
MALPITY: Automatic Identification and Exploitation
of Tarpit Vulnerabilities in Malware

Sebastian Walla, Christian Rossow

CISPA Helmholtz Center for Information Security

s8sewall@stud.uni-saarland.de, rossow@cispa.saarland

Abstract—Law enforcement agencies regularly take down
botnets as the ultimate defense against global malware operations.
By arresting malware authors, and simultaneously infiltrating or
shutting down a botnet’s network infrastructures (such as C2
servers), defenders stop global threats and mitigate pending in-
fections. In this paper, we propose malware tarpits, an orthogonal
defense that does not require seizing botnet infrastructures, and
at the same time can also be used to slow down malware spreading
and infiltrate its monetization techniques. A tarpit is a network
service that causes a client to stay busy with a network operation.
Our work aims to automatically identify network operations used
by malware that will block the malware either forever or for a
significant amount of time. We describe how to non-intrusively
exploit such tarpit vulnerabilities in malware to slow down or,
ideally, even stop malware.

Using dynamic malware analysis, we monitor how malware
interacts with the POSIX and Winsock socket APIs. From this,
we infer network operations that would have blocked when
provided certain network inputs. We augment this vulnerability
search with an automated generation of tarpits that exploit the
identified vulnerabilities. We apply our prototype MALPITY on
six popular malware families and discover 12 previously-unknown
tarpit vulnerabilities, revealing that all families are susceptible to
our defense. We demonstrate how to, e.g., halt Pushdo’s DGA-
based C2 communication, hinder SalityP2P peers from receiving
commands or updates, and stop Bashlite’s spreading engine.

I. INTRODUCTION

Recent malware outbreaks such as the WannaCry ran-
somware [48], Mirai [3] or Bashlite [2] (both Linux-based
botnets known for their DDoS capabilities of over 620 gigabits
per second [21]) demonstrate that we lack mechanisms to cease
the spreading of epidemic malware incidents. On the one hand,
several methods exist to defend against malware, such as host-
based [5], [31], [33], [34] or network-based [23]–[25], [50]
malware detection. On the other hand, many of these defenses
are local to the scope where they are applied, and thus only
protect individual hosts or networks. In contrast, defenses that
cripple entire botnets at the infrastructural level (such as botnet
takedowns [46], [49], [52], [53]) are inherently more complex,
if not infeasible (e.g., for reputation-based peer-to-peer bot-
nets such as SalityP2P [49]). Worse, such takedowns require
the cooperation of providers that operate malicious network
infrastructures. Yet until such global defenses are effectively
applied, malware will continue its nefarious activities.

In this paper, we propose malware tarpits as a novel
defense paradigm to stop malware operations. During its entire
lifecycle, malware heavily relies on network communication.
As demonstrated by WannaCry, Mirai and Bashlite (and sev-
eral additional incidents in the older past), worms scan the

Internet for victims to spread rapidly by exploiting vulnera-
bilities remotely. Furthermore, malware receives instructions
from command-and-control (C2) servers over the network.
In addition, to monetize itself, malware typically launches
network-based attacks such as email spamming, harvesting,
or Distributed Denial-of-Service (DDoS) attacks. Our idea is
to identify whether we can use a tarpit to slow down or pause
such communication, and by doing so, stop or at least slow
down the malicious interactions of a botnet. A tarpit is a
network service that feeds or withholds network inputs to a
client (in our context, the malware) such that the client gets
(temporarily or indefinitely) stuck in its network operation. For
example, if a client calls the recv() socket operation without
having checked that data can be read, it will be put into waiting
state until data in the receive buffer is actually available to be
read. A tarpit that does not feed any inputs will thus block the
client process indefinitely. Tarpits thus allow us to decelerate
or even stop malicious network behavior in malware. In the
malware context, tarpits were originally introduced by Tom
Liston to slow down the spread of the CodeRed worm [35].
He created the LaBrea tarpit that replied with TCP SYN/ACK
segments to scanning hosts. Liston leveraged the fact that
the scanner’s timeout for the half-completed connection was
sufficiently long to keep the worm busy waiting for some time.
When entering the tarpit, the worm thus has fewer resources to
scan other (real) hosts, which slightly slows down spreading.
This general concept of network tarpits is completely non-
intrusive, as it neither causes the client to crash, nor creates
busy loops, nor requires executing attacker-injected code.

Unfortunately, several challenges were left open by Lis-
ton’s initial proposal. First, in order to develop his tarpit,
Liston had to manually analyze and understand the network
behavior of the worm. Given the steady rise of new malware
variations, this is infeasible to do in a timely way in practice.
Especially for worms, tarpits have to be deployed instantly to
be effective, as otherwise the population will have grown to
a critical mass. Second, Liston’s proof-of-concept idea (and
also other tarpit implementations) only slows down a client’s
interactions. Instead, we aim to also search for code patterns
that can be exploited with what we will call a sticky tarpit, i.e.,
one that blocks the malware for its entire lifetime. Third, tarpit
vulnerabilities are not only specific to the spreading engine of
malware. In fact, the more complex malware becomes, the
more likely it is that code patterns in other network-dependent
modules (e.g., a spam engine, or C2 communication) can be
blocked. Finally, Liston’s idea and follow-up works to integrate
such tarpits into the Linux firewall [60] primarily aim to abuse
tarpit-like behavior in the kernel’s TCP/IP stacks (e.g., TCP
retransmissions, small TCP window sizes, etc.) and are thus

590

2019 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2019, Walla Sebastian. Under license to IEEE.
DOI 10.1109/EuroSP.2019.00049

limited to TCP, whereas tarpit vulnerabilities also generalize
to UDP communication.

We propose a generic methodology to identify tarpit vulner-
abilities in malware that tackles the aforementioned limitations.
Our methodology (i) is completely automated, (ii) covers both
sticky and slowing tarpits, (iii) is not constrained to tarpits in
a malware’s spreading engine, and (iv), identifies UDP/TCP
socket-level tarpits based on the malware’s interaction with
the socket API that go beyond existing tarpits that focus
on particularities of the TCP/IP stack. Our approach does
not require access to the malware source code. Instead, by
observing the dynamic behavior of a malware program, we
can reason about whether or not the malware communication
is susceptible to tarpit attacks. To this end, we monitor both the
POSIX socket API and Windows’ Winsock API and search for
blocking network operations. Assuming we can control inputs
to these operations, we then extract code patterns that allow us
to tarpit the malware. Finally, we fully automatically generate
ready-to-use code that exploits the identified vulnerabilities.

We prototype this methodology in a tool called MALPITY.
MALPITY takes a malware sample as input, executes it,
reports on tarpit vulnerabilities, and automatically generates
code to exploit the tarpit. We apply MALPITY on six recent
and widespread malware families (Bashlite, Pushdo, Pynamer,
SalityP2P, Tofsee, and WannaCry) and identify 12 previously-
unknown tarpit vulnerabilities. Seeing that all families are
susceptible to tarpits suggests that the potential of our de-
fense is far higher than one would intuitively assume. Law
enforcement agencies and/or network telescope and honeypot
operators can use these automated tarpits to mitigate malware.
Tarpits thereby help to contain the spreading of worms before
their population grows to a critical mass, to seize control over
existing infections, or to stop malicious activities of malware
(such as spamming, fraudulent ad clicks, or SEO fraud).

Our contributions can be summarized as follows:

• We generalize the concept of tarpits in malware. We
show that tarpits can not only be abused to slow down
scanning, but in fact, can also be generalized to sticky
tarpits and affect more than just the spreading engine.

• We introduce a generic methodology to monitor the
socket API(s). From this monitoring, given an arbi-
trary program as input, we then infer and search for
code patterns that result in tarpit vulnerabilities.

• We implement a fully-automated prototype MALPITY,
which we will release to trusted parties upon request.1

We demonstrate that tarpit vulnerabilities are present
in all six prevalent families we investigated.

II. METHODOLOGY

Malware inevitably relies on communication, e.g., to per-
form malicious activities (such as sending spam emails), to
exchange data with C2 servers, or to spread by infecting other
parties. Our overall goal is to slow down or even stop these
malicious activities by creating malware tarpits. Such tarpits
bring malware into a state in which it is ideally infinitely, but

1To request access to MALPITY’s source code, please send both authors an
email that clearly states your institution and your goal of using MALPITY.
Students should include their supervisor in the email.

at least temporarily, stuck in a socket operation. Malware that
has entered a tarpit can thus not (or only slowly) continue
its harmful operations. We will briefly introduce a running
example, and based on this, explain our general methodology.

A. Running Example

Consider our running example in Figure 1, which demon-
strates the readUntil function of Bashlite, which is vul-
nerable to a tarpit. In line 11, select checks whether a
blocking socket named fd has a non-empty read buffer. If so,
Bashlite continues and reads a one-byte command from fd
using recv (line 14). In line 19, Bashlite checks if the initial
byte is 255 to identify Telnet communication. If so, in line 20,
Bashlite aims to receive more data to complete the command.
Note, however, the tarpit vulnerability in line 20. As Bashlite
calls the second recv without checking if yet another byte is
available in the read buffer, it may face situations where no
such data is available. The previous call to select, if successful,
has only checked whether at least one byte was available to
read. As a result, the caller thread would get stuck forever
in the second receive operation unless data is served. That is,
given that the socket is blocking, the second recv call would
bring the thread into a state where it blocks indefinitely. This,
which we will introduce as a sticky tarpit vulnerability, makes
Bashlite’s spreading engine vulnerable to abuse. As soon as
a scanned target—randomly chosen by Bashlite—deploys a
tarpit that abuses the vulnerability, it would stall Bashlite’s
scanning engine and thus stop its spreading. Anyone who
happens to be probed by a Bashlite-infected system can thus
interrupt one worm instance. The chances of being probed in
the early stage of a worm are significant for large networks
(e.g., in a /8 IP telescopes).

B. Attack Surface for Tarpits in Malware

We will now generalize from this running example. First,
to assess the impact of tarpits, we will group them according
to the logical malware component in which they are located.
Nowadays malware is typically divided into several threads
that run independently from each other. It likely will not be
possible to lure all threads into a tarpit. If only selected threads
can be tarpitted, we would like to evaluate the potential impact
of such a tarpit. Following the modular design of malware
nowadays, we thus categorize the following three malware
components in which tarpits can have a high impact:

1) Command-and-Control (C2): The C2 logic is respon-
sible for receiving commands from a botmaster and feeding
back data (e.g., stolen passwords or credit card information).
At first sight, tarpits in this component are not that helpful, as
defenders would have to control the C2 server to feed inputs
that trigger the tarpit. However, successful botnet takedowns in
the past have forced malware authors to deploy highly redun-
dant C2 endpoints. This increases chances for defenders to get
contacted by a malware. For example, malware might iterate
over a list of servers, from each of which it tries to receive
commands. Alternatively, malware may use Domain Name
Generation algorithms (DGAs) [4], [47] to deterministically
generate C2 domains for locating C2 servers. In the extreme,
malware replaces infrastructures by fully-decentralized peer-
to-peer (P2P) networks for C2 communication [49].

