compute the final location

that she releases

zr = argmin
zr

∑
xr∈X

p(xr|z̃r, zr−1) · dQ(xr, zr) . (15)

This process defines a new LPPM f(zr|zr−1, xr). At this

point, the user can compute p(xr+1|zr) for the next release

following (12) and (13). Computing the LPPM by solving

(15) is much faster than solving the linear program explained

above. Also, the LPPM that results form the remapping can

be shown to be optimal in the hardwired Markov model if

dP (·) ≡ dQ(·) (c.f. [9]).

V. EVALUATION: OPTIMAL HARDWIRED LPPMS

In this section, we evaluate the optimal LPPMs derived

for hardwired models that we described in Sect. IV using

the evaluation framework in Section II-B. For readability

and clarity, we use the term SP-LPPM to denote a generic

LPPM that is optimal under the hardwired SPoradic mobility

model [5], [8], [9]. This LPPM can be computed by following

any of the techniques explained in Sect. IV-A. Likewise, we

use MK-LPPM to denote an LPPM that is optimal under

the hardwired MarKov mobility model [7], [13] (we can

compute it as explained in Sect. IV-B). Note that SP-LPPM
and MK-LPPM denote families of optimal LPPMs (i.e., there

are infinite instantiations of them that meet their optimality

conditions).
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TABLE II: Terminology for the experiments.

SP-LPPM Family of optimal LPPMs developed with the hardwired
sporadic mobility mode (Sect. IV-A).

MK-LPPM Family of optimal LPPMs developed with the hardwired
Markov mobility mode (Sect. IV-B).

SP-LH Optimal location hiding LPPM from the SP-LPPM family.
SP-Exp Optimal exponential LPPM from the SP-LPPM family.
MK-LH Optimal location hiding LPPM from the MK-LPPM family.

MK-Exp Optimal exponential LPPM from the MK-LPPM family.

TABLE III: Summary of the experiments to evaluate hardwired

LPPMs.

Experiment SP Experiment MK
Evaluation target SP-LPPM MK-LPPM

Datasets
Gowalla (shuffled) Gowalla

Brightkite (shuffled) Brightkite
TaxiCab

Distance function Manhattan (dP ≡ dQ)

LPPM
Loc. Hiding (SP-LH) Loc. Hiding (MK-LH)
Exponential (SP-Exp) Exponential (MK-Exp)

Attack we evaluate Optimal Sporadic Optimal Markov

We perform two different experiments: one to evaluate

SP-LPPM in the sporadic location release scenario (Exper-

iment SP), and another one to evaluate MK-LPPM in the

continuous location release scenario (Experiment MK). For

these experiments, we consider three datasets, two different

instantiations of SP-LPPM and MK-LPPM, and two optimal

attacks. We explain these choices below. Table II summarizes

the new terminology of this evaluation, and Table III shows

the configuration of our experiments.

Datasets. We consider three datasets: Brightkite1, Gowalla2,

and TaxiCab traces from CRAWDAD.3 Each dataset con-

tains location traces identified by the user ID, latitude, lon-

gitude, and timestamp. We take user check-ins inside the

San Francisco region between latitude coordinates 37.5500
and 37.8010, and longitude coordinates −122.5153 and

−122.3789. Then, we quantize the area into 25 × 10 cells

and consider the centers of these cells as our alphabets

X = Z = X̂ , as in [7], [13].

Gowalla and Brightkite are examples of datasets with very

sparse check-in behavior (e.g., in Gowalla, each user has

an average of 60 check-ins during over 20 months of data

collection). Thus, in these datasets we separate 20 users that

have at least 300 check-ins inside the San Francisco region,

regardless of when those check-ins were made, and save the

remaining check-ins of all the other users together (around

35 000 in Brightkite and 75 600 in Gowalla).

Regarding the training/testing separation, we use the last

5 users in these datasets as testing sets, and we consider

two training settings: in the first setting, that we call scarce
training, the users train their LPPMs with the traces of the

first 15 users (4 500 locations). In the second setting, that we

call rich training, each user trains her model using the check-

1https://snap.stanford.edu/data/loc-brightkite.html
2https://snap.stanford.edu/data/loc-gowalla.html
3https://crawdad.org/epfl/mobility/20090224/
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(b) Taxicab dataset.

Fig. 5: Processed datasets that we collected. We consider two

training settings for each dataset (scarce and rich). For each

of these settings, the figure displays the training data in green,

and the testing data in orange.

ins of all the other users in the dataset (35 000 in Brightkite,

75 600 in Gowalla). This is depicted in Fig. 5a.

