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Abstract—Public key infrastructure (PKI) based on certificate
authorities is one of the cornerstones of secure communication
over the internet. Certificates issued as part of this PKI provide
authentication of web servers among others. Yet, the PKI
ecosystem is susceptible to certificate misissuance and misuse
attacks. To prevent those attacks, Certificate Transparency (CT)
facilitates auditing of issued certificates and detecting certificates
issued without authorization. Users that want to verify inclusion
of certificates on CT log servers contact the CT server directly to
retrieve inclusion proofs. This direct contact with the log server
creates a privacy problem since the users’ browsing activities
could be recorded by the log server owner.

Lueks and Goldberg (FC 2015) suggested the use of Private
Information Retrieval (PIR) in order to protect the users’ privacy
in the CT ecosystem. With the immense amount of certificates
included on CT log servers, their approach runs into performance
issues, however. Nevertheless, we build on this approach and
extend it using multi-tier Merkle trees, and render it practical
using multi-server PIR protocols based on distributed point func-
tions (DPFs). Our approach leads to a scalable design suitable to
handle the increasing number of certificates and is, in addition,
generic allowing instantiations using secure accumulators and
PIRs.

We implement and test this mechanism for privacy-preserving
membership proof retrieval and show that it can be integrated
without disrupting existing CT infrastructure. Most importantly,
even for larger CT logs containing 231certificates, our approach
using sub-accumulators can provide privacy with a performance
overhead of less than 9 milliseconds in total.

I. INTRODUCTION

Nowadays Transport Layer Security (TLS) [39] is the de-
factor standard for secure communication over the internet. In
general, TLS enables two parties—a client and a server—to
agree on a shared secret key which can then be used to encrypt
payload data. During the handshake that is responsible to
perform the key agreement, the client most commonly verifies
the server’s identity based on the server’s X.509 certificate [12]
issued by some trusted certificate authority (CA). However,
in the standard certificate ecosystem, there is still room for
misuse, as multiple certificates may be issued for the same
domain name. The most prominent examples of such incidents
include CAs like Comodo1 or DigiNotar2 issuing certificates
for, among others, subdomains of google.com. In the latter
case of DigiNotar, these fraudulent certificates were used for
man-in-the-middle attacks against users.

To this end, countermeasures like Certificate Transparency
(CT) [26, 28, 18] have received a lot of attention recently. In

1https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
2https://security.googleblog.com/2011/08/update-on-attempted-man-in-

middle.html

CT, all issued TLS certificates are publicly logged. Its goal is
to allow any party to audit the public log and find suspicious
certificates or check the integrity of the log itself. The ultimate
goal of CT is to eventually have clients refuse connections for
certificates that are not included in a public log. Google began
enforcing this policy for certificates issued after April 20183

in its browser. Also, other big browser vendors such as Apple
and Mozilla are in the process of enforcing this policy.

In a logging system, web clients need to ensure that log
servers do not hand out promises of certificate inclusion in
the log without actually doing so. To combat misbehaving log
servers, web clients act as auditors, verifying that any cer-
tificates they received are actually publicly logged. Although
this is an important role, it has negative privacy implications
for clients performing such an auditing role, as verifying the
inclusion of a certificate reveals the browsing behavior of the
client to the log server.

A. Overview of the Certificate Transparency Ecosystem

Certificate Transparency is a large ecosystem with many
participants. First, there are so-called submitters, who submit
certificates or precertificates4 to the log server and receive
a Signed Certificate Timestamp (SCT). An SCT is a log
server’s promise that the certificate it was issued for will be
included in the log server after a particular time period called
Maximum Merge Delay (MMD). This SCT is then either
directly included in the certificate or exchanged with a web
client during the TLS handshake. Submitters are usually CAs,
but, in general, anyone can submit certificates to the log server.

Log servers receive certificate chains and issue SCTs for
them. They add those chains (together with the respective
SCTs) to a data structure which allows to store elements and
to later produce succinct witnesses to attest the membership
of certain values within this data structure. Conceptually, such
a data structure realizes what is formalized by cryptographic
accumulators (see [15] for an overview). Technically, it is
realized using Merkle trees [35].

The role of monitors is to watch the log servers and
audit their behavior by verifying the validity and consistency
of the accumulator over time. Monitors also can check for
misissued certificates and alert domain owners when they
detect a potentially malicious certificate in the log.

3https://www.section.io/blog/chrome-ct-compliance/
4Precertificates are certificates provided to the log before the issuance of the

actual certificate. They contain a special critical poison extension that renders
the certificate unusable in TLS connections.
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Finally, there are so-called auditors, who verify the SCTs’
signature and check that the accompanying certificate is
present in the log by requesting a witness attesting their mem-
bership in the accumulator and verifying it against the current
accumulator value. They additionally can request a proof of
consistency with respect to changes in the accumulator over
time. An auditor is an essential part of a TLS client, but it
could also be a secondary function of a monitor. Auditors
built into TLS clients do not necessarily perform this inclusion
checks in real time when visiting a website; usually, only the
SCT signatures are verified against the public keys of trusted
log servers. The Merkle-tree inclusion proofs are then retrieved
asynchronously at a later time to audit if the log server is well-
behaved. Chromium-based browsers already have a built-in
component that validate SCTs by sending them to a Google
resolver that validates inclusion proofs. A misbehaving log
server, issuing SCTs for certificates that are not logged by the
server, will then get reported to big browser vendors and will
subsequently be removed from the list of trusted log servers.

Current State of the Certificate Transparency Ecosys-
tem: Due to the efforts of big browser vendors, especially
Google, the CT ecosystem is growing rapidly. As of August
2018, several of the big CT log servers (e.g., Google Argon)
have more than 250 million certificates in their log. Even
the smaller log servers have more than 10 million active
certificates, with a certificate issuance rate of ≈ 53000 new
certificates per hour. Two months later (October, 2018), the
certificate issuance rate jumped to ≈ 105000 new certificates
per hour and several of the big CT log servers (e.g., Google
Argon) have more than 400 million certificates in their log
servers. Cloudflare’s CT statistics website5 publishes live
statistics about the current state of CT log servers.

A big factor in these numbers is the growing popularity
of Let’s Encrypt,6 a free, automated certificate authority that
accounts for more than 72% of all certificates in CT logs
(cf. Table I) This huge number of certificates makes the
use of simple privacy-preserving techniques, such as simply
downloading the full log, impossible in practice.

Root CA Certificates Percentage

DigiCert 64,226,041 5%
Let’s Encrypt 941,016,262 72%
Sectigo 246,484,842 19%
Other 62,114,615 5%

TABLE I
NUMBER OF CERTIFICATES PER CAS TRACKED AS PART OF CT. NUMBERS

ARE BASED ON DATA FROM HTTPS://MERKLE.TOWN AS OF APRIL 8TH,
2019.

B. Privacy Challenges with CT

The auditors’ role in CT is essential because they verify that
a log server did not issue an SCT for a certificate that is not
included in the public log after the MMD. However, this vital

5https://merkle.town/
6https://letsencrypt.org/

process of auditing SCTs in CT can violate a user’s privacy
if the auditor is, e.g., a TLS client.

The CT auditor checks that the corresponding certificate of
each valid SCT is included in the log server. This is done by
requesting a membership proof for the certificate hash from
the log server and verifying it against the accumulator value
(the Signed Tree Hash (STH)) of the log server. The downside
to this approach is that it reveals the browsing behavior of
the specific auditor (which is usually a TLS client) to the
log server because having a particular SCT means that the
auditor visited this website. A malicious log server can choose
to record this browsing behavior and sell this browsing history
to interested third parties, like advertising agencies.

On the other hand, the privacy problem stated above can also
weaken the integrity of the CT ecosystem, since TLS clients
are discouraged to audit sites which they may not want to
be associated with, e.g., sites of political, religious or sexual
nature. In turn, if no-one is auditing the validity of SCTs
for these certificates, they can more likely become targets for
adversaries, as they could convince a malicious log server to
issue an SCT for a malicious certificate and not include it into
its log. If a potential victim of a man-in-the-middle attack
using this malicious certificate is not likely to audit the SCT
because he does not want his browsing behavior known, this
attack is much more likely to succeed unnoticed.

Furthermore, the privacy problem is transferred to applica-
tions or protocols that use CT as a basis or follow the same
architectural design. One such application is DECIM [45],
which aims to detect the compromise of endpoints in messag-
ing scenarios. DECIM provides a key management protocol
based on CT and enables users to refresh and manage keys in
a transparent manner. Users of this system query keys from
log servers and can thereby leak their communication partners.
Thus, the authors of DECIM suggest the use of spoof queries
over an anonymous channel such as Tor to hide the actual user
queries from the log servers. Our proposed solutions can also
be directly applied to DECIM.

C. Our Contribution

In this work, we tackle the privacy issues within the
Certificate Transparency ecosystem. Our contributions are as
follows:

• We build on top of Lueks and Goldberg’s approach [31]
for privacy-preserving retrieval of inclusion proofs from
CT log servers. To achieve privacy there, clients fetch
inclusion proofs using a multi-server private information
retrieval (PIR) protocol. We, however, present a more
scalable design for logging a huge number of certificates,
which allows us to include small static partial inclusion
proofs in an SCT, a server’s certificate or as a TLS
extension. The client can then check the inclusion based
on the partial proof and by fetching the missing parts of
the proof using a PIR-based approach.