591

1 int readUntil(int fd, char *toFind, int matchLePrompt, int timeout, int timeoutusec, char *
↪→ buffer, int bufSize, int initialIndex){

2
3 int bufferUsed = initialIndex, got = 0, found = 0;
4 fd_set myset;
5 unsigned char *initialRead = NULL;
6
7 while(bufferUsed + 2< bufSize && (tv.tv_sec > 0|| tv.tv_usec > 0))
8 {
9 FD_ZERO(&myset);

10 FD_SET(fd, &myset);
11 if (select(fd+1, &myset, NULL, NULL, &timeoutstruct) < 1) break;
12
13 initialRead = buffer + bufferUsed;
14 got = recv(fd, initialRead, 1, 0);
15
16 if(got == -1 || got == 0) return 0;
17
18 bufferUsed += got;
19 if(*initialRead == 255){
20 got = recv(fd, initialRead + 1, 2, 0);
21 /* ... */
22 }
23 }
24 /* ... */
25 }

Fig. 1. Code of the readUntil function in Bashlite. There is a tarpit vulnerability due to an unguarded repeated recv call in line 20.

Either way, the malware contacts a number of C2 endpoints
that are potentially controlled by defenders. For example, when
DGAs are used, defenders can mimic a C2 server by registering
a domain name that will be generated in the near future (e.g.,
see Torpig [54]). Controlling an endpoint is even easier in
P2P botnets, which are open in nature and allow defenders
to add fake bots. To defend against such spurious C2 end-
points, malware typically deploys authenticity checks before
processing commands. However, tarpits can force vulnerable
malware to keep communicating with spurious servers before
commands are checked, and thus help to prevent malware
reaching genuine C2 endpoints.

2) Attack Engine: Besides the C2 component, malware
may also include attack engines that are used for monetization.
For example, the attack engine may send spam (spambots),
crawl websites (harvesters), or execute Denial-of-Service at-
tacks (DDoS bots). If malware is vulnerable to a tarpit in its
attack engine, the attacked endpoints can slow down or even
stop the malware’s attack. The chance of getting contacted on
the first try by the malware to abuse the tarpit vulnerability is
fairly small. But consider a spambot that aggressively iterates
over a range of millions of mail exchanges to send spam. If
a single of those email relays were to abuse the tarpit, this
would significantly slow down (or even stop) the malware’s
spam engine. Similarly, if bots crawl the Web, defenders just
need to control any of the sites that the malware contacts.

3) Spread Engine: Finally, tarpits in the spread engine
can help to slow down (or even stop) malware distribution.
Worms especially take an aggressive approach and aim to
spread to other non-infected hosts in order to increase their
population. Most prominently, malware scans the Internet for
vulnerable or otherwise easy-to-abuse services. For example,
Mirai and Bashlite search for SSH/Telnet-enabled devices, and
then bruteforce a small set of hardcoded credentials. If we can

find tarpits in the malware’s spread engine, we can mitigate
worm epidemics, regardless of the exact spreading mechanism.

Summary: We identified three malware components that are
susceptible to tarpits. Given the sheer complexity and number
of malware samples nowadays, manually finding tarpits in
these components requires a substantial amount of reverse en-
gineering and expertise. This motivated us to find an automated
mechanism to identify tarpits in a given malware binary. Note
that we did not aim for an automated method to classify in
which malware component a given tarpit is situated. Once
the challenging task of identifying a tarpit vulnerability in
the malware is solved, assigning such vulnerabilities to their
logical component does not require much manual effort—
especially if we can collect metadata (such as content, endpoint
information, or ports) about the susceptible connections.

C. Malware Tarpits

After introducing where tarpit vulnerabilities can be lo-
cated, we will now classify the tarpit according to its type. To
this end, we generalize our introductory example and introduce
two kinds of malware tarpits: sticky and slowing tarpits.
Sticky tarpits are the strongest form and bring a program (or
more precisely, the current thread) into a blocking state in
which it stays indefinitely. This corresponds to the example in
Figure 1, in which the malware would get stuck in the receive
operation forever. In contrast, a slowing tarpit vulnerability
only temporarily blocks a program for some finite time. For
example, if socket operations use a certain timeout, the stuck
execution will continue as soon as the timeout expires.

Our goal is to automatically identify such tarpits in mal-
ware programs. We thus carefully iterated over the socket
API, which is the underlying basis for any kind of user-space

592

TABLE I. TARPIT-YIELDING PATTERNS

Action Condition Protocol

Receiving kernel receive buffer empty or contains too little data UDP/TCP

Sending kernel send buffer full TCP

Peeking no socket in ready state TCP/UDP

Connecting no SYN/ACK received TCP

communication in both Windows and Linux, to search for
socket interactions that introduce tarpits. Table I summarizes
the four tarpit patterns we identified. This list represents a
(likely) non-exhaustive but powerful set of coding patterns that
enable tarpits. We will describe them in the following.

1) Receiving Data: When a program attempts to receive
data over a blocking TCP/UDP socket for which no data is
available, the receiving thread blocks. Technically, both recv
(TCP) and recvfrom (TCP/UDP) return only if the kernel
buffer for received data is not empty or if the connection is
closed. In addition, receiving data is even blocking if the buffer
is non-empty, but the caller asks to wait until a certain number
of bytes have arrived (e.g., via the MSG_WAITALL flag). To
trigger either tarpit vulnerability, the remote side simply stops
sending data, and blocks the receiving side forever. The code
in Figure 1 includes such a tarpit. A receive timeout will
only occur if explicitly configured (e.g., using ioctl, or the
Windows counterpart setsockopt), turning this otherwise
sticky tarpit into a slowing tarpit.

2) Sending Data: In contrast to receiving tarpits, tarpits in
send operations are specific to TCP, as UDP send operations
usually do not block2. If the program tries to send something
over a blocking TCP socket, but the kernel buffer for sending
data is full, the send call blocks until space in the buffer is
available [43]. In Windows 10, the default send buffer is 8 kB
[44], which the remote party can fill by not acknowledging
received data. As soon as TCP segments are acknowledged,
their data is deleted from the send buffer, therefore making
space for new data to send. If the remote party does not
acknowledge the data, the kernel will give up sending the data.
After a few retransmission attempts, the connection will be
aborted and any blocking send call will return. Sending tarpits
are thus usually only slowing, bounded by the maximum time
the kernel may store unacknowledged data.

To compute the slowdown, we have to inspect the retrans-
mission algorithm a bit more closely; this slightly differs per
operating system. Windows 10 uses five TCP retransmissions
by default. The initial retransmission timeout is determined
by a smoothed round-trip time. On a typical connection, this
timeout is about 50ms. TCP’s exponential backoff algorithm
then multiplies this initial timeout per trial i by 2i. The total

timeout for a typical send attempt is therefore
5∑

i=0

50ms∗2i =
3150ms = 3.15s. While this seems low, it may be possible to
stack several send calls to amplify the slowdown.

3) Peek Functions: To avoid send/receive operations block-
ing the caller, the POSIX socket API introduced functions
that make it possible to peek at whether data can be read
from or written to blocking UDP/TCP sockets. select is the

2Technically, the remote party has no control over the fill status of the send
buffer, and thus cannot force this buffer to fill up.

most popular example. Peek functions can be called with a
user-defined timeout, which has a large impact on potential
tarpit vulnerabilities. The peek function would block until the
timeout (if any) is hit, or one of the sockets becomes ready
for sending/reading—whatever occurs first. If we can control
the state of all sockets probed by the peek functions, we can
make sure a socket never enters the “ready” state. This way,
we can either abuse a long timeout (slowing tarpit) or even
leverage the fact that no timeout was specified (sticky tarpit).

4) Connection Establishment: In TCP, establishing a con-
nection can already introduce a slowing tarpit vulnerability
if the caller did not specify a timeout before. For example,
connect blocks the caller until the connection is successfully
established or the connection attempt times out. This timeout
is determined by the number of allowed retransmissions of
SYNs. Windows uses two SYN retransmissions by default, but
again doubles the timeout (by default initially 3 seconds) after
each retransmission [42]. The entire timeout for a connection

attempt hence defaults to
2∑

i=0

3 ∗ 2i = 21 seconds.

D. Vulnerable Socket Operation Patterns

We will now use our knowledge of blocking network
operations to infer which of a malware’s socket interactions
are susceptible to a tarpit. To this end, we assume control
over if and what a remote communication partner (the tarpit)
sends to the malware, to any socket. This over-approximation
may assume control over sockets that are not controllable
by defenders in practice. For example, if the malware uses
a single hard-coded C2 server, exploiting a tarpit in the
C2 communication would require controlling the server. Our
methodology will thus also reveal tarpit vulnerabilities that
cannot be (easily) exploited. We do not see a reliable generic
method to exclude such uninteresting tarpits. While one could
generally distinguish C2 from non-C2 communication [28],
Section II-B outlined usable tarpits even in C2 communication.
We argue that manual analysis aided with automated socket
metadata (e.g., traffic content, domain name, port number)
quickly reveals if an endpoint can be controlled by a defender.
As we will show, the interesting tarpits outweigh the uncon-
trollable ones, and are not only located in C2 communication,
but also in spreading modules and attack engines.

Using this threat model, we will search for execution paths
that lead to tarpit vulnerabilities triggered by blocking sockets.
To this end, we have to monitor the socket state by tracking
operations performed on a socket, as each call may change
the blocking semantics of the socket. In the following, we
thus define generic code patterns that represent execution paths
that are vulnerable to tarpits. Formally, we require that (i)
the socket is in blocking mode, and (ii) that the vulnerable
execution path satisfies at least one of the following actions:

• A connect operation on a TCP socket.

• A receive operation that is not directly preceded by
a peek function that ensures data to be available on
this socket. Note that any receive operation voids the
guarantee of data availability for subsequent receive
operations on the same socket (see running example).

593

• A receive call that is issued with a flag to wait until
a certain amount of data is received, but the required
amount is not assured to be readable.

• A peek function is called either with a “high” timeout
argument (slowing), or without a timeout (sticky).

• One or more calls to sending socket operations, which
in their sum try to send more than the kernel’s send
buffer can hold. Note that this is regardless of whether
peek functions were used, as they do not guarantee
non-blocking sending behavior for multibyte inputs.

E. Identifying Vulnerable Execution Paths

After having defined all vulnerable code patterns, we will
now discuss methodologies for identifying them in a given
(malware) program. To decide if a socket operation can fall
into a tarpit, we must know the underlying sockets and their
state. We will briefly discuss the different options we can
leverage.