TaxiCab contains very dense location reports of cabs in the

San Francisco region over 30 days. In this case, we organize

each user’s traces by days, and discard those days where the

user remains silent for more than 2 hours. Then, we select 10

users for which we retain at least 10 days. For each trace, we

select one check-in for each period of 5 minutes (considering

that the user remained in the same location if she did not

perform a new check-in in the last 5 minutes). This way, we

build, for each user, a set of 10 days with 288 check-ins (288·5
minutes = 1 day).

In this dataset, we evaluate the performance of each user

in her last 3 days. We consider two settings for the training

data: in our first setting (scarce), each user uses her first day

as training data. In our second setting (rich), each user trains

her model using her first 7 days of data (Fig. 5b).

Training the LPPMs. We explain how the users estimate

the parameters of the models that they use to build optimal

LPPMs. For the LPPMs built using the hardwired sporadic

model (SP-LPPM), each user computes π as a normalized

histogram of the training set traces, i.e., she counts the number

of check-ins in each location x ∈ X in the training data and

normalizes by the total number of check-ins.

For LPPMs built using the hardwired Markov model

(MK-LPPM), each user computes π0 as a normalized histogram

of the location check-ins in the training data, and builds the

transition probabilities M(xi|xj) by counting the number of

transitions from xj to xi in the data, and normalizing. Note

that, ideally, the user would compute π0 using her first location

of each day (in the TaxiCab dataset) but we do not have

sufficient data to follow this approach.

LPPM instantiations. For each family of optimal LPPMs
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(SP-LPPM and MK-LPPM) we test the performance of two

different instantiations:

• LH refers to location hiding: for each input location xr,

the user chooses randomly between revealing her real

location zr = xr (with probability α) or not revealing any

information (with probability 1−α). We model the second

case as picking uniformly at random another location of

the map. We test 10 values of α = 0, 0.1, 0.2, . . . , 1 to

study the trade-off between PAE and Q. We apply an

optimal remapping to this LPPM to make it optimal: the

remapping in Sect. IV-A gives us an SP-LPPM that we

denote SP-LH, and the remapping in Sect. IV-B gives us

an MK-LPPM that we denote MK-LH.

• Exp is the exponential LPPM [20]: this LPPM re-

ports location zr with a probability proportional to

exp(−dQ(xr, zr) · ε) (i.e., it has an exponentially de-

creasing probability of reporting locations that are far

from the real location). We test 10 values of ε =
0km−1, 0.02km−1, 0.04km−1, . . . , 0.02km−1 to tune the

average loss and privacy of this LPPM. We apply an

optimal remapping to this LPPM to build an optimal

defense (denoted SP-Exp and MK-Exp for the sporadic

and Markov models, respectively).

Attacks. As we mentioned in Section II-B, we consider

a worst-case adversary which deploys optimal attacks con-

structed with information about the testing data. The optimal

attacks, after observing zr, compute the posterior p(xr|zr) and

pick the x̂r that minimizes the privacy PAE. We consider two

attacks: a sporadic-based and a Markov-based attack. These

attacks use the actual mobility profiles and transition matrices

of the users (i.e., computed from the testing data) to perform

their estimation x̂r.

In all of our experiments, we use the Manhattan distance

as the distance metric for privacy dP (·) and utility dQ(·). We

think this is a reasonable choice, since our traces belong to

metropolitan areas, where the Manhattan distance between two

points is close to the physical distance that a car/person has

to traverse to move from one point to the other. We measure

distance in kilometers (km), but this could be converted to

time (by dividing it by speed) or another metric related to the

physical distance between two points.

We note that, since we chose dP (·) ≡ dQ(·), the theoretical

performance of any optimal LPPM is PAE = Q, as shown

empirically in [5] and proven analytically in [9]. This means

that any optimal LPPM evaluated in the same data used for its

training would achieve PAE = Q. This is true for SP-LH and

SP-Exp against the optimal sporadic attack, and for MK-LH
and MK-Exp against the optimal Markov attack. We see below

that, when these optimal LPPMs are evaluated on a testing set

that is different from the training data, they do not achieve

this optimal privacy level, i.e., in practice, PAE < Q.

We explain how we generate the plots in our evaluation.

Given a particular experiment, user, and LPPM setting, we

compute Q(f, r) and PAE(f, h, r, r) by averaging 40 repetitions

of our experiment when users use SP-LH and MK-LH, and

20 repetitions when they use SP-Exp and MK-Exp (i.e.,

we repeat the process of computing the LPPM, generating

obfuscated locations and computing the adversary estimation

20/40 times). Then, we average the performance over r (i.e.,

Q
.
= 1/ρ

∑ρ
r=1 Q(f, r) and PAE

.
= 1/ρ

∑ρ
r=1 PAE(f, h, r, r)).