• We verify the practicality of our approach by extending
Google’s CT log server implementation and performing
experiments on realistic log server sizes. Even without

433



using the approach of sub-trees, we report practical
performance numbers and improve both runtime and
communication compared to previous approaches. For our
multi-tier approach, we report a client runtime overhead
of less than a millisecond in total, a server runtime
overhead of less than 9 milliseconds, and total communi-
cation overhead of around 7 KB for 231 certificates when
using hourly sub-trees, and even below 1 milliseconds for
clients and servers for sub-trees accumulating certificates
per minute.

Specifically, our goal is to tackle the privacy issue without
any changes to the TLS server side to ease the possibility of
a fast deployment. In our approach, we split the Merkle tree
containing all certificates into multiple tiers of smaller Merkle
trees where the trees at the bottom contain certificates. This
split can, for example, be based on a parameterizable time
interval or a maximum number of certificates. The sub-trees,
respectively their roots, are then combined into the larger tree
containing all certificates. This separation of the certificates
into smaller sub-trees then allows us to embed membership
proofs concerning the sub-trees in an extension field of the
SCT or as an X.509v3 extension [12] into the certificate itself.
As the height of the larger tree is now considerably smaller
than a single tree containing all certificates, the approach by
Lueks and Goldberg [31] using PIR to fetch the membership
proofs, becomes practical again.

We formalize our approach in more general terms using
accumulators and sub-accumulators, where we consider the
smaller sub-trees as accumulators and then the full tree as
an accumulator of accumulators. Using this abstraction, we
discuss different types of accumulators including Merkle-tree
accumulators as well as RSA and bilinear pairing based ones
in terms of their performance characteristics as well as their
consequences on the security on the CT ecosystem.

Additionally, we use a different two-server PIR solution
as an alternative to the PIR scheme used by Lueks and
Goldberg. We make use of the work on distributed point
functions by Gilboa and Ishai [21] to build an efficient two-
party computationally secure PIR system and present a highly
performant implementation. For this, the client needs to know
the index i of the item it wants to retrieve in the database.
At the moment, there no such index exists in the SCTs that
are returned by the log server. Therefore, we propose to
include such an index in the CtExtensions field of an
SCT. Alternatively, this static piece of information can also
be included in a TLS extension.

Finally, our approach is general and can also be applied to
other systems based on CT-like architectures. In particular, it
could be used to replace the spoof queries over Tor as proposed
in DECIM for hiding a user’s communication partners.

D. Related Work

Different approaches have been proposed to solve various
privacy issues in the context of CT, and we discuss some of
them below as well as known privacy-preserving techniques.

Tor [17] and AN.ON [5], two open and privacy-enhancing
networks can provide the needed infrastructure to solve the
privacy problem in CT. In both networks, the client requesting
an inclusion proof is anonymous through a series of complex
routing mechanisms. However, Tor suffers from unpredictable
performance and AN.ON has limited bandwidth and has no
load balancing mechanisms [44].

Another suggestion allows the clients to receive the inclu-
sion proofs using special DNS records through their DNS
resolvers [27]. In this case, the log server operates DNS name
servers which serve authoritative answers to special queries
from web clients. One of the pitfalls [36] of this approach is
that the browsing history is still observable since DNS requests
are mostly sent in plaintext over UDP.

The draft of version 2 of the CT RFC [29] discusses
the privacy issues in CT and presents three mechanisms to
retrieve the Merkle inclusion proofs in a privacy-preserving
way. The first mechanism involves a new TLS extension
where the TLS servers send the inclusion proofs and SCTs in
the process of communication with the client. The inclusion
proofs and the SCTs can be updated on the fly in this
case. This approach puts additional load on the server, i.e.,
the server has to continually update the inclusion proofs it
has in storage. The second mechanism involves the Online
Certificate Status Protocol (OCSP) [40]. A user contacts the
OCSP service of a certificate authority to check whether a
certificate was revoked, thus leaking the browsing behavior
to the CA. The OCSP can also be used in this manner to
deliver inclusion proofs to the client. However, OCSP does
not solve the privacy problem but simply shifts the information
leakage to a certificate authority. OCSP stapling [25], which
was initially designed to offload computational costs to the
servers, also helps to address privacy issues, since the client
no longer needs to contact the CA themselves, but verifies
the time-stamped OCSP response appended by the server to
the initial TLS handshake. The OCSP stapling approach also
adds additional load on the server because the time-stamped
OCSP response has to be continuously changed and updated.
The final mechanism involves adding the inclusion proofs and
the SCTs directly as an X509v3 certificate extension. This
extension can not regularly be updated, and while it provides
privacy, it quickly de-synchronizes with the log servers.

Lueks and Goldberg [31] propose to store membership
proofs in a PIR database optimized for multi-user queries. The
database stores a record containing the membership proof for
each certificate; thus for storing 2� certificates, the database is
required to store � ·2� hashes. For log servers storing a million
of certificates, the performance is reasonable; however, current
CT log servers contain a hundred times more certificates than
assumed by Lueks and Goldberg, rendering their approach
impracticable.

Eskandarian et al. [19] address another privacy issue, which
is not the focus of this work. In case a misbehaving log server
is identified, an auditor is required to publish the offending
SCT to indicate the log server’s misbehavior. Naturally, the
incident together with the SCT would then be reported to
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browser vendors managing the list of trusted log servers.
However, this again leaks the client’s browsing behavior to a
third party. Eskandarian et al. tackle this issue by constructing
zero-knowledge proofs of exclusion, proving that an SCT has
been excluded from a log whereas the verifier only learns that
an entry has been excluded. Their techniques fundamentally
rely on efficient proofs of knowledge of signatures together
with suitable signature schemes for signing timestamps.

A recent proposal [38] addresses the issues related to
gossiping in Certificate Transparency. Gossiping is the sharing
of information about log servers between clients. The authors
propose three protocols for gossiping SCTs and Signed Tree
Heads (STHs) amongst web clients. The protocols necessitate
the exchange of sensitive information that can be used to
aggregate network activities of different clients or track clients
across different origins. The authors proposed measures to
ensure that the possibility of such a privacy breach is minimal.
However, the protocols and the privacy measures of this draft
focus primarily on the gossiping protocols and do not address
the privacy concerns that come with the fetching of inclusion
proofs.

Demmler et al. [14] use a PIR based on distributed
point functions (DPF) to construct a multi-server private set-
intersection protocol optimized for unbalanced set sizes. In
addition to a performant implementation, they also touch on
deployment considerations, which we also discuss in Sec-
tion V-D.

Splinter [43], a system built on Function Secret Sharing and
DPFs, provides privacy for users querying a public database.
The query from a user is split and sent to multiple servers that
have a copy of the same data. Splinter cannot only retrieve
data in a PIR-like fashion but also enables a user to compute
functions such as MAX or TOPK over ranges of the public
data without non-colluding servers learning any information
about the query.

A different approach to PIR is called oblivious RAM
(ORAM), where a client can read and write to a database
stored on a server without the server learning about the
location or content of the reads and writes. The original
work of Goldreich [23] has spawned an extensive line of
work for different ORAM constructions and improvements,
a recent example being [41]. However, while ORAM is a
more powerful primitive than PIR, it is not well suited for
the scenario of CT, since the database is read-only and public,
with many different clients wanting to retrieve data.

A different line of work investigates privacy-preserving key
directories, which are similar to the logging infrastructure
used in CT but additionally hide the contents of the key
directory. Examples of such systems include CONIKS [33],
EthIKS [6], Catena [42], and the generalization of Verifiable

Key Directories by Chase et al. [10].

II. PRELIMINARIES

In this section, we introduce cryptographic primitives and
constructions that we subsequently use as building blocks.
Notation-wise, let [n] := {1, . . . , n} for n ∈ N. For an

algorithm A, we write A(· · · ; r) to make the random coins
explicit. We say that an algorithm is efficient, if it runs in
probabilistic polynomial time (PPT).

A. Accumulators

We rely on the formalization of accumulators by Derler
et al. [15]. Based on this formalization, we then state the
Merkle tree, the RSA, and the bilinear accumulators within this
framework. We start with the definition of a static accumulator.

Definition 1 (Static Accumulator): A static accumulator is
a tuple of efficient algorithms (Gen,Eval,WitCreate,Verify)
which are defined as follows:
Gen(1κ, t) : This algorithm takes a security parameter κ and

a parameter t. If t �= ∞, then t is an upper bound on the
number of elements to be accumulated. It returns a key
pair (skΛ, pkΛ), where skΛ = ∅ if no trapdoor exists. We
assume that the accumulator public key pkΛ implicitly
defines the accumulation domain DΛ.

Eval((skΛ, pkΛ),X ) : This algorithm takes a key pair (skΛ,
pkΛ) and a set X to be accumulated and returns an
accumulator ΛX together with some auxiliary information
aux.