Static Analysis: The first option that comes to mind in
order to search for such code paths is static program analysis.
However, unless we can use perfect data flow analysis and
assume non-obfuscated code, tracking sockets statically across
functions or even processes quickly becomes infeasible. First
of all, static analysis would fail for malware that obfuscates
its code, e.g., using packing [6], [41]. But even if we assumed
non-obfuscated malware, standard commercial static analysis
tools such as IDA would not be able to track control flow (and
thus socket operations) across jump tables or more complex
function pointers (such as C++ vtables). Finally, even if such
problems were solved, static analysis may identify paths that
have unsatisfiable path constraints, or those that are never
triggered during runtime.

Selective Symbolic Execution: To solve the problem of
unsatisfiable paths, we could leverage symbolic execution.
Symbolic execution [30] considers all inputs to be variable,
giving us the possibility to learn which inputs would trigger
tarpit vulnerabilities. However, using naı̈ve symbolic execu-
tion, we would face path explosions, increasing the required
execution time. Furthermore, due to the immense amount
of possible functions we would have to emulate (e.g., Win-
dows’s/Linux’s software stack and libraries), it is impractical
to model all of those functions’ effects using symbolic vari-
ables. Instead, we first experimented with Selective Symbolic
Execution (S2E) [15], which allows us to define the sources
for symbolic data and will execute all other instructions that
depend only on non-symbolic data concretely. This narrows
down the number of symbolically-executed instructions to a
minimum and speeds up the analysis. In early experiments,
we treated all data which is received via sockets as a symbolic
source. This reflected our assumption that all data from remote
communication partners is controllable. However, this already
led to path explosions, e.g., due to non-numeric inputs that
have to be parsed.

Concolic Execution: As a way out of the path explosion
problem, we experimentally marked all data received over the
network as concolic. Concolic is a portmanteau of concrete
and symbolic, meaning that upon a constraint-driven fork, the
search engine should choose the branch which the concrete

value satisfies first, but can also choose another path that can
be symbolically satisfied. Initial results were promising and
concolic execution would be our preferred choice for malware
that uses plaintext communication. Yet concolic execution
still cannot traverse code paths with network inputs that are
decrypted/deobfuscated before further processing. The decryp-
tion/deobfuscation adds a lot of constrains on the concolic
input, which need to be solved by the SMT solver, when
checking the feasibility of a path. However, this requires
a lot of time and causes the analysis to get stuck in the
decryption/deobfuscation routines.

Dynamic Analysis: Seeing the problems caused by other
alternatives, we chose concrete malware execution as the way
to go forward. In dynamic analysis, we execute the malware
and wait until it executes paths that include interesting socket
operations. This methodology works even for complex input
parsers and any kind of manipulation function (decryption, de-
obfuscation, decoding), and even survives runtime unpacking.

On the downside, dynamic analysis only receives a subset
of all possible program inputs, and thus misses those code parts
that never become active. In our concrete use case, however,
the negative impact of missing code is minimal. In fact, to
successfully tarpit malware, we would have to target code
parts that regularly become active. Put differently, those code
parts that our dynamic code analysis misses will likely also
not become active for other malware-infected hosts, and are
thus less (if at all) useful for tarpit operations.

To find tarpit vulnerabilities using dynamic analysis, we
observe all socket operations performed by the malware.
Whenever a socket is created, we start to monitor its state
and observe all operations on it. This way, we can track
whether or not a socket is blocking whenever a potentially
blocking network operation is performed. Similarly, we can
monitor whether peek functions guarantee that a certain socket
has data/space in its according buffer. If we encounter a
situation in which a blocking operation is performed without
previously guaranteeing that the operation does not block, we
have identified a tarpit vulnerability.

F. Automated Exploit Generation

As a final step of our methodology, we automatically gen-
erate a program that exploits a tarpit vulnerability that we have
identified. For example, when monitoring receiving functions,
we save the received data corresponding to each socket. When
we find a socket to be vulnerable, we create server-side code
that automatically sends the previously recorded data up to the
point the tarpit vulnerability was discovered. The exploit sends
the data in the exact order in which packets were received
earlier, but modifies/omits the first message that would trigger
the tarpit vulnerability. The tarpit is generic, meaning that it
allows any client to connect (or to send messages in the case
of UDP). Once a malware contacts the generated tarpit, the
tarpit thus replays the inputs such that it will enter the same
execution path as under dynamic analysis. This effectively
traps the malware in our tarpit.

Recall our running example from Figure 1 (page 3). In
order to reach the tarpit in line 20, Bashlite first has to receive
the single byte 0xFF. If nothing else is sent, Bashlite is
stuck indefinitely. The corresponding exploit, which our tool

594

1 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
2 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
3 s.bind((’0.0.0.0’, 6666)) # DNAT redirects any port to this one
4 s.listen(123)
5 con, client_address = s.accept() # accept client
6 con.setblocking(0) # non-blocking socket to avoid tarpitting the tarpit
7 con.sendall(b’\xff’) # send payload to reach tarpit vulnerability

Fig. 2. Automatically generated tarpit code to exploit Bashlite’s readUntil tarpit vulnerability (Figure 1, page 3) for a single client.

generated, is shown in Figure 2. Upon a connection request it
accepts the connection, sends the required payload and keeps
the connection open without sending any other data. The server
socket port is arbitrary, as we use DNAT to redirect all traffic
to an arbitrarily chosen port (in our example, TCP/6666).

III. IMPLEMENTATION

We prototyped the described methodology in a framework
called MALPITY that searches for tarpit vulnerabilities in
Windows-based malware samples. In the following, we will
describe implementation details that go beyond the method-
ological description of the previous section.

A. Dynamic Analysis

We first had to choose an environment that allows us
to dynamically analyze malware. To this end, we selected
S2E [15], which uses QEMU as an underlying type-2 hypervi-
sor. Although its original purpose is symbolic execution, S2E
is a convenient choice as it allows us to hook functions in a
transparent way. QEMU translates basic blocks of the guest’s
executable code to basic blocks of the host’s executable code
during runtime. Chipounov et al. modified this to translate
x86 code to LLVM’s intermediate representation, when at least
one of the instructions in the basic block references symbolic
data. The LLVM code is then symbolically executed using
KLEE [13], unless basic blocks do not depend on symbolic
data. As our initial experiments demonstrated the problems
of symbolic executions, we switched to using S2E’s concrete
execution model by marking no data as symbolic. Lacking any
symbolic data, S2E executes the entire program concretely. We
still greatly benefit from S2E’s ready-made function hooking
engine that we can leverage to monitor the socket APIs.

B. Function Hooking

To track potentially vulnerable execution paths and the
state of sockets, we hook calls to network operations. We use
S2E code translation for this, which can be instrumented to
generate events to which plugins can subscribe. In order to
hook instructions, S2E instruments all instructions of a tracked
module to trigger an event upon their execution. On execution,
it checks whether the instruction pointer matches one of the
instructions which is supposed to be hooked. If so, S2E calls
the callback function that was registered as a hook.

S2E monitors all call and return instructions to hook func-
tions. We thus just have to specify the addresses of call targets
to monitor. S2E accepts relative virtual addresses that survive
relocation. That is, we can simply encode fixed addresses

of the dynamically-linked functions that we target. Yet call-
based hooking does not work for jump tables, although they
are frequently used by programs (switch statements, vtables
in C++ programs, etc.). Since jumps are not monitored, S2E
would not detect such function calls. To solve this, we use
S2E’s instruction hooking to hook the very first instruction of
each function. Similarly, we inspect the function’s return value
by registering a return hook.

We furthermore retrieve the arguments passed to the
hooked socket API functions. We do this in our hooks that are
placed before the first instruction of each monitored function.
The 32-bit Winsock API uses the stdcall calling convention,
in which arguments are pushed from the right to the left [36].
Thus, before the function’s prologue, the stack pointer points to
the return address (the top most element). We retrieve function
argument argi from address esp+4*(i+1), i.e., from the
stack just before the return address. While the 64-bit calling
convention is different, all the malware in our experiments (like
malware in general) still uses 32-bit Winsock.

Hooking is implemented at the hypervisor level, and is thus
transparent to the guest. This also means that the malware
cannot detect nor disable hooks. Furthermore, the hooks are
executed on the host and manipulate the guest’s memory via
virtual machine introspection (VMI). Virtualizing the malware
execution guarantees strong process isolation between the mal-
ware and our analysis. We thus chose this approach over a less
stealthy implementation that places function calls in user space.
Having said this, similar to any other (dynamic) malware
analysis environment, malware can in principle still detect the
fact that it runs in a virtualized or sandboxed enviroment [20],
[62]. Providing a fully stealthy analysis environment, such as
those proposed in Ether [17], is out of scope of this work.

Our dynamic hooks also allow us to deal with packed
malware that aims to thwart static analysis [56], even if
malware relies on virtual machines to obfuscate code [1].
Regardless of the packing mechanisms, our dynamic analysis
environment will notice if a malware loads a library to execute
network operations, and installs hooks accordingly. In fact,
four of six malware families in our evaluation will be packed.

C. Overview of Hooked Socket API(s) Functions

We will now detail which functions we hook in order
to find tarpit vulnerabilities in malware. Most importantly,
we have to verify whether a socket is blocking and if the
socket can send/read data without being blocked. To this end,
we monitor all relevant library calls, which we identified by
manually investigating the list of exported functions in the
Winsock library (ws2_32.dll). Table II lists the 19 func-
tions we classified as relevant, all of which MALPITY hooks

595

TABLE II. OVERVIEW OF HOOKED FUNCTIONS AND THEIR

INFLUENCE ON THE ANALYSIS

Category Name Effect

S
o
ck

et
C

re
at

io
n
/

T
er

m
in

at
io

n closesocket

Creates a socket, connects and terminates it,
respectively

shutdown

socket

WSASocket

A
lt

er
B

lo
ck

in
g setsockopt

Changes blocking mode of socket
WSAAsyncSelect

WSAEventSelect

WSARecvDisconnect

P
ee

k
in

g
,

A
lt

er
B

lo
ck

in
g

Can either change blocking mode of socket
or guarantee its readability

ioctlsocket

WSAIoctl

R
ec

ei
v
in

g

ReadFile

Removes readability guarantee of socket

recv

recvfrom

WSARecv

WSARecvEx

WSARecvFrom

P
ee

k
in

g

select
Can guarantee readability of socket

WSAPoll

S
h
ar

in
g

WSADuplicateSocket Shares socket with another process

on Windows systems. Targeting Windows, we have to capture
both the POSIX socket API as well as the Windows Socket
API (Winsock; all API functions prefixed with WSA). Most
of the Winsock equivalents of POSIX socket functions (e.g.,
socket vs. WSASocket) behave semantically equivalently,
but offer a few extra options. Whenever necessary, we captured
the subtle differences between the two APIs.