This gives us, for each user that we evaluate, points along their

PAE vs. Q performance line. Finally, we generate quality loss

values linearly spaced between 0 and 4km and, using linear

interpolation, compute the average, maximum and minimum

privacy over the users for each of those quality loss values.

All of our experiments are conducted using Python 3.

A. Experiment SP: Sporadic Hardwired LPPMs

We evaluate SP-LH and SP-Exp against the optimal

sporadic-based attack that uses the real mobility profile of the

user. We use only Gowalla and Brightkite datasets for this ex-

periment, since Taxicab is more characteristic of non-sporadic

mobility behaviors. For each simulation of this experiment,

we randomly shuffle the user traces (i.e., each column in the

matrix represented in Fig. 5a). We do this to break any possible

timing correlation that remains in these datasets and ensure

that our evaluation of these LPPMs is fair.

Figure 6 shows the results, where the blue and orange lines

represent the average privacy of the users when they use the

scarce and rich training data, respectively. The shaded area

represents the minimum and maximum privacy among the

users that we evaluate. We see that, in both datasets, and

regardless of the LPPM type, the privacy of the users evaluated

with a testing data that differs from the training information

is below the theoretical value PAE = Q. Also, training with

the rich training set provides more privacy on average, since

this dataset has more information about the sporadic check-in

behavior of the users (35 000−75 600 check-ins, versus 4 500
check-ins of the scarce dataset). However, this improvement is

slight: none of the training sets capture the real user behavior

precisely, since both contain data from different users. Some of

the users that we evaluate have a behavior that is particularly

different from the training data (e.g., lower shaded area in

Fig. 6b), and thus achieve very low privacy. This experiment

shows that training an optimal sporadic LPPM with location

data from other users (e.g., [8]) is very dangerous from a

privacy standpoint.

B. Experiment MK: Markov Hardwired LPPMs

We evaluate MK-LH and MK-Exp against the optimal

Markov adversary. Figure 7 shows the performance in

Brightkite and Gowalla, and Fig. 8 shows the performance

in TaxiCab dataset. The results in Brightkite and Gowalla are

very similar to the ones in the previous experiment, i.e., an

optimal Markov LPPM that has been designed by hardwiring

it on training data from other users provides significantly less

privacy than expected in theory.

The results in TaxiCab dataset, however, are significantly

better for the users. This is because, in this dataset, we have

continuous location data (i.e., one location reported every

5 minutes). This means that two consecutive locations are
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Fig. 6: Experiment SP. Performance of SP-Exp and SP-LH against the optimal sporadic attack in Brightkite and Gowalla

datasets (with shuffled traces).

highly correlated because of road restrictions (e.g., one-way

roads, mandatory turns, etc.). Cabs follow very different paths

each day, and thus it would seem that training their LPPMs

with past data should not be significantly beneficial for them.

However, the training data encodes these road restrictions.

This is very important: the optimal Markov LPPMs are thus

designed taking these constraints into account. Since the road

restrictions are also part of the testing data, the optimal Markov

LPPM is able to get close to optimal performance during

evaluation. We also observe that training with seven days of

data (rich training) is slightly better than training with a single

day (scarce training). This slight improvement suggests that

a single day of training already encodes most of the road

restrictions. To validate this hypothesis, we also conducted

experiments where we train each user’s LPPM with past

location traces of different users, and the results were similar

(see Appendix C). This confirms that taking road constraints

into account is of paramount importance towards achieving

high protection in continuous non-sporadic location privacy.

Finally, MK-Exp performs better than MK-LH. These results

support the findings in [9], where authors showed that expo-

nential mechanisms perform significantly better than location

hiding techniques when evaluated with metrics they have not

been optimized for. In our case, we see that MK-Exp performs

better than MK-LH when evaluated in testing data it has not

been optimized for.

VI. BLANK-SLATE MODELS

We have seen that hardwiring the training data into the

mobility models used for LPPM design can be detrimental

to privacy. To alleviate this issue, we propose blank-slate
models for user mobility. These models treat their parameters

(π in the sporadic case; or π0 and M in the Markov case)

as unknown variables that are never completely known to

the user when designing her LPPM. These parameters can

be initialized a-priori with training data, but do not remain

fixed. Instead, the user updates them a-posteriori, as she

acquires additional information from the observations (e.g.,

x and z, from the testing set). Therefore, we can expect that

LPPMs developed with blank-slate models will be desirable in

situations where the training data does not adequately capture

the user’s mobility traits, either because it does not contain

sufficient information or because it captures mobility patterns

that are not characteristic of the user in question.