WitCreate((skΛ, pkΛ),ΛX , aux, xi) : This algorithm takes a
key pair (skΛ, pkΛ), an accumulator ΛX , auxiliary infor-
mation aux and a value xi. It returns ⊥, if xi /∈ X , and
a witness witxi for xi otherwise.

Verify(pkΛ,ΛX ,witxi , xi) : This algorithm takes a public key
pkΛ, an accumulator ΛX , a witness witxi and a value
xi. It returns 1 if witxi

is a witness for xi ∈ X and 0
otherwise.

We now define a dynamic accumulator, but adapt it to our use-
case. We only allow additions of elements to the accumulator.

Definition 2 (Dynamic Accumulator): A dynamic accumu-
lator is a static accumulator with an additional tuple of efficient
algorithms (Add,WitUpdate) which are defined as follows:
Add((skΛ, pkΛ),ΛX , aux, x) : This deterministic algorithm

takes a key pair (skΛ, pkΛ), an accumulator ΛX , auxiliary
information aux, as well as an element x to be added. If
x ∈ X , it returns ⊥. Otherwise, it returns the updated
accumulator ΛX ′′ with X ′ ← X ∪ {x} and updated
auxiliary information aux′.

WitUpdate((skΛ, pkΛ),witxi
, aux, x) : This algorithm takes a

key pair (skΛ, pkΛ), a witness witxi
to be updated, aux-

iliary information aux and an x which was added to
the accumulator. It returns an updated witness wit′xi

on
success and ⊥ otherwise.

Note that the formalization of accumulators by Derler et
al. gives access to a trapdoor if it exists. Giving those
algorithms access to the trapdoor can often be beneficial
performance-wise, but requires additional trust assumptions.
We will discuss the consequences for instantiating our schemes
in Section III-C.

Finally, we recall the notion of collision freeness:
Definition 3 (Collision Freeness): A cryptographic

accumulator is collision-free, if for all PPT adversaries
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A there is a negligible function ε(·) such that:

Pr

⎡
⎣ (skΛ, pkΛ) ← Gen(1κ, t),
(wit�xi

, x�
i ,X�) ← AO(pkΛ)

:
Verify(pkΛ,Λ

�,
wit�xi

, x�
i) = 1

∧ x�
i /∈ X�

⎤
⎦≤ ε(κ),

where Λ� ← Evalr�((skΛ, pkΛ),X�) and the adversary gets
access to the orcales

O = {Eval((skΛ, pkΛ), ·),WitCreate((skΛ, pkΛ), ·, ·, ·)}
and, if the accumulator is dynamic, additionally to

{Add((skΛ, pkΛ), ·, ·, ·),WitUpdate((skΛ, pkΛ), ·, ·, ·)}.

B. Merkle-tree Accumulator

In Scheme 1, we cast the Merkle-tree accumulator in the
framework of [15]. Correctness can easily be verified. We
restate the well-known fact that this accumulator is collision
free.

Lemma 1: If {Hk}k∈Kκ is a family of collision resistant
hash functions, the static accumulator in Scheme 1 is collision
free.
In the current CT log server implementation, Hk is instantiated
using SHA-256. Also, in practical instantiation, the require-
ment that Eval only works on sets of a size that is a power
of 2 can be dropped. It is always possible to repeat the last
element until the tree is of the correct size.

C. Dynamic Public-Key Accumulators

Besides hash based-based constructions, major lines of
work investigated accumulators in the hidden order groups,
i.e. RSA-based, and the known order groups, i.e. discete
logarithm-based, setting. The first collision-free RSA-based
accumulator is due to Barić and Pfitzmann [2]. The accumu-
lator in this construction consists of a generator raised to the
product of all elements of the set. Then witnesses essentially
consist of the same value skipping the respective elements
in the product. Thereby, the witness can easily be verified
by raising the power of the withness to the element and
checking if result matches the accumulator. We recall the RSA-
based accumulator in Scheme 2. Note however, that we define
WitCreate in a way that does not require the factorization
of N , i.e. no secret key is required. Correctness can easily
verified, and collision freeness follows from the strong RSA
assumption:

Lemma 2 ([2]): If the strong RSA assumption holds,
Scheme 2 is collision-free.

Additionally, we recall the t-SDH-based accumulator from
Nguyen [37]. The idea here is to encode the accumulated
elements in a polynomial. This polynomial is then evaluated
for a fixed element and the result is randomized to obtain the
accumulator. Similar to the RSA-based accumulator, a witness
consists of the evaluation of the same polynomial with the term
corresponding to the respective element cancelled out. For
verification a pairing is used to check whether the polynomial
encoded in the witness is a factor of the one encoded in the
accumulator. The scheme is depicted in Scheme 3. Again we

define the accumulator in a way that no secret key, i.e. s,
is required. Correctness is again obvious, whereas collision
freeness follows from the t-SDH assumption:

Lemma 3 ([37]): If the t-SDH assumption holds, Scheme 3
is collision-free.

D. Distributed Point Functions

Distributed Point Functions (DPFs) were introduced by
Gilboa and Ishai [21] and later generalized and improved by
Boyle, Gilboa, and Ishai [8, 9] in a concept called Function
Secret Sharing (FSS). A point function Px,y is a function
defined for x, y ∈ {0, 1}∗, so that

Px,y(x
′) =

{
y if x′ = x

0|y| otherwise.

A DPF is a keyed function family Fk, where given x, y we
can generate n keyshares (k0, k1, . . . , kn) so that

∑n
i=0 Fki

=
Px,y and Fki

completely hides x and y. We focus on the case
of two parties because efficient DPF constructions exist for
n = 2, where the sizes of the key-shares ki are logarithmic in
the domain of the DPF input, whereas the best generic multi-
party construction of DPFs have key-share sizes in the order
of the square root of the domain.

The interface of a DPF is given as a tuple of functions
(DPF.Gen,DPF.Eval) in [9], and is defined for general y,
however for our use, we restrict it to y = 1. We also fix the
number of parties to two, and then use AES as an efficiently
computatble PRF, as suggested by [9]. In the following, N
refers to the domain of the DPF. We describe the interface in
the following:
DPF.Gen(x) : Given an index x ∈ [N ], this algorithm returns

a key pair (k0, k1).
DPF.Eval(kb) : Given a key kb, which is the result of a

previous call to DPF.Gen(x), this algorithm produces a
keystream Kb of length N . Given K0 = DPF.Eval(k0)
and K1 = DPF.Eval(k1),

(K0 ⊕K1)[x
′] =

{
1 if x′ = x

0 otherwise.

E. Private Information Retrieval

Private Information Retrieval (PIR) is a primitive originally
introduced by Chor et al. [11], that allows a client to retrieve
an item from a server database without the server learning
anything about the item requested. The server’s privacy is not
a concern in PIR schemes, and the database may even be
public, only the client’s query is considered private.

Computational PIR is a flavor of PIR where the client’s
query is hidden from a polynomially bounded server. Such
PIR schemes can, for example, be built from fully homo-
morphic encryption (FHE). Information-theoretic PIR protects
the client’s query even against a computationally unbounded
server. Such schemes usually rely on multiple non-colluding
servers to provide such strong privacy guarantees and usually
offer more performance than single-server PIR schemes. Since
the introduction of PIR in the 1990s by Chor et al. many
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Gen(1κ, t) : Fix a family of hash functions {Hk}k∈Kκ with Hk : {0, 1}∗ → {0, 1}κ ∀ k ∈ Kκ. Choose k ←R Kκ and return
(skΛ, pkΛ) ← (∅, Hk).

Eval((skΛ, pkΛ),X ) : Parse pkΛ as Hk and X as (x0, . . . , xn−1). If � k ∈ N so that n = 2k return ⊥. Otherwise, let �u,v refer
to the u-th leaf (the leftmost leaf is indexed by 0) in the v-th layer (the root is indexed by 0) of a perfect binary tree.
Return ΛX ← �0,0 and aux ← ((�u,v)u∈[n/2k−v ])v∈[k], where

�u,v ←
{

Hk(�2u,v+1||�2u+1,v+1) if v < k, and
Hk(xi) if v = k.

WitCreate((skΛ, pkΛ),ΛX , aux, xi) : Parse aux as ((�u,v)u∈[n/2k−v ])v∈[k] and return witxi
where

witxi ← (��i/2v�+η,k−v)0≤v≤k, where η =

{
1 if �i/2v� (mod 2) = 0

−1 otherwise.

Verify(pkΛ,ΛX ,witxi
, xi) : Parse pkΛ as Hk, ΛX as �0,0, set �i,k ← Hk(xi). Recursively check for all 0 < v < k whether the

following holds and return 1 if so. Otherwise return 0.

��i/2v+1�,k−(v+1) =

{
Hk(��i/2v�,k−v||��i/2v�+1,k−v) if �i/2v� (mod 2) = 0
Hk(��i/2v�−1,k−v||��i/2v�,k−v) otherwise.

Scheme 1: Merkle-tree accumulator.