Note that higher-level networking APIs are implicitly cap-
tured by monitoring these lower-level socket functions. For
example, consider ReadInternetFile, which is used to
retrieve resources from the Internet. Internally, it calls lower-
level functions such as WSARecv. This is similarly true for
other higher-level functions such as InternetOpenUrl,
FtpGetFile or HttpSendRequestA. It is therefore suf-
ficient to hook the lower-level functions to also capture the
behavior of higher-level APIs.

In the following, we detail the motivation and specifics
behind tracking exactly these functions.

1) Socket Creation and Termination: First and foremost,
we have to track which sockets are created. To this end,
we hook the socket and WSASocket function, both of
which create and return a socket. After creation, a TCP
client socket would then connect to a remote target. Even for
UDP sockets, although optional, calling connect or similar
functions would bind the socket towards one particular target.
Regardless of the socket type, however, we do not need to track
the connection targets. Instead, our automatically generated
exploit code will run on an arbitrary target and service port,
and we will use destination Network Address Translation
(DNAT) to redirect all other ports. Tracking connections might
become important if tarpits span multiple sockets, and then

suddenly the order between network operations might become
important—an aspect we left open for future work.

When sockets and their connections are terminated, we
track this and clean up internal state to eliminate potential
false positives. If closesocket is called, we remove all
information associated with the corresponding socket identifier.
shutdown can be used to close the connection in sending/re-
ceiving or both directions. Similarly, WSARecvDisconnect
closes the connection in the receiving direction. Any subse-
quent attempt to receive data on such a socket will not block
and simply returns no data. Similarly, trying to send data on
sockets closed for sending will also not block.

2) Blocking Mode: By default, a socket is in blocking
mode, i.e., all write/receive operations will block until they
succeed. In our model, upon socket creation, we thus assume
a socket is blocking. The blocking status can then be changed
by using ioctlsocket, WSAIoctl, WSAEventSelect,
or WSAAsyncSelect [45]. If ioctlsocket is given first
the socket, next the FIONBIO command and then some
value as the last argument, it changes the blocking mode
of a socket. If the last argument is non-zero, the socket is
set to non-blocking; otherwise the socket is set to blocking.
WSAIoctl works analogously, except that the blocking flag
argument is wrapped in the inBuffer pointer. Finally, both
WSAEventSelect and WSAAsyncSelect implicitly set a
socket to non-blocking mode, which we also track.

A slight variation of non-blocking sockets is blocking
sockets with a preconfigured timeout. For example, it is
possible to specify a timeout for blocking receive calls after
which they should return with an error if still no data arrived
within the predefined timeout. The single function to control
this timeout is setsockopt, which we therefore also hook
to record its respective timeout. Whenever such timeouts are
specified, tarpit vulnerabilities cannot be sticky, as the malware
will (eventually) return from the blocking operation.

3) Functions for Receiving Data: To find tarpit vulnera-
bilities for read operations, we search for paths in which the
malware tries to receive data from a blocking socket without
ensuring that data actually can be read. When any receiving
socket API function returns, we record the size and the content
of the received data for a possible exploit generation.

To determine if the receiving call blocks, we need to know
if the socket is guaranteed to hold enough readable data. This
is the case if the socket was checked in a peek function to
be readable beforehand. The readability guarantee of the peek
function no longer holds if a subsequent receiving function was
already called on the socket. However, with every rule there
is a exception: If the receiving function was called with a flag
which does not remove the data from the kernel buffer (e.g.
MSG_PEEK), the readability guarantee of the peek function
still holds.

Receiving functions that should wait until the buffer is
completely filled (e.g., using the flag MSG_WAITALL) can
still block if not enough data is available. For those we there-
fore check how much data the peeking function guarantees
to be readable. For select and WSAPoll one byte; for
ioctlsocket, together with the FIONREAD command, it
is potentially more than one byte.

596

Technically, we hook the functions recv, recvfrom,
WSARecv, WSARecvFrom, and WSARecvEx to cap-
ture all receiving socket API functions. WSARecv and
WSARecvFrom have the same blocking semantics as recv,
unless the socket is overlapped and asynchronous completion
routines or structures are specified. Such a completion routine
would be executed once the data has been received.

In addition to the explicit receive operations, we similarly
hook ReadFile if the handle in the arguments is a socket
handle. Again, as mentioned initially, we do not need to track
those higher-level API functions like InternetOpenUrl or
FtpGetFile that use the basic socket primitives internally.

4) Peek Functions: Peek functions make it possible to
check if data is writable/receivable for a socket. Consequently,
they can determine if a receive operation creates a tarpit
vulnerability. For example, consider the select function,
which takes as input three sets of file descriptors (sockets),
for which it checks whether at least one byte can be read
from or written to them, respectively, or if sockets are in some
exception state. Upon return, the respective sets only contain
those descriptors which can immediately be read or written
to, or which triggered an exception. Thus if a program uses
peek functions, e.g., to check if data can be read before actually
calling the receive call, it carefully avoids tarpit vulnerabilities.
We thus track peek functions, in particular those that check
whether sockets can be read. Once select returns, we
iterate through its readable set and check which sockets are
guaranteed to have non-empty read buffers.

For WSAPoll, each socket is augmented with flags which
determine if the socket is to be checked for readability or
writability. After return, similar flags state the readability, and
so forth. On return we iterate over the sockets passed to
WSAPoll and mark those sockets guaranteed to have data,
which have the readable flag set.

As it could happen that malware executes a peek function,
but ignores whether the function guarantees a socket to be
readable, we also want to simulate the peek function not
guaranteeing any socket to be readable. Therefore, upon the
execution of a peek function, we fork the current state. In
one state we just monitor the readable sockets as described
above. In the other state, we simulate that no socket is
readable. For select, we achieve this by emptying the read
state file descriptor set. We also empty the exception state
file descriptor set, as otherwise malware would simply close
those file descriptors, because of their apparent error state.
For WSAPoll we achieve the same by zeroing the sockets’
readability output flags.

In contrast to select and WSAPoll, ioctlsocket
can guarantee more than one byte to be receivable. When
ioctlsocket is given the FIONREAD command, it is used
to check for the number of bytes in the receive buffer. If
ioctlsocket guarantees at least one byte to be readable,
we mark the socket as guaranteed to have data. WSAIoctl
works analogously to ioctlsocket, except that the number
of readable bytes is wrapped in the outBuffer pointer.

While the receiving part of peek functions can be easily
monitored, the writing side is harder. Technically, whether or
not a socket is writable depends on the space in the socket’s
send buffer maintained by the kernel. Similar to receiving

data, a socket is writable if at least one byte can be sent.
However, in contrast to receiving functions, the write function
may block if the provided data exceeds the space in the
socket’s send buffer. The same is true for WSAPoll, which
marks the socket to be writable under the same conditions.
Unfortunately, the state of the send socket’s buffer depends
heavily on the kernel, which maintains the state of the TCP
connection. In the best case, sending data will block only
until the kernel determines that the previously sent data cannot
be delivered. Although the remote party can control what
data it acknowledges, eventually, if not all data to be sent
is acknowledged, the kernel will abort the socket and resume
all blocking operations. We therefore consider neither write
operations, nor their related peek functions. That is, we assume
that write functions (or peek functions checking for writable
sockets) do not block. We leave a thorough evaluation of the
full potential of sending tarpits open for future work and will
discuss them in Section V.

In addition to their effects on subsequent receive/send
operations, peek functions themselves are blocking and can
thus also result in tarpit vulnerabilities. As we consider all
remote communication partners to be controllable by us,
checking for a tarpit vulnerability created by a select or
WSAPoll call is straightforward. For both functions, we have
to ensure that sockets are only checked for receivability. For
select, we check whether the timeout pointer and the write
and exception set are null, resulting in a sticky tarpit. Similarly,
for WSAPoll, negative timeout values result in sticky tarpits.
If the timeout value is “high” (at a configurable threshold) for
either peek function, this results in a slowing tarpit.

5) Functions for Sending Data: To capture sending
tarpits, one would have to hook all sending API functions
(send, sendto, WSASend, WSASendTo, WSASendMsg,
WSASendDisconnect and WriteFile). We could then
track the number of already sent bytes per socket by accu-
mulating the number of bytes sent per sending API function
call. As soon as the socket’s send buffer in the kernel is full,
sending would then block temporarily. However, given the
limited utility of sending tarpits (cf. Section II-C), we did not
extend MALPITY with such functionality. We will discuss an
extension of our work in that respect in Section V.

6) Shared Sockets: Processes can share a socket. For ex-
ample, if one process calls a peek function to guarantee that
the socket has available data, it can notify another process to
receive the data. Technically, it is challenging to track sockets
shared between processes. Up to now, we could identify a
socket solely by its identifier, but now one also needs to know
in which process a function is called and whether the socket
is shared. Unfortunately, socket identifiers are not guaranteed
to be the same across processes. Therefore, per socket in
one process, we maintain the set of tuples (pid, socket) that
represent the socket identifiers in other processes referring
to the same socket. Whenever one changes an attribute of a
socket, we now also iterate over this set and update the attribute
for the respective socket identifiers in the other processes.

On Windows, sockets can be shared by calling
WSADuplicateSocket on sockets that should be shared.
The function requires specifying the target process which
should receive the shared socket and returns a pointer to a
ProtocolInfo structure. A pointer to this structure (or a

597

copy of it) is then passed as an argument to WSASocket
to get an identifier for the shared socket in the target
process. Each ProtocolInfo structure has a unique
identifier, which we will call uid. Technically, we thus map
(uid,targedPid) → (srcPid,socket).

Similarly, in the other process, we have to determine
the source of the shared socket. We thus retrieve the
srcPid and socket identifier using our mapping created
in WSADuplicateSocket. We obtain the uid from the
arguments to WSASocket and the targetPid argument of
the mapping is the current Pid. Using those two, we build and
maintain the tuple (srcPid,socket) for each shared socket.

D. Differences from the Socket API of Linux

In general, our approach is not platform dependent, and can
also be applied to other operating systems such as Linux. That
is particularly true for environments that use the previously
described POSIX socket API. Technically, we would need
to update the hooking targets, as the socket API function
addresses differ per operating system. In addition, there are
some subtle differences in the semantics of the socket API.
For example, Linux adds a flag called MSG_DONTWAIT
which allows specifying that a specific socket operation should
not block (rather than configuring the entire socket as non-
blocking). The Linux fcntl function, which can be used to
modify or retrieve socket options, translates to ioctlsocket
and WSAIoctl. While we did not port our prototype to Linux,
doing so would be mainly an engineering effort, leaving a
working setup of S2E (which currently supports both Windows
and Linux) as the main challenge.