There are many ways in which a user can implement a

blank-slate model. For example, a user can train a distribution

on the hidden parameter (e.g., p(π)) based on training data,

and then estimate this parameter a-posteriori using x and z
(e.g., a maximum a-posteriori approach). In our case, we take

a maximum likelihood approach that we explain below. We

present a new family of LPPMs, the Profile Estimation-Based

LPPMs (PEB-LPPMs), that we build by leveraging a sporadic
blank-slate model for user mobility. We do not tackle the

problem of LPPM design under blank-slate Markov mobility

models, but we show that our PEB-LPPM is also useful for

users whose mobility model is Markovian.

A. LPPM Design in the Sporadic Blank-Slate Model

A sporadic blank-slate model is characterized by a mobility

profile π that is unknown to the user. In order to design

an LPPM using this model, the user must first estimate this

mobility profile. We propose to use a Maximum Likelihood

Estimator (MLE) of the mobility profile before each query r,

and then use this profile to build an optimal sporadic LPPM.

We call the LPPM designed this way Profile Estimation Based

(PEB)-LPPM.

More precisely, a PEB-LPPM is an output-based defense,

i.e., characterized by f(zr|zr−1, xr), that is computed by

following these steps:

1) Compute an MLE of the mobility profile π using zr−1.

Let this estimate be π̂r
ML.

2) Normalize the estimate π̂r
ML to avoid variance issues for

low r, producing π̂r.

3) Compute the optimal LPPM in the sporadic mobility

model using π̂r and generate zr randomly using xr and

this newly created LPPM.

This whole process can be embedded into a function of the

form f(zr|zr−1, xr) that defines the PEB-LPPM.
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Fig. 7: Experiment MK: Performance of MK-Exp and MK-LH, against the optimal Markov attack in Brightkite and Gowalla

datasets.
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Fig. 8: Experiment MK: Performance of MK-Exp and MK-LH
against the optimal Markov attack in Taxicab dataset.

Note that, in the first step above, the user could have

also used her past real locations xr−1 to compute the MLE

estimation of her mobility profile (since she knows them).

This, effectively, would result on a full-LPPM f(zr|zr−1,xr).
As we mentioned in Section IV, assessing the privacy of

these LPPMs against an optimal adversary is computationally

intractable. Thus, to avoid gaps in our evaluation, we only use

zr−1 to compute our MLE of the mobility profile. We delve

into the steps of the PEB-LPPM design below.

B. Step 1: Mobility Profile Estimation.

We derive the Maximum Likelihood Estimator (MLE) of

the mobility profile given zr. We use πi ≡ p(x = xi) to

denote the probability mass function defined by π. Let P
be the set of all the possible mobility profiles, i.e., P .

=
{π|∑|X |

i=1 πi = 1, πi ≥ 0}. The MLE of the mobility profile

is the estimation π̂r
ML that maximizes p(zr|π), i.e.,

π̂r
ML = argmax

π∈P
p(zr|π) . (16)

Solving this problem directly is complicated, since zr is

not generated directly from π, but from xr. We use the

Expectation-Maximization (EM) method [21] to find an ef-

ficient way of computing this estimator. We rely on xr as

auxiliary data, and define the auxiliary function Q as

Q(π, πt)
.
= E{log p(xr|π)|Z = zr,Π = πt} . (17)

The EM method iterates over two steps: first, compute

Q(π, πt) (E-step), and then find πt+1 as the profile π that

maximizes Q(π, πt) (M-step). We expand Q as

Q(π, πt)
.
= E{log p(xr|π)|Zr = zr,Π = πt}

=
r∑

s=1

E{log p(xs|π)|Zr = zr,Π = πt}

=

r∑
s=1

|X |∑
i=1

log πi · p(xr
i |zr, πt)

=

|X |∑
i=1

log πi ·
[

r∑
s=1

p(xs
i |zr, πt)

]
.