Gen(1κ, t) : Fix a hash functions H with H : {0, 1}∗ → P.
Choose an RSA modulus N = p · q with two large safe
primes p, q, and let g be a random quadratic residue
mod N . Set skΛ ← ∅ and pkΛ ← (N, g,H)

Eval((skΛ, pkΛ),X ) : Parse pkΛ as (N, g,H). Return ΛX ←
g
∏

x∈X H(x) mod N and aux ← X .
WitCreate((skΛ, pkΛ),ΛX , aux, x) : Return witx ←

g
∏

x′∈X\{x} H(x′) mod N .
Verify(pkΛ,ΛX ,witx, x) : Parse pkΛ as (N, g,H). If

witH(x)
x = ΛX mod N holds, return 1, otherwise

return 0.
Add((skΛ, pkΛ),ΛX , aux, x) : Parse pkΛ as (N, g,H) and aux

as X . Set X ′ ← X ∪{x}, aux′ ← X ′, and ΛX ′ ← Λ
H(x)
X ′

mod N . Return ΛX ′ and aux′.
WitUpdate((skΛ, pkΛ),witxi , aux, x) : Parse pkΛ as

(N, g,H). Return witH(x)
xi

mod N .

Scheme 2: RSA-based accumulator.

works have improved the communication and computational
complexity of PIR schemes, for example [13, 1, 24, 34, 22,
16, 3, 31].

An efficient 2-server computational PIR scheme can be
constructed from DPFs in a straight-forward way as shown
in [21]. Before we discuss the instantiation, we recall their
definition of a private information retrieval (PIR) protocol:

Definition 4 (2-server PIR): A 2-server PIR protocol in-
volving two servers S0, S1 holding the same n−bit database
z and a user consists of three algorithms (Q,A,M) with
query domain DQ and answer domain DA and are defined
as follows:
Q(n, i) : On input of an index i, client returns queries

(q0, q1) ∈ D2
Q.

A(z, q) : On input of a query q and a database z, server b
returns an answer ab.

Gen(1κ, t) : Let G be a prime order group p generated by g
with a bilinear map e : G × G → GT . Choose s ∈ Z∗

p

and return skΛ ← ∅ and pkΛ ← (G, e, (gs
i

)ti=0).
Eval((skΛ, pkΛ),X ) : Parse pkΛ as (G, e, (gs

i

)ti=0) and X
as subset of Zp. Expand the polynomial

∏
x∈X (x +

X) =
∑n

i=0 aiX
i, choose r ←R Z∗

p and return ΛX ←
(
∏n

i=0 g
si)ai)r and aux ← (r,X ).

WitCreate((skΛ, pkΛ),ΛX , aux, x) : Parse aux as (r,X ), run
(witx, . . .) ← Eval((skΛ, pkΛ),X \ {x}; r), and return
witx.

Verify(pkΛ,ΛX ,witx, x) : Parse pkΛ as (G, e, (gs
i

)ti=0). If
e(ΛX , g) = e(witx, g

x · gs) holds, return 1, otherwise
return 0.

Add((skΛ, pkΛ),ΛX , aux, x) : Parse pkΛ and aux as (r,X ). Set
X ′ ← X∪{x} and return Eval((skΛ, pkΛ),ΛX , aux,X ; r).

WitUpdate((skΛ, pkΛ),witxi
, aux, x) : Return ΛXwitx−xi

xi
.

Scheme 3: t-SDH-based accumulator.

M(i, a0, a1) : In input of an index i and two answers a0, a1,
recovers and returns the i-th database entry zi.

We note that [21, Definition 2] explicitly handless random
coins, but we simply omit them for the sake of brevity.

Definition 5 (Correctness): A 2-server PIR scheme is correct
if for every n ∈ N, every z ∈ {0, 1}n and every i ∈ [n], it
holds that

Pr

[
(q0, q1) ← Q(n, i) :
M(i, (A(j, z, qj))j∈{0,1}) = zi

]
= 1.

Definition 6 (Computational Secrecy): Let Db,�logn	,i, b ∈
0, 1, n ∈ N and i ∈ [n] denote the probability distribution on qb
induced by Q. A 2-server PIR scheme provides computational
secrecy if there exists a PPT algorithm Sim such that the
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following two distributions

{SIM(b, �log n�)}b∈{0,1},n∈N and
{Db,�logn	,i}b∈{0,1},n∈N,i∈[n]

are computationally indistinguishable.
We now give a short intuition of a 2-server PIR construction

from a DPF. There, the client calls (k0, k1) ← DPF.Gen(q)
and sends k0 to server 0 and k1 to server 1. Both servers 0
and 1 call Ki ← DPF.Eval(ki) and perform an inner product
between the expanded keystream and the database items, Xi =⊕N

l=0 Ki[l]·DB[l]. The servers finally return X0 and X1 to the
client who can recover the requested item xq = X0 ⊕X1. The
correctness of this PIR scheme follows from the correctness of
the used DPF scheme. The privacy of the PIR scheme follows
from the privacy of the used DPF scheme ([21, Theorem 2]),
but requires that the two servers do not collude.

III. MODELING APPEND-ONLY LOGS AND MEMBERSHIP
PROOFS FOR CT

In this section, we give a model of the append-only7 log
functionality that is used in the CT ecosystem. We then extend
the append-only log by also allowing for privacy-preserving
membership proofs.

A. Append-Only Logs

An append-only log has to provide several functionalities:
(i) adding new items, (ii) proving membership of a item in
the log, (iii) proving consistency of the append-only property
between two versions of the log. We closely model append-
only logs on the definition of accumulators, but take care of
the interactive nature. In the following, we define the syntax
of the append-only log protocol between a client and a server
closely resembling the CT protocol.

Definition 7 (Append-Only Log): An append-only log is
an interactive protocol of a global Setup algorithm, a client
with algorithms VerifyMember and a server with algorithms
(Append,GetAcc,ProveMember) which are defined as fol-
lows:
Setup(1κ, t) : This algorithm takes a security parameter κ and

a parameter t. If t �= ∞, then t is an upper bound on
the number of elements to be accumulated in the log. It
returns public parameters pp.8

Append(xi) : This algorithm takes new item xi and appends
it to the log.

GetAcc() : This algorithm returns the current log accumulator
value ΛX to the client.

ProveMember(xi) : This algorithm value xi. It returns ⊥, if
xi /∈ X , and a witness witxi

for xi otherwise.
VerifyMember(ΛX ,witxi

, xi) : This algorithm takes an accu-
mulator ΛX , a witness witxi

and a value xi. It returns 1
if witxi

is a witness for xi ∈ X and 0 otherwise.

7Although the generalized functionality might be more accurately called
“add-only”, since the order of the elements is not preserved in general, we
choose to go with “append-only”, since it is consistent with the terminology
used, e.g., by the Certificate Transparency RFC [28].

8We assume that these public parameters are available implicitly in all
algorithms.

The server starts off with an initially empty log. Optionally,
a server can provide an additional algorithm Gen and the client
an additional algorithm VerifyAcc defined as follows:

Gen() : This algorithm generates a secret signing key sk and
a verification key pk.

VerifyAcc(pk,ΛX , σ) : This algorithm takes the server public
key pk, an accumulator ΛX , a signature on the accumu-
lator σ. It returns 1 if σ is valid, and 0 otherwise.

It these two algorithms are available, GetAcc additionally
returns a signature on the accumulator.

The additional algorithms Gen and VerifyAcc provide the
functionality of signed tree head, i.e., Gen creates the signing
key material on the server side and VerifyAcc verifies the
signature on the accumulator.

For correctness of the log, we require that for every κ ∈ N,
pp ← Setup(1κ, t), that for every x appended to the log using
Append(x), for all Λ ← GetAcc(), it holds that

VerifyMember(Λ,ProveMember(x), x) = 1.

This essentially captures that the membership proof for every
element added to the log can be verified. If the append-only log
also provides the optional algorithms Gen and VerifyAcc, then
we additionally require for correctness, that for all (sk, pk) ←
Gen() and all (Λ, σ) ← GetAcc(), it also holds that

VerifyAcc(pk,Λ, σ) = 1.

A variant of the append-only log is one with privacy-
preserving membership proofs, which allow a client to retrieve
a membership proof for a certain item without the server
learning the item for which the proof was requested. This
property is useful in many applications such as CT, where
it allows a client to hide its browsing behavior from the log
server.

Definition 8 (Append-Only Log with Privacy-Preserving

Membership Proofs): The append-only log with privacy-
preserving membership proofs additionally extends Defini-
tion 7 with algorithms (PMQuery,PMReconstruct) for the
client the server with PMAnswer algorithm which are defined
as follows:

PMQuery(xi, i, n) : This algorithm takes an item xi with its
corresponding index i and returns queries (qj)j∈[n] for n
servers.

PMAnswer(j, qj) : This algorithm takes a query qj for the j-th
servers and returns an answer aj .

PMReconstruct(i, (aj)j∈[n]) : Given answers (aj)j∈[n] for in-
dex i, it reconstructs the witness witxi .

The client may use n servers to request membership proofs.
The proof returned by PMReconstruct can be verified as

normal using VerifyMember. While the algorithms in this
definition are closely modeled after those of PIR protocols,
we note that this does not necessarily restrict instantiations to
PIR based ones.

For correctness, we require first of all, that it satisfies the
correctness of append-only logs. Additionally, we require that
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for all items x append to the log with their corresponding
index i and n servers, for all Λ ← GetAcc(), it holds that

VerifyMember(Λ,PMReconstruct(i, (aj)j∈[n])) = 1

where

aj ← PMAnswer(j,PMQuery(xi, i, n)) for j ∈ [n].