E. Malware Containment

When dynamically analyzing the malware, we give the bot
Internet access such that it can freely expose its behavior. This
setup allows as a live C2 server to instruct the malware with
commands, which triggers the malware’s malicious behavior.
Having said this, a malware with unconstrained Internet access
can harm others, e.g., due to its spreading or attack capabilities.
Following best practices [51], we thus limit how the malware
can communicate with the outside world. First, we can deploy
strict rate limiting to throttle the up- and download bandwidth,
e.g., to mitigate Denial-of-Service attacks or scans initiated
by the malware. This way, we rigorously limit the number
of targets a malware can contact, and the amount of traffic
it can send to each—without losing the generality of our
methodology. Second, we can redirect critical services to
internal hosts, such as outgoing SMTP connections and probes
for exploitable systems listening on standard services (e.g.,
NetBIOS). Redirecting these services—instead of dropping
the traffic—allows us to simulate the expected behavior, and
thus trigger larger fractions of the malware’s networking code.
Third, we collaborate with the local network administrators
and network service provider to learn about potential breaches.
This setup has been shown to work well in the past. Only the
fact that malware sometimes also connects to sinkholes during
the dynamic analysis has created alerts about potential abuses
in our network.

IV. EVALUATION

We have implemented MALPITY as an operable prototype
that allows us to examine the utility and accuracy of our new
method of identifying tarpit vulnerabilities. This section will
describe the malware we used for our evaluation, the evaluation
setup, and the detailed evaluation results.

A. Dataset

To measure the effectiveness of our proposed methodology,
we applied MALPITY on the following set of six prominent
malware families. The malware samples were selected from a
public malware sandbox and were verified to become active
at the time of analysis. Appendix A lists the SHA256 hashes
of the precise malware samples that we analyzed, all of which
can be obtained via VirusTotal or upon request.

• Bashlite: The Bashlite worm (a.k.a. LizardStresser or
Gafgyt) appeared first in 2014 and abused the Shell-
shock vulnerability to infect over a million BusyBox
devices. Bashlite thus represents a whole class of other
Linux worms that quickly followed, such as Mirai
or Hajime, which reportedly infected several million
Internet-of-Things devices [3]. Bashlite spreads by
abusing weak or default credentials of Telnet or SSH-
enabled devices.

To fit our Windows-based evaluation setup, we had to
port Bashlite to Windows. Since there is no complete
forking equivalent in Windows, we removed fork()
operations in Bashlite, resulting in a single-threaded
program. Note, however, that MALPITY is not lim-
ited to single threads, but can also monitor multiple
threads. We will discuss the original subprocess of the
Bashlite tarpits we found in our qualitative assessment.
Furthermore, as the Bashlite source code does not
contain active C2 servers, we implemented a C2 server
that sends random commands to its clients. To mitigate
the harm of DoS attacks, we used localhost as the
target of attack commands. We also replaced Bash-
lite’s generation of a random public IP in the scanner
with the localhost address. We set up a Telnet service
listening on port 23, which after accepting would
constantly send the byte 0xFF (following standard
Telnet behavior).

• SalityP2P (v4): SalityP2P is a peer-to-peer based
botnet that has operated since 2007 and is known to
withstand takedown attempts due to its decentralized
scheme [49]. SalityP2P acts as a dropper and uses
both UDP and TCP communication to interact with its
peers. The overall SalityP2P population was estimated
to be over a million peers in 2013 [49]. Since then,
many SalityP2P peers migrated from the older version
(v3) to the newest (v4), and still form an active botnet.
SalityP2P spreads as a file infector, yet does not
expose any network-based spreading activity.

• Pynamer: Pynamer is a malware downloader that has
been undergoing steady development for years. In its
recent incarnation, Pynamer uses a JSON-like protocol
to obtain tasks, and is mainly used to drop spambots
on the infected host. Pynamer does not spread.

598

• Pushdo: Pushdo became popular as a malware down-
loader and for years has been one of the most nefarious
and largest botnets around. Pushdo is famous for its
tight alliance with the spambot Cutwail, which is
responsible for huge portions of global spam overall.
Like Pynamer, Pushdo is also not a worm.

• WannaCry: WannaCry is a recent malware outbreak
attacking vulnerable SMB/NetBios implementations
in Windows. In May 2017, it infected over 200,000
systems worldwide with ransomware. WannaCry acts
as a worm and scans the Internet for further systems
that could be exploited similarly as the current host.

• Tofsee: Tofsee is a popular botnet used for spamming.
It downloads spam templates and recipient lists from
its C2 server and then connects to the mail servers to
send spam emails via SMTP. Unless specific modules
are dropped, Tofsee does not attempt to spread to other
systems by default.

B. Evaluation Setup

We created a 64-bit Windows 10 Enterprise version 1703
virtual machine using QEMU, in which the malware is exe-
cuted. The virtual machine has 2 GB RAM and a simulated
Intel Core 2 Duo CPU with 2.40GHz. We executed each piece
of malware separately for a maximum of 60 minutes. We reset
the virtual machine after each execution, such that all malware
samples start in the same clean environment.

We restricted our evaluation to those network APIs that
can, in principle, result in sticky tarpit vulnerabilities. We
thus ignored sending and connecting network operations, as
discussed in Section III-C. This way, we reduce the number
of execution paths that we have to verify manually as part
of our evaluation, and obtain a small number of high-impact
tarpits we can qualitatively assess. Most identified tarpit vul-
nerabilities are thus sticky and guaranteed to keep a thread
busy forever. Sometimes, in particular if timeouts are used,
we can nevertheless encounter slowing tarpits, which we then
also considered.

We gave special treatment to peek functions. Given that
their main purpose is to wait until any socket is “ready”, they
naturally incur a desired timeout. We thus omitted all peek
functions that yield only a slowing tarpit, as such behavior is
pretty much standard. This still leaves those peek functions
that are called without a timeout.

C. Results

We applied MALPITY to all six malware families men-
tioned above. In order to evaluate its effectiveness, we in-
vested a significant amount of effort to reverse engineer the
malware samples in order to manually identify all tarpits in
each executable. We used manual backward slicing, starting
at socket API invocations, to find a ground truth of tarpit
vulnerabilities manually. In the following, we will compare our
manual findings with the results we obtained via MALPITY.

Table III sums up our overall results. We added a dash
(“–”) if a component did not contain a tarpit vulnerability,
and add “n/a” if the entire component did not exist. MALPITY

automatically found and generated exploits for twelve tarpit

TABLE III. TARPIT VULNERABILITIES REVEALED BY MALPITY.
“N/A”: COMPONENT DOES NOT EXIST IN THE MALWARE.

“–”: NO TARPIT VULNERABILITY EXISTS IN THE COMPONENT.

Malware C2 Comm. Attack Engine Spreading Engine

sticky slowing sticky slowing sticky slowing

Bashlite 1/1 – – – 1/1 –

Pushdo 1/1 1/1 – 1/1 n/a n/a

SalityP2P 2/2 – – – n/a n/a

Tofsee – 1/1 – 1/1 n/a n/a

WannaCry – – – – 1/13 –

Pynamer 1/1 – 1/1 – n/a n/a

vulnerabilities in all analyzed malware samples, five of which
even contain sticky tarpits. Most importantly, MALPITY found
all tarpit vulnerabilities contained in our ground truth. Recall
that we dropped the idea of symbolic execution and thus only
monitor those paths that are “visited” during dynamic analysis.
The result thus indicates that tarpit vulnerabilities are typically
located in functionality that is quickly explored during concrete
execution with a live C2 server.

The vulnerabilities are furthermore located in critical mal-
ware functionality. In particular, the identified tarpits make it
possible to (i) block Bashlite’s spreading engine, (ii) stall Sal-
ityP2P’s update mechanism, and (iii) capture Pushdo bots that
contact DGA-generated C2 servers. Furthermore, we generated
slowing tarpits in WannaCry, Pushdo and Tofsee, all of which
can slow down their spreading or attack campaigns. In the
following, we will describe the tarpits in more detail.

1) Bashlite: MALPITY found the two sticky tarpit vulnera-
bilities, one of which was in Bashlite’s C2 component, and the
other in its spreading engine. Effectively, the spreading engine
represents our running example in Figure 1 (page 3). To trigger
this tarpit, Bashlite first connects to one of its C2 servers. When
it receives a command to scan, it forks a new child process
which then connects to at most 512 random IP addresses via
Telnet (TCP port 23). After being connected successfully to
one of these potential infection targets, Bashlite will first check
if data is receivable, and if so, receive one byte. If this byte
is equal to 0xFF, meaning the follow-up byte is a Telnet
command, Bashlite attempts to receive another two bytes, but
this time without peeking for data beforehand. Since the socket
is blocking, the scanning target can thus trigger a sticky tarpit
vulnerability and hinder the scanner from reaching other hosts
for all eternity. Interestingly, there can be at most one scanning
child process per Bashlite instance [2], so Bashlite would stop
spreading once stuck in this tarpit. While stalling the current
population of Bashlite, this tarpit can only assist in a takedown,
as the rest of Bashlite stays functional.

The second tarpit is in the C2 component. When trying to
receive commands from its C2 server, Bashlite peeks only once
to see if data is available (using select), but then calls recv
in a loop until the buffer is filled. The previous select call
only guarantees that at least one byte of data is available, which
is consumed after the first recv call. Subsequent recv calls
are not guaranteed to have data available and may therefore
block. Thus, as soon as defenders control one of the Bashlite

3Technically this is a sticky tarpit, however the parent thread terminates the
thread containing the sticky tarpit after 1 hour.

599

C2 servers, they can capture Bashlite-infected systems.

2) SalityP2P: Given its P2P nature, SalityP2P’s C2 com-
ponent interacts with other (potentially defender-controlled)
peers in the network. SalityP2P contains two sticky tarpit
vulnerabilities in this communication, one of which can be
abused. The abusable vulnerability is located behind a de-
cryption function. When running SalityP2P in concolic mode,
even with no forks allowed, we were not able to get through
the decryption routine. When running the malware concretely,
MALPITY found both vulnerabilities in less than 7 minutes.

The abusable tarpit is in SalityP2P’s update mechanism.
SalityP2P starts multiple threads, which each have their own
purpose. One thread Tupd is responsible for checking that the
saved peers are still up and if they have an update. This thread
spawns, every forty minutes, up to seven concurrent threads Ti.
Each of these Ti then checks if the neighboring peer is online
and whether it has an update. If the remote peer has an update,
Ti will try to receive the update on a blocking socket without
checking that data is receivable beforehand. This results in a
sticky tarpit vulnerability and therefore enables blocking Ti

indefinitely. Tupd will wait until all its spawned threads have
returned, and will thus also be affected by the tarpit. As this
P2P mechanism is the only way to retrieve updates for the
vast majority of 85% of SalityP2P bots hidden behind a NAT
gateway [49], the tarpit can be abused to prevent SalityP2P
peers from receiving updates. In fact, receiving “URL packs”
(lists of URLs with malicious modules to download) is the only
type of command, except for peer propagation, exchanged by
SalityP2P [19]. Thus, the bot master would lose control over
bots as soon as they are trapped in the tarpit. Therefore, this
tarpit can be used to takedown 85% of the SalityP2P botnet.
Note that the assumption of controlling at least one peer per
bot is reasonable and has been demonstrated to work in other
contexts, such as using sensors in P2P networks [49].