(18)

In order to find the π ∈ P that maximizes Q(π, πt), we

build the Lagrange multipliers function

L(π, λ,μ) = Q(π, πt) + λ

⎛
⎝ |X |∑

i=1

πi − 1

⎞
⎠+

|X |∑
i=1

μiπi , (19)

where the term with λ corresponds to the constraint∑|X |
i=1 πi = 1 and the terms with μi correspond to πi ≥ 0. We

take μi = 0 for the non-negativity constraints, and by solving

∂L/∂πi = 0 and ∂L/∂λ = 0 we obtain the maximum, which

gives us the update rule πt+1
i = 1

r

∑r
s=1 p(x

s
i |zs, πt). We use

Bayes’ Rule to expand p(xs
i |zs, πt) and we finally obtain

πt+1
i =

1

r

r∑
s=1

πt
i · f(zs|zs−1, xs

i )∑|X |
k=1 π

t
k · f(zs|zs−1, xs

k)
. (20)

Following [22], we can see that this solution is the global

maximum of Q(π, πt), since it meets the KKT conditions,

Q(π, πt) is strictly concave on π (it is a weighted sum of

logarithms) and P is a convex set.
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Summarizing, in order to compute the MLE of the mobil-

ity profile, one proceeds as follows. First, define an initial

profile π0. Then, follow the update rule given by (20) until

convergence (i.e., until the change from πt to πt+1 is small

enough). This algorithm is ensured to converge to the MLE

for memoryless and output-based LPPMs, as we prove in

Appendix B.

C. Step 2: MLE Normalization

The accuracy of the MLE estimator above depends on the

number of queries done previously. For example, we can

expect to have a worse estimation of π if we compute it at time

r = 2 using only z1, compared to computing it at time r = 100
with z99. To alleviate this issue, we perform a normalization

step. Let πini be an initial mobility profile (e.g., a uniform

profile, a profile computed from auxiliary data, or a profile

computed from the training data as in hardwired models), and

let γ > 0 be a constant. The final mobility profile after the

normalization step is

π̂r =
1

rγ
· πini +

(
1− 1

rγ

)
· π̂r

ML . (21)

The coefficient γ tunes how fast the effect of πini in π̂r fades

with r. For example, if the user does not have enough data

to compute a reliable initial profile πini, she can simply set

γ = 0.5 so that π̂r converges fast to the ML estimate π̂r
ML.

If the user believes that πini is representative of her current

mobility behavior, a slower rate γ = 0.1 is more appropriate.

D. Step 3: Final LPPM Computation

Once the user has computed her estimation of the mobility

profile π̂r she builds an optimal memoryless LPPM for the

sporadic location privacy case (e.g., using the linear program-

ming or the optimal remapping approach we explained in

Section IV-A). Using this LPPM, she samples the obfuscated

location zr given her real location xr.

VII. EVALUATION OF PROFILE ESTIMATION-BASED

LPPMS

We evaluate the performance of the PEB-LPPMs that we

developed with the blank-slate sporadic mobility model, and

compare them with the optimal LPPMs that we evaluated ear-

lier. We use the notation PEB-LH and PEB-Exp to denote the

location hiding and exponential LPPMs computed following

the PEB-LPPM strategy in Sect. VI. We compute πini from

the training set and chose γ = 0.5 so that the PEB-LPPMs

adapt quickly to the MLE of the mobility profile. This means

that, after r = 100 queries, the mobility profile that is used

for design π̂r in (21) is π̂r = 0.1 · πini + 0.9 · π̂r
ML.

We split the evaluation into two parts, using the same

settings of Section V (see Table III). Since PEB-LPPMs learn

the user behavior as she queries the LBS, we can expect that

their performance will improve over time. Therefore, instead

of averaging Q(f, r) and PAE(f, h, r, r) over all values of r,

we perform the average over the first and last halves separately

(e.g.,
∑150

r=1 . . . and
∑300

r=151 . . . in Brightkite/Gowalla). The

performance of PEB-LPPMs averaged over the last half of the

location releases is practically independent of the initial profile

πini since, for r > 150, (21) becomes π̂r ≈ π̂r
ML.

A. Experiment SP with PEB-LPPMs

First, we evaluate PEB-LPPMs in the sporadic scenario.

We compare the performance of PEB-LH and PEB-Exp with

SP-LH and SP-Exp, against the optimal sporadic adversary.

We use only the rich data to train SP-LH and SP-Exp and

to initialize PEB-LH and PEB-Exp (for simplicity). Figure 9

shows the results. The blue line corresponds to the orange line

in Fig. 6 (SP-LPPM trained with the rich data). The orange

line is the average performance of PEB-LPPMs in the first 150

samples, and the green line is the average performance in last

150 samples. We can see that PEB-LPPMs always outperform

hardwired ones (SP-LPPM) in the sporadic scenario, and

that the performance of PEB-LPPMs improves with r. This

is reasonable, as these mechanisms estimate the real user

behavior adaptively during the evaluation, and with higher r
values this estimation is more accurate. These results show

that disregarding the training data and relying solely on the

MLE of the mobility profile (PEB-LH and PEB-Exp with

r > 150) can yield LPPMs that offer better protection than

those hardwired on the training data (SP-LH and SP-Exp).