Thereby we ensure that reconstructed witness verify. This
definition allows the clients to contact multiple servers to
obtain the membership proof. In the following, we will focus
on the case n = 2.

Finally, we discuss the security notions. However, since our
main concern are privacy issues, we only discuss the first
two properties briefly. Inspired by an accumulator’s collision
freeness, the append-only log is collision-free if servers can
only produce witnesses for elements that were included in
the accumulator. Secondly, we require that adversaries cannot
forge signatures on accumulators, i.e. that the append-only
log is unforgeable. The third notion is geared towards the
client’s privacy when requesting proofs for logged elements
and ensures that the queries do not leak any information on
the queried elements. More formally, we define it in the same
vein as computational secrecy of PIRs (cf. Definition 6):

Definition 9 (Computational Secrecy): Let Db,�logN	,i, b ∈
{0, 1}, n ∈ N and i ∈ [n] denote the probability distribution on
qb induced by PMQuery. An append-only log scheme provides
computational secrecy if there exists a PPT algorithm Sim such
that the following two distributions

{SIM(b, �log n�)}b∈{0,1},n∈N and
{Db,�logn	,i}b∈{0,1},n∈N,i∈[n]

are computationally indistinguishable.

B. CT as Append-Only Log

We now show that the existing CT logging ecosystem
implements an append-only log according to Definition 7.
It also provides the optional algorithms based on signature
schemes, which we formally recall in Section B. We note
that Scheme 4 uses a yet undefined algorithm of the Merkle-
tree, namely MT.Add, yet no function to update witnesses is
used. Especially if UpdateWitness is not defined to achieve a
dynamic accumulator, Add is easily implemented by simply
recomputing the accumulator value.

As the correctness, collision freeness and unforgeability are
straight-forward to check for Scheme 4, we only give a sketch
of the proof:

Lemma 4: Scheme 4 is correct. Additionally, if the accumu-
lator is collision-free and the signature scheme Σ is unforge-
able, Scheme 4 is collision-free and unforgeable, respectively,
as well.

Sketch of proof: Correctness follows easily from the
correctness of the accumulator and the signature scheme.
Collision freeness follows with a straightforward reduction to
the collision freeness of the accumulator, and unforgeability
follows from the EUF-CMA security of the signature scheme.

Let MT be a Merkle-tree accumulator, Σ be a signature
scheme, and let X ← ∅ be the initially empty log on the
server.

Setup(1κ, t) : Call (skΛ, pkΛ) ← MT.Gen(1κ, t), set pp ←
(1κ, t, pkΛ), and return pp.

Gen() : Return (skΣ, pkΣ) ← Σ.Gen(1κ).
Append(xi) : Set X ← X ∪ {xi}, and up-

date the internal state of the accumulator
(Λ, aux) ← MT.Add((∅, pkΛ),Λ, aux, xi) or
(Λ, aux) ← MT.Eval((∅, pkΛ),Λ, aux, xi) if xi is
the first element appended.

GetAcc() : Set σ = Σ.Sign(skΣ,Λ) and return (Λ, σ).
VerifyAcc(pkΣ,Λ, σ) : : Return Σ.Verify(pkΣ,Λ, σ).
ProveMember(xi) : Return MT.WitCreate((∅, pkΛ),Λ, aux, xi).
VerifyMember(Λ,witxi

, xi) : Return
MT.Verify(pkΛ,Λ,witxi

, xi).

Scheme 4: Certificate Transparency Logging as append-only
log.

The existing CT ecosystem does not implement an append-
only log with privacy-preserving membership proofs according
to Definition 8. Thus we extend the existing CT system with
privacy-preserving membership proofs using PIR in Scheme 5.

Let PIR be a private information retrieval scheme where the
witnesses are stored in the PIR databases.
PMQuery(xi, i, n) : For each Merkle-tree level v ∈ [k] run

(q
(v)
j )j∈[n] ← PIR.Q(n, �1/2v� + η) where η = 1 if

�1/2v� = 0 (mod 2) and η = −1 otherwise. Return
((q

(v)
j )v∈[k])j∈[n].

PMAnswer(j, qj) : Parse qj as (q
(v)
j ) and run a

(v)
j ←

PIR.A(j, q
(v)
j ) for each Merkle-tree level v ∈ [k]. Return

(a
(v)
j )v∈[k].

PMReconstruct(i, (aj)j∈[n]) : Parse (aj)j∈[n] as (a
(v)
j )v∈[k]

and run witxi
[v] ← PIR.M(i, (a

(v)
j )j∈[n]) for each v ∈

[k]. Return witxi .

Scheme 5: CT log with privacy-preserving membership
proofs.

For the case with n = 2, i.e. two servers, we specialise
in Scheme 6 the scheme using the DPF-based PIR from
Section II-E. For both schemes, the client traverses each level
of the tree and calculates the index of the element he needs to
retrieve for the Merkle-tree witness, with the server input to
the PIR functionality being the hashes in the current tree level.
The privacy guarantees of Scheme 6 follow from the privacy
guarantees of the used PIR scheme.

Theorem 1: If PIR is computationally secret, then Scheme 5
is computationally secret too.

Proof: Indeed, the k-fold application of PIR’s Sim al-
gorithm induces a simulation algorithm on the combined
distribution of successive queries.
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Client Server j
Input: index i, Merkle-tree size N Input: Merkle-tree � with size N

PMQuery(∅, i, 2) :
for v = 0 to �log2 N�:

η ← 1− 2 · (�i/2v� (mod 2))

kv
1 , k

v
2 ← DPF.Gen(�i/2v�+ η)

q1 ← (kv
1)v∈[�log2 N�]

q2 ← (kv
2)v∈[�log2 N�]

return (q1, q2)

for j = 1 to 2:
PMAnswer(j, qj) :

qj

Parse qj as
(
k0
j , k

1
j , . . . , k

�log2 N�
j

)

for v = 0 to �log2 N�:
K ← DPF.Eval(kv

j )

av
j =

�N/2v�⊕
k=0

�k,v ·K[k]

aj ← (
av
j

)
v∈[�log2 N�]aj

return aj

PMReconstruct(2, {a1, a2}) :
return (av

1 ⊕ av
2)v∈[�log2 N�]

Scheme 6: Privacy-Preserving Retrieval of Membership Proofs instantiated with DPF-based PIR.

For the DPF-based instantiation, this means that the scheme
provides secrecy if the two servers do not collude.

Remark 1 (Database Representation): While this scheme
as presented has the advantage that the structure of the
PIR database closely resembles the Merkle-tree and does not
induce much storage-overhead, we also now discuss a possible
alternative representation as used by Lueks and Goldberg [31],
where they precompute the full Merkle-tree proof for each
item and store it in a separate database. This reduces the
amount of PIR queries to 1, which can improve performance
if the PIR scheme is the performance bottleneck. However,
such a representation has the disadvantage that updates to
the Merkle-tree accumulator are much more costly, since the
precomputed proofs need to be updated if the accumulator
changes, increasing the cost of updates to O(n), where n is
the number of total items in the accumulator. Furthermore,
for our DPF-based PIR implementation, the actual cost of the
PIR is composed of (i) the DPF evaluation and (ii) the inner
product of the database items. Our highly performant DPF
implementation results in the inner product dominating this
time (see Section V-B). If we perform one PIR per tree level,
we calculate an inner product with a database containing a
single hash value per item, whereas, for the separate database
of full proofs, we perform the inner product with a database
containing k hash values per item, where k is the tree height.
This results in the total time spent on the inner product being
longer in the case of the separate database since in the tree-
based PIR approach the number of items in the PIR database

is halved each level. Therefore, and due to the costly updates
and more substantial memory requirements, we use the tree-
based PIR approach over the separate database of precomputed
proofs. In Section V-C, we give a comparison between these
two approaches and give evidence that the tree-based database
structure is superior.

C. Using Public-Key Accumulators

Scheme 4 only requires that the underlying accumulator’s
Eval and WitCreate algorithms only rely on public keys and
public parameters. Scheme 6 does not require any special
properties. While the latter is defined to efficiently fetch
the witnesses of a Merkle-tree accumulator, for any other
accumulator it can be defined by retrieving witnesses stored in
a database using a PIR protocol. Hence it is also possible to
instantiate the append-only log using public-key accumulators,
e.g., with Scheme 2 and Scheme 3. We discuss the perfor-
mance characteristics of instantiations using different kinds of
accumulators in Section V-B.

However, if Scheme 4 would allow one to use accumulators
where servers also have access to the accumulator’s secret key,
servers could produce witnesses for elements that were not
added to the accumulator (c.f. [15, Section 3]). In Section A
we discuss this fact for the RSA accumulator (Scheme 2).
A similar fact can also be observed for the bilinear accu-
mulator presented in Scheme 3. In that case, knowledge of
the exponent s would allow the server to fabricate witnesses
for non-accumulated elements. Thus, when using public-key
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accumulators to instantiate the append-only log, it is essential
that the accumulator is set up by a trusted third party.