The other (non-exploitable) sticky tarpit that MALPITY

found is in the component that is responsible for handling
incoming version checks from other peers. Here, a recvfrom
call deliberately blocks a thread until any of the remote peers
sends a UDP datagram to the UDP server socket. However, the
UDP server socket is available to all peers, and—in contrast
to TCP, unless specifically specified as such—is not bound to
a particular connection. Defenders thus have no control over
who will send data to this socket. As soon as either party sends
a UDP segment, the thread will continue.

3) Pynamer: MALPITY found both sticky tarpit vulnerabil-
ities in Pynamer. Pynamer will request new tasks every thirty
seconds. To this end, it contacts a hard-coded C2 server and
queries a list of tasks via HTTP. The server will eventually
respond with a list of URLs the malware should contact next.
Upon reading this response from the server, the first tarpit
vulnerability appears. However, the generated tarpit is not as
useful, as it requires control over a hard-coded C2 server.

The other tarpit is more interesting and is part of Pynamer’s
attack engine (in the case of downloaders, the attack engine
simply fetches and installs further malicious files). After re-
ceiving URLs from the server, the malware contacts each URL.
Here, Pynamer exposes its second tarpit vulnerability, as again
data is received on blocking sockets without peeking for data
first. This may give defenders a bit more control than just

a C2 tarpit, given that malware authors consider file hosting
infrastructures less critical than C2 servers. Since Pynamer is
single-threaded, one could use this second tarpit to take down
the Pynamer population.

4) Pushdo: Pushdo contains three tarpits, all of which
MALPITY found. The first, slowing, tarpit is located in a thread
which tries to receive the SMTP greeting from hard-coded mail
servers as an online check. The tarpit has a 30-second timeout
per mail server, but is located in a ”while true” loop, which
runs forever in this thread. As only this thread is stuck, this
tarpit can only reduce the rate of connection attempts.

Pushdo also contains a slowing tarpit with a 5-second
timeout in a recvfrom call, while performing its custom
name resolution with a DNS resolver. The receiving operation
is called in an infinite loop that only exits if less or more
than 600 bytes were received. Assuming control over the
DNS resolver that Pushdo uses, one could abuse this slowing
tarpit. A tarpit could always answer with exactly 600 bytes,
forcing Pushdo’s according thread to never leave this loop, and
preventing it from further DNS resolution.

Finally, Pushdo contains a sticky tarpit on a global socket
that is used for C2 communication. To keep in contact with the
C2 server despite takedown attempts, Pushdo has several fall-
back mechanisms for its C2 communication [8]. One fallback
mechanism is its DGA [16] that generates C2 domains. One
can force Pushdo to use its DGA-based C2 communication
by taking down its hard-coded C2 IPs and domains. Whereas
registering all DGA-generated domains quickly does not scale,
we can now abuse the tarpit instead. Defenders can now
register a single domain name that is or will be generated by
the DGA. Once the domain points to the tarpit, it traps bots
forever, effectively taking the botnet down.

5) WannaCry: MALPITY found a vulnerability in Wan-
naCry’s spreading engine. The spreading engine uses up to 128
threads (Tprobe), each of which generates and then contacts
random IP addresses. For each reachable IP address, Tprobe

probes all addresses within the /24 subnetwork (excluding
0 and 255 as the last octet) with a timeout of one second
per probe. If a host is reachable, Tprobe starts a new thread
Tconnect, which then connects to the IP on TCP port 445
(SMB). WannaCry interacts with the peer and repeatedly tries
to receive data from the remote communication partner. The
worm uses recv without peeking for data availability. As the
socket is blocking, and has no timeout assigned, this blocks
Tconnect.

Interestingly, WannaCry employs a watchdog functionality.
The parent thread Tprobe will terminate the child thread after
one hour, and then continue connecting to subsequent ad-
dresses in the same network. This illustrates how an originally
sticky tarpit can turn into a slowing tarpit in practice. After
Tconnect terminates (or is shut down), Tprobe will try the next
IP address of the /24 subnetwork. Thus, Tprobe will again start
Tconnect to connect to the next IP address, and again wait,
for the thread to terminate for at most one hour. Effectively,
this means that defenders cannot abuse this tarpit to stop an
attack, but instead, to slow down the spreading epidemics. We
will further investigate the utility of such slowing tarpits in a
WannaCry case study in Section IV-D.

600

6) Tofsee: Tofsee contains two slowing tarpit vulnerabili-
ties, both of which MALPITY found.

The first vulnerability occurs when Tofsee receives data
from the spam target’s mail server. The spam engine calls
recv in a for loop until 500 bytes have been received (or the
connection is closed), semantically similar to a recv with the
flag MSG_WAITALL. However, none of those receive calls on
blocking sockets is preceded by peek functions. Interestingly,
Tofsee can (optionally) configure a receive timeout for sockets.
The timeout is determined by a configuration received from the
C2 server, typically set at 30 seconds [29]. A mail server tarpit
could thus launch a slowing tarpit. In fact, the tarpit can reply
byte-by-byte and abuse the fact that each recv() call will
start the timeout anew—resulting in an overall slowdown of
250 minutes per SMTP connection. The tarpit is thus suitable
to slow down the otherwise aggressive nature of spambots,
and can reduce the overall spam volume emitted by the
botnet. Note that Tofsee receives encrypted commands from
its C2 server to send mail, which again undermined our initial
attempts to concolically execute the malware.

The second vulnerability enables a slowing tarpit in Tof-
see’s C2 communication. Again, Tofsee calls recv in a loop
until a certain number of bytes have been received from the
C2 server. Although the socket is blocking, a default timeout
of 40 seconds per recv call is set. Again we can reply byte-
by-byte to the recv calls, but this time the length the data to
be received is controlled by previously received data from the
C2 server. Unfortunately, as Tofsee uses a single hard-coded
C2 server, this tarpit vulnerability is not useful in practice.

Note that we could not verify whether Tofsee’s spreading
component [29] has vulnerabilities, as the respective module
was not downloaded during our evaluation.

D. Relevance of Slowing Tarpits: A WannaCry Case Study

From a defender’s perspective, sticky tarpits are preferred
over slowing tarpits, as they trap the malware indefinitely.
However, as we have shown, it is not always possible to
identify sticky tarpits. Either tarpits are just slowing from
the start, or turn into slowing ones in the larger context. As
demonstrated in WannaCry, even sticky tarpits can sometimes
only temporarily trap threads until they are restarted. One
might thus wonder whether it is worth attacking the malware
and how much slowdown one might be able to achieve with
slowing tarpits. This question has to be answered on a case-
by-case basis, as it depends on the timeout, the nature of the
thread containing the tarpit, and the number of parallel threads.

We will now illustrate the utility of slowing tarpits with
the most recent malware in our dataset: WannaCry. Recall that
WannaCry had a slowing tarpit in its spreading engine. We
thus want to estimate the expected time until we receive at
least one probing packet from a WannaCry-infected host. Each
of the 128 scanning threads generates random IPs, where for
the first octet they exclude numbers greater than or equal to
224 (reserved for multicast), and the number 127 (reserved for
loopback communication)—leaving 223 possibilities overall.
For all other octets, WannaCry skips bytes 0 and 255—
presumably intended as under-approximation to exclude the
network IDs and broadcast addresses.

We use the probabilistic method of Moore et al. [39] to
compute the time for WannaCry to reach a defender’s network,
and then the time a defender can slow down WannaCry. To
this end, we need to know the probability of our network to
be chosen at random. The overall number of IP addresses that
WannaCry generates at random is 2543 · 223. We assume we
own a /8 network, resulting in 2543 IPs that WannaCry can
scan. Note that such network sizes for IP telescopes are not
unrealistic—several IP telescopes in use by researchers [3],
[38] are of the same size. Using this /8 network, the probability
to own a single IP address randomly generated by a WannaCry-
infected system is thus:

P (contacted) =
2543

2543 · 223 =
1

223

While the chance of being contacted per random draw is
low, the chances significantly increase over time. To compute
chances over time, we need to know how many connection
request packets (without retransmissions) per second (rate
r) WannaCry sends. This can be limited by several factors
such as bandwidth, congestion, or workload of the CPU. The
rate furthermore depends on if WannaCry is successful in
contacting an IP (and then probes the entire /24 network),
or whether the IP address was non-responsive. To give an
intuition, we measured WannaCry’s connection request ratio
for twenty minutes on a virtual machine having a single core
and 4 GB RAM with 200 Mbps and 12 Mbps download and
upload bandwidth, respectively. We observed 30,874 connec-
tion requests during that period, i.e., a rate r of about 26
attempts per second.

As the generation of the connection requests to a network
is independent of each other, the probability to receive at least
one packet in T seconds is given by a Bernoulli trial with
probability:

P (contactedAtLeastOnce) =

r·T∑
i=0

(
r · T
i

)
· pi · (1− p)r·T−i

= ((
1

1− p
)r·T − 1) · (1− p)r·T

= 1− (1− P (contacted))r·T

= Z

Solving this equation for the elapsed time T in seconds
before at least one connection request is seen with probability
Z is given by the following equation4:

T =
log(1− Z)

r · log(1− P (contacted))

We can apply this computation in our concrete context. The
elapsed time until a /8 network would see at least one packet
from a WannaCry-infected host with 95% probability would
be less than half a minute:

T =
log(1− 0.95)

30874
60·20 · log(1− 1

223)
≈ 25.9s

4Note that Moore et al. [39] have solved P (contacted) = 1− (1− p)rT

slightly wrong for T in their original paper.

601

Once one IP address in our network is reached, WannaCry
will connect to all other hosts in the same /24 network. While
a probe is aborted by the watchdog after one hour, the overall
probing time quickly accumulates. In fact, having 254 probed
IP addresses per /24 network, we can extend the probing thread
waiting time to 254 hours, i.e., ten and a half days.

For a single scanning thread, the connection rate rt is
about 0.20 hosts per second (r/128). Therefore the time until
the thread would contact us at 95% probability is about 55
minutes. To compute the slowdown factor of the scanning
thread, we divide the number of hosts the thread contacts
during the time until it finds our tarpit by the number of hosts
it would contact without tarpit attempts.

Slowdown = 1−
30874

128·20·60 · 60 · 55 + 254
30874

128·20·60 · 60 · 60 · (254 + 55
60)

≈ 0.995

At 95% probability, it is thus possible to slow down the
scanning rate of a probing thread by a factor of 99.5%. This
demonstrates the utility of slowing tarpits.