B. Experiment MK with PEB-LPPMs

Now, we compare PEB-LH and PEB-Exp with MK-LH and

MK-Exp against the optimal Markov adversary, in the settings

of Experiment MK. Figure 10 shows the results for Brightkite

and Gowalla, and Fig. 11 for TaxiCab. In Brightkite and

Gowalla, we use only the rich training data to build MK-LPPM.

Here, even though PEB-LPPMs are built upon the sporadic

blank-slate mobility model, they are on-par with optimal

Markov designs in non-sporadic location privacy settings, and

in many cases outperform them. This is because Brightkite

and Gowalla are datasets where user check-ins are not strongly

correlated. This means that capturing the road restrictions is

not decisive towards achieving a good privacy performance,

and therefore PEB-LPPMs can compete with MK-LPPM. Note

that the performance of PEB-LPPMs decreases with r in

Gowalla. This is due to the fact that the MLE of the mobility

profile uses all the past observations and does not give more

weight to recent ones. If the user behavior changes drastically

at some point in the trace (e.g., around r = 150), the MLE will

not be able to follow this change, and thus the performance of

the PEB-LPPM will decrease. It would be interesting to study

how to adjust PEB-LPPMs so that they give more weight to

recent location releases when estimating the mobility profile

of the user.

The situation changes in TaxiCab dataset (Fig. 11). In this

case, even though we have decided to train MK-LPPM using

the scarce training set (one day of data for each user), this is

enough for MK-LPPM to achieve an outstanding performance

(as we saw in Fig. 8). This is because, in TaxiCab dataset,

the locations are tightly correlated due to road restrictions.

PEB-LPPMs are built leveraging a sporadic blank-slate model,
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Fig. 9: Experiment SP: Performance of PEB-LPPMs versus SP-LPPM, using Brightkite and Gowalla datasets (shuffled).

SP-LPPM have been trained with the rich data.

so they cannot capture these restrictions, and thus perform

poorly in this dataset. Note that increasing r does not have a

significant effect in the performance, since it does not matter

how accurately the profile estimation of PEB-LPPMs is: a

(sporadic) mobility profile cannot capture the correlations of

non-sporadic models.

C. Summary of Results and Other Privacy Metrics

PEB-LPPMs outperform optimal hardwired LPPMs in all

of our sporadic location privacy experiments. This is reason-

able, as in these experiments the training data cannot closely

characterize the behavior of the testing set users. This does not

mean that PEB-LPPMs always outperform hardwired LPPMs

in sporadic location release scenarios: if user behavior can be

accurately modeled by the training data, the performance of

hardwired LPPMs would be close to optimal. However, we

can confirm that PEB-LPPMs are a powerful tool to protect

users whose mobility behavior cannot be predicted from the

training data.

In non-sporadic location privacy, our experiments show

that PEB-LPPMs can outperform optimal Markov LPPMs

when the user’s real locations are not highly correlated (i.e.,

Brightkite and Gowalla datasets). When there are high de-

pendencies between the real locations (i.e., TaxiCab data with

location reports every 5 minutes), PEB-LPPMs perform worse

than optimal Markov designs because they cannot capture

these correlations. This could be addressed in future work by

developing PEB-LPPMs based on blank-slate Markov models.

These PEB-LPPMs would re-estimate the Markov transition

matrix on-the-fly using released locations and taking road

restrictions into account.

On another note, in this work we use the average ad-

versary error to measure privacy, since it is probably the

most used metric in related works [1]–[5], [7], [9], [13],

[18]. However, there are other alternatives, such as geo-

indistinguishability [2], [8], [12], [18], [23] or the conditional

entropy [1], [9], that quantify different notions of privacy. We

now discuss why PEB-LPPMs also improve in terms of these

metrics.

Throughout our evaluation (Figs. 9-11) we have seen that,

in many scenarios, PEB-LPPMs outperform hardwired-based

LPPMs. The underlying reason of this improvement is that

the mobility profile that PEB-LPPMs estimate a-posteriori

characterizes the actual user mobility better than the hardwired

models. Thus, we can expect that PEB-LPPMs will also

outperform hardwired LPPMs in these scenarios in terms of

other privacy metrics, since they are more tailored to the

actual user behavior in the testing data (e.g., PEB-Exp will

provide more geo-indistinguishability or conditional entropy

than SP-Exp for the same quality loss, in a sporadic location

release scenario).

VIII. RELATED WORK

Early surveys of location privacy attacks, defenses and

privacy metrics, by Decker [24] and Krumm [25], do not

include any discussion about modeling user mobility.