IV. SUB-ACCUMULATORS IN CT-LOGS

Using private information retrieval (PIR) to retrieve CT log
membership proofs comes with increased computation and
communication complexity, especially for the log server. In
this section, we explore options that can reduce this complexity
and make privacy-preserving membership queries more prac-
tical.

In the current CT logging ecosystem, adding new certificates
to the log server does not happen instantly. Instead, the
submitting parties get a signed promise of inclusion into the
log, and all submitted certificates are only appended to the log
at certain time intervals. The length of these intervals is not
specified by the standard, but a certificate must be included
in the log after the maximum merge delay (MMD) set by
the log operator (usually 24 hours). This process allows us to
restructure the Merkle-tree to reduce the overall depth of the
tree that has to be traversed during the PIR protocol.

In Section I-D we discussed some of the methods outlined
by the designers to increase the user’s privacy when requesting
membership proofs from the log server. One of the proposed
solutions is to embed the proof in a certificate extension;
however, such a proof would quickly get out of sync with the
current accumulator value of the log. We, therefore, suggest
using a hybrid approach of static and dynamic accumulators
instead. A static accumulator requires the whole set of ele-
ments X to be accumulated to be available when building
the accumulator, with no further updates permitted. Even
though the CT ecosystem continually receives updates for new
certificate chains, we can still make use of static accumulators.
We collect all new certificates for a specified time interval
into a set Xt and build a static accumulator ΛXt

. Since the
accumulator for this small set Xt is static, we can generate
a witness witxi

for each xi ∈ Xt, proving membership of xi

in ΛXt , and attach this witness to the SCT or embed it in the
certificate, since we do not require any updates to the witness
in the future.

These small static accumulators for a given time interval are
then in turn accumulated in a dynamic accumulator, which as a
whole can be seen as the equivalent of the current CT log. This
process helps to reduce the size of the dynamic accumulator,
which in turn reduces the complexity of the PIR approach. A
client only needs to fetch the inclusion proof for the dynamic
accumulator using PIR and verifies the membership of the
certificate in the sub-accumulator and the membership of the
sub-accumulator in the dynamic accumulator.

Example 1 (New sub-tree every hour): The largest CT log
servers, e.g., Google Argon, have an average throughput of
≈ 60000 certificates per hour. Thus building a sub-tree per
hour means that we need to accumulate about 216 elements in
the static sub-accumulators. In turn, if we assume a runtime of
3 years, this would result in a total of 24·365·3 = 26280 items
in the dynamic accumulator. If we instantiate this dynamic
accumulator using a Merkle-tree accumulator, we have a tree

depth of 15, which is very feasible to retrieve using multi-
server PIR.

For the choice of static sub-accumulators, we consider two
possibilities: using static Merkle-tree accumulators or using
public-key based static accumulators.

Merkle-Tree Sub-Accumulators: A straight-forward im-
plementation is to also use Merkle-tree accumulators to in-
stantiate the sub-accumulators. This essentially amounts to
a conceptual categorization of some sub-tree of the original
accumulator as static sub-accumulators, with the only change
to the original accumulator being the guarantee that a sub-tree
is static and does not accept any additional values.

Public-Key Sub-Accumulators: An alternative to using
static Merkle-tree accumulators the leaves of our big Merkle-
tree would be to use static public-key based accumulators
instead. These public-key accumulators have different trade-
offs compared to Merkle-tree accumulators. They usually
offer a constant-size membership proof and accumulation
value, compared to the logarithmic proof size of Merkle-
tree accumulators. However, both the generation and ver-
ification algorithms of public-key accumulators usually re-
quire more computationally expensive public-key operations.
Furthermore, public-key accumulators require a trusted setup
phase as we discussed in Section III-C.

From a web server point of view, the constant size proofs
of public-key accumulators are beneficial in theory, as the
required communication only grows by a small, fixed amount.
Furthermore, the web server does not actually have to perform
any public-key operations but only relays the witness to
the client, which then performs the verification algorithm.
However, we are considering sub-accumulator sizes, where
the combined size of the membership proof and accumulator
value are very similar for Merkle-tree accumulators, RSA
accumulators, and bilinear accumulators. This fact, combined
with the setup requirements and the lower performance, makes
the use of public-key accumulators less attractive in our
setting.

We now discuss our approach more formally and show
that the so obtained append-only log still provides secrecy.
The sub-accumulator approach can be interpreted as an ac-
cumulator of accumulators. We cast our approach in into the
accumulator framework in Scheme 7 where we use the second
argument of the Gen algorithm to define the size of the sub-
accumulators.

Lemma 5: If both IA and OA are collision-free, then
Scheme 7 provides collision freeness.

Sketch of Proof: Assume that witx = (witi,Λi,wito) is
a verifiying witness for x �∈ X . Then either x �∈ Xj for all
j ∈ [�] and hence (x,witi) breaks collision freeness of IA, or
Λi was not accumulated in ΛX , thus (Λi,wito) breaks collision
freeness of OA.

Making this accumulator dynamic or at least providing an
Add algorithm is more involved, though. If one adds one
element at a time, it is necessary to add to X� and update
its accumulator until the X� is also of size T . However,
then, one has to remove the old accumulator value from the
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Let OA and IA be accumulators.
Gen(1κ, T ) : Let (ski, pki) ← IA.Gen(1κ, T ) and

(sko, pko) ← OA.Gen(1κ,∞). Set skΛ ← ∅ and
pkΛ ← (pki, pko, T ). Return (skΛ, pkΛ).

Eval((skΛ, pkΛ),X ) : Parse pkΛ as (pki, pko, T ). Partition
X into T -sized subsets X1, . . . , X� with X� hav-
ing potentitally less than T elements. For j ∈
[�] compute (Λj , auxj) ← IA.Eval((∅, pki),Xj) and
(ΛX , aux) ← OA.Eval((∅, pki), (Λj)j∈[�]). Set auxX ←
((Xj ,Λj , auxj)j∈[�], aux) and return ΛX , auxX .

WitCreate((skΛ, pkΛ),ΛX , auxX , x) : Parse pkΛ as
(pki, pko, T ) and auxX as ((Xj ,Λj , auxj)j∈[�], aux).
Find j ∈ [�] such that x ∈ Xj . Now compute
witi ← IA.WitCreate((∅, pki),ΛXj

, auxj , x) and
wito ← OA.WitCreate((∅, pko),ΛX , aux,ΛXj

). Return
(witi,Λi,wito).

Verify(pkΛ,ΛX ,witx, x) : Parse pkΛ as (pki, pko, T ) and witx
as (witi,Λi,wito). If both IA.Verify(pki,Λi,witi) = 1 and
OI.Verify(pko,ΛX ,wito) = 1, return 1, otherwise return
0.
Scheme 7: Sub-Accumulator based Accumulator.

outer accumulator and add the new one. Hence it is more
efficient to gather T elements and then add them at once. In
that case, it is sufficient to add one accumulator to the outer
accumulator. Alternatively, one could also add sets with less
than T elements with one additional sub-accumulator without
touching any of the old accumulator values at the cost of a
larger outer accumulator.

Integration into the append-log scheme with privacy-
preserving membership proof using this approach of adding
T elements together is straightforward provided that the outer
accumulator is a Merkle-tree or provides an Add algorithm.
Consequently, we obtain such a scheme providing computa-
tional secrecy with non-colluding servers.

Corollary 1: Scheme 6 instantiated with Scheme 7 provides
computational secrecy if the PIR servers are non-colluding and
all sub-accumulator witnesses have the same size.

Proof: This follows from Theorem 1. If the sub-
accumulator witnesses do not have the same size, it is possible
to distinguish queries for witnesses which do not have the
same size.

For improved efficiency in the context of certificate trans-
parency, we make use of the fact that we can include parts
of the proof into extension fields of the SCT or the cer-
tificate. Note that, throughout its lifetime, witi and Λi stay
constant, and only wito needs to be updated after adding new
elements to the append-only log. Hence we add witi and Λi

to CtExtensions. Then only wito needs to be retrieved
using the PIR protocol, thus greatly reducing its cost. With
this approach, we can always avoid the restriction of requiring
equal-sized sub-accumulator witnesses.

A. Additional Considerations

As discussed in Section III-C, public-key accumulators
usually require a setup phase involving a trusted third party.
Otherwise, the party holding the accumulator might have
access to the secret trapdoor information, allowing the creation
of witnesses for elements that are not actually contained in
the accumulator. A popular alternative to a trusted third party
is the use of multi-party computation to compute the public
parameters. One prominent example of such an approach is the
“ceremony” of the cryptocurrency Zcash based on [4], where
a multi-party computation was performed including hundreds
of participants in a scalable multi-party protocol to generate
the public parameters for the used proof system [7].

We leverage the non-collusion property of the servers to
generate the parameters for the used public-key accumula-
tor using multi-party computation protocols. In recent years,
more and more efficient solutions for distributed parameter
generation have emerged, e.g., for distributed RSA key gen-
eration [20], where the authors report a time of 134 seconds
on a single core per party to generate a distributed RSA key
pair, or for distributed ECDSA key generation [30]. Similar
techniques can be employed to generate public parameters for
a bilinear accumulator in a distributed fashion.