V. DISCUSSION

In this section, we discuss limitations of our approach and
outline potential future directions for our research.

Other Use Cases: Whereas we applied our methodology
only on malicious programs, our general approach can likewise
be used to identify tarpit vulnerabilities in benign software.
MALPITY does not require access to source code, and hence
even closed-source programs can be analyzed. If source code
is provided, one can incorporate the vulnerable code patterns
listed in Section II into compilers, which could then statically
identify and warn about potential tarpit vulnerabilities.

Asynchronous Communication: Our current model focuses
on synchronous socket communication. MALPITY therefore
cannot handle asynchronous callbacks with specified callback
routines, such as WSARecv and WSARecvFrom. Not only
is finding tarpits in asynchronous communication more chal-
lenging due to the event-based nature, but the chances of
finding exploitable tarpits in asynchronous handling functions
are also lower. We thus argue that supporting synchronous
socket operations will capture most abusable tarpits. Note that
our approach explicitly supports threaded malware, even if the
communication between the threads is not synchronized.

Send Operation Tarpits: Our prototype ignores send opera-
tions due to the strict TCP retransmission timeout handling in
Windows. We have, however, not investigated what happens
if the malware rapidly fills the buffer, while the tarpit ac-
knowledges the reception of data only byte-by-byte. Similarly,
sending tarpits might become interesting if they are executed
in a loop. We leave both investigations open to future work.

Server-Side Tarpits: We have demonstrated the prevalence
of tarpit vulnerabilities in the malware’s client-side code. A
blackbox-based approach, orthogonal to ours, could search
for server-side tarpits that are part of the C2 server imple-
mentation. Given the complete lack of program information,
the complexity of such blackbox identification is, however,
significantly higher.

Statically Linked Libraries: When hooking the socket API,
we assume that it is located in dynamically-linked libraries.
Recently, Linux-based malware in particular started to stat-
ically link standard libraries to be compatible with multiple
platforms. Our method could be adopted to such practice.
Instead of hooking fixed library addresses, we would have to
use code signatures to search for the functions we would like
to hook [7], [26], [57].

Evasion: Malware commonly tries to evade dynamic anal-
ysis, e.g., by detecting emulation or sandboxes [37], [62].
QEMU in particular introduces artifacts such as registry
keys [55]. S2E adds extra artifacts, e.g., background services,
registry keys and otherwise-undefined x86 instructions. Such
evasion attempts could be mitigated by using hardened and
stealthy debuggers on bare-metal systems. Similarly, assuming
that malware checks for such artifacts only in its packed form,
one could analyze the disarmed unpacked binaries instead.

Coverage: As with every methodology based on dynamic
analysis, ours also faces the fact that concrete execution will
never expose the entire program functionality. As such, our
analysis is not sound, i.e., it may miss tarpit vulnerabilities
(false negatives). For example, if a vulnerable code part is in
a subroutine that is only triggered if a certain command is re-
ceived from the C2 server, our dynamic analysis would have to
wait for this command—or otherwise miss the vulnerability. In
our initial experiments, we used symbolic/concolic execution
to resolve this problem, but with limited success, given that
encoding/encryption routines quickly caused path explosions.
While we acknowledge the lack of full coverage, we also argue
that this is not a major problem in our use case. We aim to
find tarpits in code that is commonly executed by malware,
such that the impact of a tarpit is maximized. As such, tarpits
in networking code that is executed are exactly the type of
high-impact vulnerabilities we would like to find.

Exploit Serving: If malware were to have different execu-
tion paths leading to a tarpit vulnerability but each requiring
a different payload, we would need to know which payload to
serve, once the malware contacted the tarpit. This would be
a problem if the observable behavior of the malware toward
the tarpit was indistinguishable. However, none of the evalu-
ated executables contained a tarpit vulnerability which would
require a different payload depending on an indistinguishable
state.

Malware Updates: Malware authors might notice the ex-
ploitation of tarpits and could remove the vulnerabilities. In
fact, closing most of the tarpit vulnerabilities we found is rather
straightforward, and requires either specifying timeouts, or
refactoring of the networking code. Having said this, from the
attacker’s perspective, the consequences of tarpitting might be
severe even for one-shots. For example, a sticky tarpit that de-
ters bots from receiving updates until the malware is restarted
(typically upon reboot) may decrease the malware population
for a long time period. Similarly, especially for worms, au-
tomatic identification and exploitation of tarpit vulnerabilities
can effectively slow down a worm’s initial spreading rate. In
addition, tarpitting could be combined with orthogonal botnet
takedown measures. For example, sinkholing of peer-to-peer
botnets works best if bots do not contact each other, as they
would otherwise self-repair the defender-modified peer lists—
appropriate tarpits, such as the one in SalityP2P, can thus assist

602

in takedowns. And finally, assuming malware code leaks on the
Internet, it frequently leads to the fact that several less-skilled
adversaries spawn individual botnets based on the leaked initial
code base (e.g., as done for Bashlite and Mirai). Buggy source
code would therefore propagate to other malware instances,
such that tarpits can be reused for each botnet that was derived
from the vulnerable code base.

Abuse of MALPITY: If we publish MALPITY as open
source, malware authors might use it to identify tarpit vul-
nerabilities themselves. Similarly, MALPITY might be abused
by miscreants to identify vulnerabilities in benign software.
To increase reproducibility of our results and to foster future
research, we thus decided to release the source code of
MALPITY to trusted parties upon request, raising the bar solely
for attackers to obtain MALPITY.

VI. RELATED WORK

The general idea of tarpits was introduced by Tom Lis-
ton [35], who developed the LaBrea software that accepts
TCP connections halfway. This concept was leveraged to trick
CodeRed, a popular worm that went viral in 2001, into a
slowing tarpit. Since then, the idea of tarpits was not further
studied for malware, potentially due to the lack of automation
to identify tarpits. Also, it was widely assumed that tarpits
could only slow down malware spreading and could not be
generalized beyond CodeRed. We show that both identification
of tarpits and exploit generation can be automated, and reveal
that sticky tarpits are prevalent even in today’s widespread
malware. Furthermore, we expand the current state of tarpits
to sticky tarpits that can make a process get stuck forever. We
demonstrate the utility of socket-level tarpits that go beyond
traffic shaping at the TCP/IP level [35], [60]. UDP/TCP socket-
level tarpits utilize the blocking behavior of the socket API,
which allows for sticky tarpits stalling an entire thread.

Since their inception, tarpits have primarily been applied in
the anti-spam context. Hunter et al. [27] and Eggendorfer [18]
suggest to insert server-side delays in the SMTP dialog to slow
down the delivery of mail. Even if spammers violate such
delays, they risk being detected as such, as benign clients
(unless pipelining is used) do not follow this behavior. All
these approaches focus on keeping a connection alive as long
as possible, or aim to confuse scanners by randomly aborting
connections. Instead, our idea targets the general blocking
behavior of the socket API to slow down or even to block
a program using application specific socket-level tarpits.

In the last decade, disruptive defenses against botnets have
largely focused on methodologies and attempts to monitor
and to “take down” botnets. Such operations typically result
in sinkholing attempts, where defenders aim to gain control
over the C2 infrastructures used by malware [10], [49]. When
sinkholing is accompanied with law enforcement activities
against the malware authors, it frequently becomes effective in
disrupting botnets [32], [49], [58]. Our work is complementary
to sinkholing, and can either assist in sinkholing, or sometimes
even replace it. Sticky tarpits suddenly allow sinkholing even
those networks that use highly redundant C2 infrastructures.
For example, consider a DGA-based botnet, where previously
it was necessary to register all time-dependent DNS domains
to sinkhole the malware. With tarpits, it is sufficient to register

a small number of domains, and then “clutch” the bots once
they enter the blocking tarpit (such as in Pushdo). Our exploit
generation assists in preparing such defenses on a timely basis
and in an automated way.

Our proposed methodology is also loosely related to mal-
ware analysis methodologies in general. While we performed
a case study to deploy slowing tarpits in IP telescopes (unused
but routed IP addresses), others have used such networks to
passively monitor the magnitude of worms [3], [38], [61].
Similarly, dynamic analysis is widely used in other contexts,
such as in malware sandboxes [59] or to obtain an understand-
ing of the malware landscape [12], [22]. Our initial attempts
to symbolically execute malware come close to the idea of
Moser et al., who used system snapshots and alterations of
the environment to influence the control flow decisions and
thus capture all possible malware behaviors [40]. Similarly,
Brumley et al. mark network inputs as symbolic to find
network-based triggers, like commands from a C2 server, for
the malwares behavior [9]. Augmenting MALPITY with similar
techniques may help to identify even those tarpits that are
hidden in otherwise non-executed execution paths.

Finally, our focus on socket-based tarpits is orthogonal
to attempts to exploit the complexity of an input-dependent
algorithm or to trigger program crashes. Chang et al. presented
an approach to detect DoS vulnerabilities in C programs that
were caused by structural programming mistakes. For example,
they can find faulty loop or recursion terminations that depend
on network input [14], and can hang a program. Similarly,
Burnim et al. use concolic execution to find inputs that trigger
the worst-case complexity of a program [11]. While such
vulnerabilities can also be used to tarpit a program, they
are more intrusive (e.g., create a busy loop), as they target
launching complex computations at the client, rather than just
blocking it. Furthermore, both approaches require access to the
source code, which is not always available for malware.

VII. CONCLUSION

Existing defenses against malware are either host-based
(anti-virus) or take over control of a botnet’s C2 commu-
nication (botnet takedowns). While host-based defenses are
limited to individual hosts, botnet takedowns require complex
preparations and assistance of network operators from various
countries. We have shown that malware may be susceptible to
tarpit attacks that allow remote parties to temporarily cease
or significantly slow down the botnet operation. MALPITY

can reveal socket-level tarpit vulnerabilities by monitoring the
socket API and using dynamic malware analysis. Furthermore,
we show how to automatically generate exploits for such tarpit
vulnerabilities. We evaluated our automated analysis on six
popular malware families and found tarpits in all of them. Most
families were even vulnerable to sticky tarpits, at least three of
which can be exploited to halt critical operations of the botnet.
Our findings thus have the potential to take down botnets,
assist in future operations against botnets or slow down botnet
activities, and thereby to significantly reduce their economic
gain and spreading speed.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
comments. Furthermore this project has received funding from

603

the European Union’s Horizon 2020 research and innovation
program under grant agreement No 700176 (”SISSDEN”)

APPENDIX

A. SHA256 Hashes of Samples in Evaluation

The following list details the SHA256 hashes of the exact
malware executables we used in our evaluation. The samples
can be obtained from VirusTotal or upon request.