A first explicit modeling appears in [1], where Shokri et al.

propose a framework to evaluate location privacy mechanisms.

In their framework instantiation, they consider a Markov

hardwired model for user mobility, and in their evaluation

they effectively merge training and testing sets. A number of

follow-ups also hardwire the mobility model using the evalua-

tion data itself. In sporadic location privacy, this methodology

was used to design and evaluate LPPMs according to different

privacy notions. First, it was used to find optimal LPPMs

in terms of the average adversary error, either by reporting

individual locations [5], using dummy check-ins [6], or in

combination with geo-ind guarantees [17]. Second, hardwired

user mobility models are used to obtain utility improvements

and derive optimal geo-indistinguishability LPPMs [2], or to

evaluate a semantic variation of this notion [3]. Non-sporadic

location privacy works also hardwired their mobility models

on the evaluation data, and typically adopt a Markov model

for user mobility to account for temporal correlations [4], [7].

Chatzikokolakis et al. are the first to explicitly separate data

used to design LPPMs and to evaluate them [8], in the context

of geo-indistinguishability. However, they do not quantify
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Fig. 10: Experiment MK: Performance of PEB-LPPMs versus MK-LPPM in Brightkite and Gowalla datasets. MK-LPPM have

been trained with the rich data.
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Fig. 11: Experiment MK: Performance of PEB-LPPMs versus

MK-LPPM in TaxiCab dataset, with one day of training.

MK-LPPM have been trained with the scarce data (a single-day

trace).

the privacy gap between theoretical design and empirical

evaluation in a testing set.

To the best of our knowledge, our work is the first to

evaluate previous optimal LPPMs by considering a separation

between training and testing data. We find out that LPPMs

perform worse than previously reported results [5], [7], [9],

[13] when empirically evaluated in a testing set. We also

propose a blank-slate model for user mobility, which allows us

to design LPPMs that learn the model parameters during the

evaluation. We are not aware of other blank-slate models in the

literature, although the mobility profile estimation carried by

PEB-LPPMs is similar to the problem of estimating a distri-

bution from noisy data in privacy-preserving data mining [21].

IX. CONCLUSIONS

Previous strategies to design Location Privacy-Preserving

Mechanisms (LPPMs) assume that training data can com-

pletely characterize user mobility behavior, and hardwire this

information in the mechanism itself. We demonstrate how this

design decision overestimates the privacy offered by these

designs when the users’ mobility profile deviates from the

training set characteristics.

We propose to use blank-slate models for user mobility that

treat the mobility profile as an unknown variable that has to be

learned. We leverage a sporadic blank-slate model to propose

a new family of defense techniques, PEB-LPPMs, that adapt to

the user behavior using past obfuscated queries. We compare

our proposal to hardwired LPPMs, and show that PEB-LPPMs

improve the privacy except in continuous location release

scenarios where user locations are highly correlated.

The problem identified in this paper is not unique to the

location privacy domain. More generally, to build privacy

enhancing technologies that provide strong privacy guarantees

in real cases, we have to embrace that training information

cannot always fully capture real user behavior. We believe

that blank-slate models, that incorporate the uncertainty about

real user behavior, are a promising approach to improve

the protection provided by privacy mechanisms not only in

location privacy but in a broader type of privacy problems.

APPENDIX

A. Privacy performance of the memoryless LPPM in the
hardwired model of user mobility.

Consider the full-type LPPM f(zr|zr−1,xr), and a

memoryless-type LPPM that we denote by f∗, defined as

f∗(zr|xr)
.
=

∑
xr−1

∈X r−1

∑
zr−1

∈Zr−1

p(xr−1, zr−1|xr) · f(zr|zr−1,xr) .

(22)

The average loss of f and f∗ is the same, i.e., Q(f, r) =
Q(f∗, r) due to the linearity of this metric. Then, by proving

that f∗ does not achieve less privacy than f , we prove that the

privacy and quality loss trade-off of f∗ is not worse than that

of f . For these proofs, we use p∗ to denote the probabilities

referred to the case where the LPPM used is f∗. Also, we use

z−s .
= [z1, z2, · · · , zs−1, zs+1, · · · , zr].
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Our goal is to prove that minh PAE(f, h, r, s) ≤
minh PAE(f

∗, h, r, s), i.e., that f∗ does not achieve less privacy

than f against an optimal adversary that minimizes PAE:

min
h

PAE(f, h, r, s)

=
∑

zr∈Zr

min
x̂s

[ ∑
xs∈X

π(xs)p(zr|xs)dP (x
s, x̂s)

]

(a)