V. IMPLEMENTATION & EVALUATION

In this section, we describe our implementation of the
DPF-based PIR to retrieve Merkle-tree inclusion proofs. We
integrate our implementation into the existing CT log server
infrastructure provided by Google and then evaluate its per-
formance.

Using the DPF construction of Boyle et al. [8] and its
extensions [9], we can efficiently generate and evaluate the
DPF using only AES, which is very performant when us-
ing the AES-NI instructions in modern x86-64 CPUs. Like
Wang et al. [43], we use the Matyas-Meyer-Oseas one-way
compression function [32], defined as H(x) = Ek0

(x) ⊕ x.
The fixed-key property of this construction allows us to
benefit from the fact we only have to perform the AES key
schedule once for maximum performance. Furthermore, we
use the full-domain evaluation algorithm proposed by [9]
to avoid calculating intermediate results multiple times and
optimize the implementation with respect to AES and vector
pipelining. Additionally, the inner product of the expanded
DPF keystream and the 256-bit long SHA-256 hash values in
the Merkle-tree can be efficiently calculated using AVX vector
operations, making our multi-server PIR suitable for large
log sizes. For experiments using public-key accumulators, we
base our implementation on the work of Tremel9. We report
microbenchmarks on the performance of our implementations
in Section V-B.

A. Integration into existing CT log server infrastructure

The Google CT team provides two open-source implemen-
tations of a CT log server. The original prototype imple-

9https://github.com/etremel/crypto-accumulators/
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mentation10 written in C++, and their new CT log server11

written in Go, using Trillian12, a scalable implementation of a
Merkle-tree accumulator with separate data storage layers, as
a backend.

To show the practicality of our solution, we integrate a
prototype into the C++ implementation13 and provide libraries
for DPF-based PIR for both, C++14 and Go.15 We added new
HTTP endpoints for retrieving proofs using DPF, given the
index of the hashes in the SCTs, and extended the existing
client software to verify retrieved SCTs against two servers.
This new API was then used to verify the inclusion of several
certificates in the log. We believe that the integration of the
DPF-based PIR into the C++ log server is easily adaptable to
the Go CT log server. We refer to the microbenchmarks in the
following section for the performance overhead compared to
the existing approach.

B. Performance Evaluation

To show the practicality of our solution, we evaluated both
a DPF-based PIR on a standard Merkle-tree as currently used
in CT logs, as well as DPF-based PIR on a Merkle-tree
with hourly sub-accumulators to reduce the tree depth and
complexity of the PIR query. We consider multiple different
log server sizes based on existing log servers, more con-
cretely, we perform benchmarks on log servers with N ∈
{220, 222, 224, 226, 228} certificates.16 All experiments are per-
formed on a desktop PC equipped with an Intel R© CoreTM

i7-4790 CPU @ 3.60GHz and 16 GB of RAM. We perform
microbenchmarks on the different parts of the protocol. All
tests are performed using a single-threaded implementation
only; however, we remark that the server-side operations,
the DPF.Eval algorithm and the inner product calculation,
are trivially and perfectly parallelize-able, e.g., when using
4 threads, we observe a speedup of ≈ 4x.

In Table II, we present the microbenchmarks when using
DPF-based PIR to retrieve the Merkle-tree inclusion proof.
We observe that even for a server with 228 (≈ 270 million)
certificates, the total work for the server is just 1.067 seconds,
whereas the client workload is less than 1 millisecond. The
total communication between the parties is less than 6 KB.
The inner product of the SHA-256 hashes is dominating the
runtime. One possible future optimization to further speed
up this inner product step would be the use of AVX512
instructions to process two hash values at once.

Table III shows the performance of our sub-tree approach.
We observe that the total execution of the DPF-based PIR with
a reduced tree size of 15 levels results in a total runtime of 130
μs. The client verification time is slower when using PK accu-
mulators in sub-trees, but still in the order of milliseconds. We

10https://github.com/google/certificate-transparency
11https://github.com/google/certificate-transparency-go
12https://github.com/google/trillian
13https://github.com/dkales/certificate-transparency
14https://github.com/dkales/dpf-cpp
15https://github.com/dkales/dpf-go/tree/master/dpf
16For larger log server sizes, the data no longer fits in the RAM.

also list the additional communication of the sub-accumulator
and the corresponding witness in the “extra” column, as the
web server needs to send this information included in the SCT.
This approach is very performant, even for logs containing a
total of 231 certificates.

While the client verification times for the used public-key
accumulators are very fast, a problem manifests on the server
side. Since we set up the public-key accumulators on public-
parameters only, we cannot use the secret trapdoor information
to speed up accumulation and witness generation for the
RSA and bilinear accumulators. This results in much worse
performance for these two operations, especially generating
witnesses for each element. Table IV shows the performance of
these two operations for 210 and 216 elements, which roughly
correspond to creating one sub-accumulator per minute and
hour on larger log servers respectively. We observe that for
the public-key accumulators we evaluated (using a security
level of 128 bits), the only realistic parameter set is using
bilinear accumulators for sub-trees of size 210, which roughly
corresponds to one sub-tree per minute. For the other options,
accumulating all elements and generating the witnesses would
take longer than the intended time-frame of one hour for
216 elements or one minute for 210 elements. A possible
solution would be to retain the secret parameters and keep
them split into shares, with servers engaging in a multi-
party computation protocol to compute witnesses using the
shares of the secret trapdoor information. The design and
implementation of an efficient protocol for this task is an
interesting avenue for future work. However, for our current
system and implementation, we recommend using Merkle-tree
accumulators for the sub-accumulators.

C. Comparison to Lueks and Goldberg [31]

The only previous work aiming to improve the privacy
of retrieving CT log membership proofs is by Lueks and
Goldberg [31], where the authors optimize the PIR scheme of
Goldberg [22, 16] to allow for efficient batching of multiple
queries. The PIR scheme used in [31] provides information-
theoretic security and it is robust, meaning it can be extended
so that some servers are allowed to misbehave, while still
allowing the client to recover the item. Furthermore, it can
be scaled up to more than two servers. In comparison, the
DPF-based PIR we use only provides computational security
and does not provide robustness, but can be instantiated
very efficiently for two servers. We argue that the robustness
property is not critical in the case of retrieving Merkle-tree
inclusion proofs, since the validity of the retrieved item is later
verified against the Merkle-tree head, allowing for detection
of wrong results. We therefore compare to the scheme of
Lueks and Goldberg in its simplest form, using two servers
and providing robustness against 0 misbehaving servers. In
Table V, we give concrete performance numbers for both our
implementation and the implementation of [31], which has
been integrated into Percy++.17 Since both implementations

17http://percy.sourceforge.net/
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N
Client Server Client Communication

DPF.Gen DPF.Eval Inner Prod. Verification C → Si C ← Si

220 0.05 0.32 4.28 < 0.01 2298 640
222 0.07 1.23 16.72 < 0.01 2886 704
224 0.08 4.78 64.49 < 0.01 3546 768
226 0.09 19.22 251.32 < 0.01 4278 832
228 0.11 78.41 988.93 < 0.01 5082 896

TABLE II
PERFORMANCE OF DPF-BASED PIR WHEN RETRIEVING PRIVACY-PRESERVING MEMBERSHIP PROOFS FROM A STANDARD MERKLE-TREE BASED LOG

SERVER CONTAINING N CERTIFICATES. TIME IN MILLISECONDS, COMMUNICATION IN BYTES PER SERVER. MERKLE-TREES FOR LARGER LOG SERVERS
NO LONGER FIT INTO THE MAIN MEMORY OF OUR TEST MACHINE.

N NΛ
Sub-acc.

Nsub
Client Server Client Communication

type DPF.Gen DPF.Eval Inner Prod. Verification C → Si C ← Si extra

231 215 RSA 216 0.03 0.01 0.09 3.97 1143 480 384
231 215 Bilinear 216 0.03 0.01 0.09 2.81 1143 480 768
231 215 Merkle 216 0.03 0.01 0.09 < 0.01 1143 480 512

231 221 RSA 210 0.06 0.62 7.68 3.97 2583 672 384
231 221 Bilinear 210 0.06 0.62 7.68 2.81 2583 672 768
231 221 Merkle 210 0.06 0.62 7.68 < 0.01 2583 672 320

TABLE III
PERFORMANCE OF DPF-BASED PIR WHEN RETRIEVING PRIVACY-PRESERVING MEMBERSHIP PROOFS FROM A LOG SERVER WITH SUB-ACCUMULATORS.
THE NUMBER OF SUB-ACCUMULATORS IN THE UPPER TREE IS NΛ , THE MAXIMUM NUMBER OF ELEMENTS PER SUB-ACCUMULATOR IS NSUB . TIME IN

MILLISECONDS, COMMUNICATION IN BYTES PER SERVER.

Accumulator Nsub Accumulation Witness gen.