• Bashlite: self-compiled from https://github.com/anthonygtellez/BASHLITE/blob/
master/client.c to sample with SHA256 hash:
525659e0540289d0620d681fea4453a0a9a76da806347e07f10b6a5576868d05

• Pushdo:
2a30d7b76e3dcc10861526f83fb060a12485a974626bea8872cf2a012e25333a

• Pynamer:
96dc746b7367a0c3ab7cc5d22ac69dc71edef87eff5f80a4aab14c02f37e1bcc

• SalityP2P:
69093bb3dd267b8e738320ebe4c954c902636b3298b14771b5da0b0e19c866b2

• Tofsee:
031b2f7a46ba809cc1750a10481ff90de900d3e875926784a37e9866926e26b2

• WannaCry:
9428b3dc2192473e1be1e155a978f83f8cedbf3f13dbc9b7641806cc0456a81a

REFERENCES

[1] “Revealing Packed Malware, author=Yan, Wei and Zhang, Zheng and
Ansari, Nirwan, journal=IEEE Security & Privacy, year=2008, pub-
lisher=IEEE.”

[2] (anonymous), “BASHLITE,” https://github.com/anthonygtellez/
BASHLITE, accessed 2018-07-26.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the Mirai Botnet,” in USENIX Security Sympo-
sium, 2017.

[4] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From Throw-Away Traffic to Bots: Detecting
the Rise of DGA-Based Malware.” in USENIX Security Symposium,
2012.

[5] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated Classification and Analysis of Internet Mal-
ware,” in RAID, 2007.

[6] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and
G. Vigna, “Efficient Detection of Split Personalities in Malware.” in
NDSS, 2010.

[7] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “Byteweight:
Learning to Recognize Functions in Binary Code.” USENIX, 2014.

[8] R. Bhat, “Tracking the Footprints of PushDo Trojan,”
https://www.blueliv.com/blog-news/research/tracking-the-footproints-
of-pushdo-trojan/, accessed 2018-08-07.

[9] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin, “Bitscope: Automatically Dis-
secting Malicious Binaries,” Technical Report CS-07-133, School of
Computer Science, Carnegie Mellon University, Tech. Rep., 2007.

[10] G. Bruneau and R. Wanner, “DNS Sinkhole,” Reading Room Site. The
SANS Institute, 2010.

[11] J. Burnim, S. Juvekar, and K. Sen, “WISE: Automated Test Generation
for Worst-Case Complexity,” in Proceedings of the 31st International
Conference on Software Engineering, 2009.

[12] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring pay-
per-install: The Commoditization of Malware Distribution.” in USENIX
Security Symposium, 2011.

[13] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs.” in OSDI, 2008.

[14] R. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and V. Shmatikov,
“Inputs of Coma: Static Detection of Denial-of-Service Vulnerabilities,”
in IEEE CSF, 2009.

[15] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea, “Selective
Symbolic Execution,” in USENIX HotDep, 2009.

[16] F. Cybersecurity, “Pushdo It To Me One More Time ,” https://
www.fidelissecurity.com/sites/default/files/FTA 1016 Pushdo.pdf, ac-
cessed 2018-08-07.

[17] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware Analysis
via Hardware Virtualization Extensions,” in ACM CCS, 2008.

[18] T. Eggendorfer, “Reducing Spam to 20% of its Original Value With a
SMTP Tar Pit Simulator,” in In MIT Spam Conference, 2007.

[19] N. Falliere, “All-in-One Malware: An Overview of Sality,” https:
//www.symantec.com/connect/blogs/all-one-malware-overview-sality,
accessed 2018-08-06.

[20] J. Franklin, M. Luk, J. M. McCune, A. Seshadri, A. Perrig, and
L. Van Doorn, “Remote Detection of Virtual Machine Monitors with
Fuzzy Benchmarking,” in ACM SIGOPS Operating Systems Review,
2008.

[21] S. Gallagher, “Double-Dip Internet-of-Things Botnet Attack Felt Across
the Internet,” https://arstechnica.com/information-technology/2016/10/
double-dip-internet-of-things-botnet-attack-felt-across-the-internet/,
accessed 2018-03-14.

[22] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis
et al., “Manufacturing Compromise: The Emergence of Exploit-as-a-
Service,” in ACM CCS, 2012.

[23] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
Analysis of Network Traffic for Protocol-and Structure-Independent
Botnet Detection,” in USENIX Security Symposium, 2008.

[24] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee,
“Bothunter: Detecting Malware Infection through IDS-Driven Dialog
Correlation.” in USENIX Security Symposium, 2007.

[25] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command
and Control Channels in Network Traffic,” in NDSS, 2008.

[26] Hex-Rays, “IDA F.L.I.R.T. Technology: In-Depth,” https://www.hex-
rays.com/products/ida/tech/flirt/in depth.shtml, accessed 2018-10-11.

[27] T. Hunter, P. Terry, and A. Judge, “Distributed Tarpitting: Impeding
Spam Across Multiple Servers.” in LISA, 2003.

[28] G. Jacob, R. Hund, C. Kruegel, and T. Holz, “JACKSTRAWS: Picking
Command and Control Connections from Bot Traffic.” in USENIX
Security Symposium, 2011.

[29] J. Jedynak, “A Deeper Look at Tofsee Modules,” https://www.cert.pl/
en/news/single/a-deeper-look-at-tofsee-modules/, accessed 2018-07-10.

[30] J. C. King, “Symbolic Execution and Program Testing,” Communica-
tions of the ACM, 1976.

[31] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior-
Based Spyware Detection.” in USENIX Security Symposium, 2006.

[32] J. Kirk, “Microsoft Leads Seizure of Zeus-Related Cybercrime
Servers,” https://www.computerworld.com/article/2502089/security0/
microsoft-leads-seizure-of-zeus-related-cybercrime-servers.html,
accessed 2018-05-24.

[33] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and
X. Wang, “Effective and Efficient Malware Detection at the End Host.”
in USENIX Security Symposium, 2009.

[34] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: Using System-Centric Models for Malware Protection,”
in ACM CCS, 2010.

[35] T. Liston, “Tom Liston Talks about LaBrea,” http:
//labrea.sourceforge.net/Intro-History.html, accessed 2018-03-10.

[36] Microsoft, “ stdcall,” https://msdn.microsoft.com/de-de/library/
zxk0tw93.aspx, accessed 2018-06-02.

[37] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis,
“Spotless Sandboxes: Evading Malware Analysis Systems Using Wear-
and-Tear Artifacts,” in IEEE S&P, 2017.

[38] D. Moore, “Network Telescopes: Observing Small or Distant Security
Events,” in Proceedings of the 11th USENIX security symposium, 2002.

[39] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, Network
Telescopes: Technical Report, 2004.

[40] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution
Paths for Malware Analysis,” in IEEE S&P, 2007.

604

[41] ——, “Limits of Static Analysis for Malware Detection,” in ACSAC,
2007.

[42] MSDN, “How to Modify the TCP/IP Maximum Retransmission Time-
out,” https://support.microsoft.com/en-us/help/170359/how-to-modify-
the-tcp-ip-maximum-retransmission-time-out, accessed 2018-06-27.

[43] ——, “Send Function,” https://docs.microsoft.com/en-gb/windows/
desktop/api/winsock2/nf-winsock2-send, accessed 2018-06-27.

[44] ——, “SendBufferSize Property,” https://msdn.microsoft.com/en-gb/
en-en/library/system.net.sockets.socket.sendbuffersize(v=vs.110).aspx,
accessed 2018-06-27.

[45] ——, “Socket Overlapped I/O versus Blocking/Nonblocking Mode,”
https://support.microsoft.com/en-us/help/181611/socket-overlapped-i-
o-versus-blocking-nonblocking-mode, accessed 2018-03-25.

[46] C. Nunnery, G. Sinclair, and B. B. Kang, “Tumbling Down the Rabbit
Hole: Exploring the Idiosyncrasies of Botmaster Systems in a Multi-
Tier Botnet Infrastructure.” in LEET, 2010.

[47] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-Padilla,
“A Comprehensive Measurement Study of Domain Generating Mal-
ware.” in USENIX Security Symposium, 2016.

[48] Reuters, “Shadow Brokers Threaten to Release Windows 10 Hacking
Tools,” https://tribune.com.pk/story/1423609/shadow-brokers-threaten-
release-windows-10-hacking-tools/, accessed 2018-08-07.

[49] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann, C. J.
Dietrich, and H. Bos, “SoK: P2PWNED: Modeling and Evaluating the
Resilience of Peer-to-Peer Botnets,” in IEEE S&P, 2013.

[50] C. Rossow and C. J. Dietrich, “Provex: Detecting Botnets with En-
crypted Command and Control Channels,” in DIMVA, 2013.

[51] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. Van Steen, “Prudent Practices for
Designing Malware Experiments: Status Quo and Outlook,” in IEEE
Security & Privacy, 2012.

[52] G. Saito and G. Stringhini, “Master of Puppets: Analyzing And Attack-
ing A Botnet For Fun And Profit,” CoRR, 2015.

[53] B. Stock, J. Göbel, M. Engelberth, F. C. Freiling, and T. Holz,
“Walowdac - Analysis of a Peer-to-Peer Botnet,” in Proceedings of the
2009 European Conference on Computer Network Defense, 2009.

[54] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is my Botnet:
Analysis of a Botnet Takeover,” in ACM CCS, 2009.

[55] Unprotect Project, “Sandbox evasion,” http://unprotect.tdgt.org/
index.php/Sandbox Evasion, accessed 2018-05-27.

[56] G. Vigna, “When Malware is Packing Heat,” https://www.lastline.com/
labsblog/malware-packing/, accessed 2018-10-12.

[57] VirusTotal, “YARA,” https://github.com/VirusTotal/yara, accessed
2018-10-11.

[58] T. Werner, “Botnet Shutdown Success Story: How Kaspersky Lab
Disabled the Hlux/Kelihos Botnet,” https://securelist.com/botnet-
shutdown-success-story-how-kaspersky-lab-disabled-the-hluxkelihos-
botnet-15/31058/, accessed 2018-05-24.

[59] C. Willems, T. Holz, and F. Freiling, “Toward Automated Dynamic
Malware Analysis using CWSandbox,” in IEEE Security & Privacy,
2007.

[60] Xtables, “Xtables-Addons,” xtables-addons.sf.net, accessed 2018-08-
06.

[61] V. Yegneswaran, P. Barford, and D. Plonka, “On the Design and Use
of Internet Sinks for Network Abuse Monitoring,” in RAID, 2004.

[62] A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yoshioka, T. Matsumoto,
T. Kasama, D. Inoue, M. Brengel, M. Backes et al., “SandPrint:
Fingerprinting Malware Sandboxes to Provide Intelligence for Sandbox
Evasion,” in RAID, 2016.

605