≤
∑
zs∈Z

min
x̂s

⎡
⎢⎢⎣ ∑

z−s

∈Z−s

∑
xs∈X

π(xs)p(zr|xs)dP (x
s, x̂s)

⎤
⎥⎥⎦

=
∑
zs∈Z

min
x̂s

[ ∑
xs∈X

π(xs)p(zs|xs)dP (x
s, x̂s)

]

=
∑
zs∈Z

min
x̂s

[ ∑
xs∈X

π(xs)f∗(zs|xs)dP (x
s, x̂s)

]

(b)
=

∑
zr∈Zr

min
x̂s

[ ∑
xs∈X

π(xs)p(z−s)f∗(zs|xs)dP (x
s, x̂s)

]

= min
h

PAE(f
∗, r, s) .

Step (a) comes from splitting the summation over zr into two

summations: one over zs and the other over the complement.

Then, computing the summation (over z−s) of the minima

over x̂s is smaller or equal than computing the minimum of

the summation. Step (b) follows from the fact that z−s is

independent of zs and xs in the hardwired model and with a

memoryless LPPM f∗.

B. Convergence of the EM sequence to the MLE of the
mobility profile.

We prove the convergence of the EM iteration in (20) to

the maximum likelihood estimator of the mobility profile,

for memoryless and output-based LPPMs only. Let P be the

probability simplex, i.e., the set of valid mobility profiles

P .
= {π|∑|X |

i=1 πi = 0, πi ≥ 0}. Then, the MLE is

π̂r
ML = argmax

π∈P
log p(zr|π) . (23)

In [21], [26], authors show that if the likelihood function

(i.e., log p(zr|π)) has a unique global maximum over P and

the derivatives ∂Q(π, πt)/∂π are continuous over π and πt,

then any EM sequence {π0, π1, π2, · · · } computed as in (20)

converges to the unique global maximum π̂r
ML. We now prove

that our problem meets these requirements, and refer to [21],

[26] for the complete details of the proof.

First, we prove that log p(zr|π) is strictly concave and has

a unique global maximum over P . By definition, it is easy to

see that P is convex, i.e., given two profiles π, π′ ∈ P , we can

check that π′′ .
= λπ+(1−λ)π′ ∈ P for λ ∈ [0, 1]. On the other

hand, we can write log p(zr|π) = ∑r
s=1 log p(z

s|zs−1, π) and

show that

p(zs|zs−1, π) =

|X |∑
i=1

f(zs|zs−1, xs = xi) · πi , (24)
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Fig. 12: Experiment MK: Performance of MK-Exp and

MK-LH against the optimal Markov attack in Taxicab dataset,

when the LPPMs are trained with data from other users.

where f(zs|zs−1, xs = xi) is given by the LPPM (it does

not require π for its computation, since it is an output-based

LPPM). This means that p(zs|zs−1, π) is linear with π, and

therefore log p(zs|zs−1, π) is strictly concave. This implies

that log p(zr|π) is also strictly concave, since it is the sum

of strictly concave functions. Since P is a convex set, then

log p(zr|π) has a unique global maximum over P .

On the other hand, it is easy to see that the derivatives

∂Q(π, πt)/∂π are continuous in π and πt (note that πi ∈
[0, 1]), which concludes the proof.

The proof for memoryless LPPMs is the same, since they

are a sub-type of output-based LPPMs. This result is not

true, however, for full-type LPPMs, since p(zs|zs−1, xs = xi)
depends on the mobility profile (through all the other inputs).

C. Experiment MK: training with data from other users.

We repeat the Experiment MK described in Sect. V-B, but

we train each user’s LPPM using past days of a different user.

Fig. 12 shows the results of these experiments. Here, scarce
training and rich training refer to the case where we train

the LPPM of each user with the past day or the past seven

days of a different user. The performance of MK-Exp and

MK-LH is slightly worse than in Fig. 8, i.e., the LPPMs achieve

less privacy for the same quality loss, but it is nonetheless

very similar. This supports our hypothesis that road restrictions

(and not personal user preferences) are the main source of

correlation between locations in this dataset.
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[9] S. Oya, C. Troncoso, and F. Pérez-González, “Back to the drawing
board: Revisiting the design of optimal location privacy-preserving
mechanisms,” in Proc. of Computer and Communications Security
(CCS). ACM, 2017, pp. 1959–1972.

[10] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis,
“Where’s wally?: Precise user discovery attacks in location proximity
services,” in Proc. of Computer and Communications Security (CCS).
ACM, 2015, pp. 817–828.

[11] “Location guard,” 2016, accessed: 2017-06-12. [Online]. Available:
https://github.com/chatziko/location-guard
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