RSA 216 63.47 ≈ 1000000
210 1.06 264.15

Bilinear 216 2.99 95672.12
210 0.12 24.43

Merkle 216 0.03 0.09
210 < 0.01 < 0.01

TABLE IV
PERFORMANCE OF ONE-TIME SERVER-SIDE SUB-ACCUMULATOR

OPERATIONS (WITHOUT TRAPDOOR INFORMATION). TIME IN SECONDS.

could benefit from our sub-accumulator approach, we only
benchmark performance of retrieving standard membership
proofs. For [31], we perform 28 queries in parallel to make
use of their proposed optimizations. We give numbers for both,
the precalculated database of membership proofs and the tree-
based approach we discuss in Remark 1. For [31], we follow
the recommendation of the authors and arrange the database
in square-root sized blocks to minimize communication.

Our DPF based implementation outperforms the PIR
scheme of Lueks and Goldberg in both runtime and commu-
nication in all tested configurations, where we can especially
notice the logarithmic communication of the DPF-based PIR.
Furthermore, we observe that using our approach of arranging
the database to make use of the tree structure of the Merkle-
tree does also improve the runtime and communication con-
siderably when using the PIR scheme of Lueks and Goldberg,
mostly due to the reduced overall size of the database. This
also means we can keep the whole database for the tree-based
representation in memory, resulting in much better perfor-

N Protocol DB structure Time/Query Comm.

222
DPF Tree 0.02 3.5

Precomputed 0.28 0.98

[31] Tree 0.08 77.6
Precomputed 0.59 108.7

224
DPF Tree 0.06 4.2

Precomputed 1.23 1.08

[31] Tree 0.24 155.0
Precomputed 3.54 222.4

226
DPF Tree 0.25 4.99

Precomputed 82.61 1.17

[31] Tree 0.78 312.0
Precomputed − −

228
DPF Tree 1.03 5.8

Precomputed 450.51 1.28

[31] Tree 3.57 625.5
Precomputed − −

TABLE V
COMPARISON OF DIFFERENT PIR PROTOCOLS WHEN RETRIEVING A

MEMBERSHIP PROOF FROM A LOG OF N CERTIFICATES. TIME IN
SECONDS, COMMUNICATION IN KIB PER SERVER. A VALUE OF −

INDICATES THE IMPLEMENTATION RAN OUT OF MEMORY.

mance. We can observe the jump in runtime from N = 224

to N = 226 when using a database of precomputed proofs for
the DPF-based PIR, which is due to the fact that the database
no longer fits into the available RAM.

Remark 2 (Batch processing of client queries): The main
contribution of Lueks and Goldberg [31] was the optimized
batch processing of queries, where a server can process mul-
tiple queries at an asymptotically lower cost than processing
each query individually. Their approach even manages to batch
queries from different clients together, which is beneficial in
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systems such as CT. For our DPF-based PIR, we cannot batch
queries for different clients, but can still optimize multiple
queries from the same client. This scenario is realistic due
to two factors. First, when a client connects to a website,
he usually does not only retrieve one certificate, but instead
connects to multiple different web servers hosting stylesheets,
Javascript files, images, or other resources, verifying each
certificate. Second, the auditor in each TLS client can collect
multiple certificates to audit them in batches at a later time.
Demmler et al. [14] use a binning approach for queries in
their PIR-PSI protocol, which can also be applied to our use-
case. The main idea is to partition the database into β bins of
N/β items each. When the indices of queries are uniformly
distributed, the maximum number of items per bin can be
bounded probabilistically. All bins are then padded to the
maximum number of items, and multiple smaller queries are
performed for each bin. The overall runtime is expected to
decrease, with a slight increase in communication, depending
on the choice of β. We refer to [14] for a more detailed
discussion.

D. Deployment Considerations

With the enforcement of CT logging by big browser vendors
in early 2018, the CT infrastructure has grown considerably
and logged hundreds of millions of certificates. Any changes to
the ecosystem should, therefore, be critically analyzed, as these
changes may require widespread updates to server and client
software. Our log with privacy-preserving membership proofs
has the advantage that it can co-exist alongside existing log
servers and does not require significant changes. Embedding
proofs for the sub-accumulators in an extension field of the
SCT means that a web server does not require any changes
to support our proposed changes, as his job is to provide
the SCTs to the client. For the client, the auditor code has
to be extended to distinguish a log with privacy-preserving
membership proofs from a standard log, and to use the new
API endpoint to retrieve the proof from the two servers. The
log server obviously requires more substantial changes, but
its API is still compatible to a standard log server and both
servers answering DPF-based PIR queries can still answer
membership queries in a standard way if no privacy is required.

In addition to these considerations regarding the disruption
of the existing ecosystem, we also require a non-collusion
assumption between the two servers participating in the PIR
query. This non-collusion assumption can be solved by hosting
the second server on a cloud platform potentially run by a
competitor of the first log server provider, as was also proposed
by [14]. To maintain their reputation, the cloud providers
have a significant incentive not to collude. The second server
could also be hosted by privacy-conscious organizations and
advocacy groups such as the European Digital Rights (EDRi)
or the Electronic Frontier Foundation (EFF). Furthermore, the
system is not strictly limited to two parties. Several such non-
colluding servers could exist, and an auditor-client could pick
any two of them to perform a privacy-preserving membership
proof.

Remark 3 (Cloning Existing Log Servers): We now de-
scribe another approach to facilitate better integration into the
existing CT logging ecosystem. Instead of setting up a new
log server and accepting the submission of new certificates,
we rely on the CT ecosystem and clone the data of an already
existing log server. In addition to monitoring the cloned log
server for consistency, we can now restructure the certificates
contained in the cloned log server in sub-trees. Furthermore,
other monitors can verify the consistency of our new log
servers against the cloned one. The new sub-accumulator
based log servers then hand out their own SCTs (including PIR
index i and sub-accumulator witness witi) to existing domain
owners that want to provide privacy to their users. These SCTs
can then be delivered to clients by the web server, and clients
can choose to perform a privacy-preserving membership proof
against the new log servers instead of a regular one.

VI. CONCLUSION

In this work, we have reiterated potential privacy problems
for the CT ecosystem and presented a solution based on two-
server PIR that offers competitive performance for real-world
parameters. Furthermore, we present an approach using sub-
accumulators that reduces the complexity of the PIR queries to
a point where a single server could handle multiple thousands
of requests per second, and show how such an approach
can be set up by mirroring existing log servers, providing a
privacy-preserving alternative for auditors. We have shown the
practicality of our solution by integrating it into the existing
CT log server implementation and performed a performance
evaluation for several different parameter sets. We believe our
approach could offer privacy-conscious users an alternative
and further strengthen the existing CT ecosystem.
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APPENDIX A
MEMBERSHIP WITNESSES FOR NON-ACCUMULATED

ELEMENTS

We consider Scheme 2 with pkΛ = (N, g,H) and skΛ =
(p, q) where N = p·q. Let X be some set and x �∈ X such that
H(x) is invertible mod (p−1)·(q−1). Now, the accumulator
for X is computed as ΛX = g

∏
x′∈X H(x′) mod N . Yet, as the

factorization of N is known, the server can compute witx =

Λ
H(x)−1

X mod N . Although x is not member of X , witH(x)
x =

ΛX (mod N) holds and thus the verification succeeds.
Assuming that p and q are κ bit primes p−1 and q−1 have

at most ≈ κ−1/log(κ−1) prime factors and if the have a large
prime factor, upper bound is a lot smaller. H(x) is invertible
if H(x) is not one of the prime factors of M . Hence, the
chance of a random element x with H(x) being non-invertible
mod M is approximately

2 κ−1
log(κ−1)

22κ

2κ

=
κ(κ− 1)

4κ−1 log(κ− 1)
≤ κ(κ− 1)2

4κ−1(κ− 2)
.

This gives the server opportunity to produce membership
witnesses for non-accumulated elements with high probability.
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APPENDIX B
SIGNATURE SCHEMES

In this section, we shortly recall the standard definition of
signature schemes.

Definition 10 (Signature Scheme): A signature scheme Σ
is a triple (Gen, Sign,Verify) of PPT algorithms, which are
defined as follows:
Gen(1κ) : On input of a security parameter, this algorithm

outputs a key pair (sk, pk) consisting of a secret signing
key sk and a public verification key pk.18

Sign(sk,m) : On input of a secret key sk and a message m,
this algorithm outputs a signature σ.

Verify(pk,m, σ) : On input of a public key pk, a message m
and a signature σ, this algorithm outputs a bit b.

For correctness, we require that for all security parameters κ ∈
N, for all key pairs (sk, pk) ← KeyGen(1κ), for all messages
m ∈ M, it holds that

Pr [Verify(pk,m, Sign(sk,m)) = 1] = 1.

Additionally, we require them to be EUF-CMA-secure.
Definition 11 (EUF-CMA): The advantage AdvAEUF-CMA(·)

of an adversary A in the EUF-CMA experiment is defined as

Pr

[
(sk, pk) ← Gen(1κ), (m∗, σ∗) ← AS(sk,·)(pk) :
m∗ /∈ QS ∧ Verify(pk,m∗, σ∗) = 1

]
,

where the environment maintains an initially empty list QS

and the oracles are defined as follows:
S(sk,m) : Set QS ← QS ∪ {m} and return σ ← Sign(sk,m).

A signature scheme is existentially unforgeable under
random message attacks, if for every PPT adversary A,
AdvAEUF-CMA(·) is bounded by a negligible function in the
security parameter κ.

18We assume that pk implicitly defines the message space M.
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