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Abstract
In recent years Deep Neural Networks (DNNs) have achieved
remarkable results and even showed super-human capabilities
in a broad range of domains. This led people to trust in DNNs’
classifications and resulting actions even in security-sensitive
environments like autonomous driving.

Despite their impressive achievements, DNNs are known
to be vulnerable to adversarial examples. Such inputs contain
small perturbations to intentionally fool the attacked model.

In this paper, we present a novel end-to-end framework to
detect such attacks during classification without influencing
the target model’s performance. Inspired by recent research in
neuron-coverage guided testing we show that dense layers of
DNNs carry security-sensitive information. With a secondary
DNN we analyze the activation patterns of the dense layers
during classification runtime, which enables effective and
real-time detection of adversarial examples.

Our prototype implementation successfully detects adver-
sarial examples in image, natural language, and audio process-
ing. Thereby, we cover a variety of target DNNs, including
Long Short Term Memory (LSTM) architectures. In addi-
tion, to effectively defend against state-of-the-art attacks, our
approach generalizes between different sets of adversarial
examples. Thus, our method most likely enables us to detect
even future, yet unknown attacks. Finally, during white-box
adaptive attacks, we show our method cannot be easily by-
passed.

1 Introduction

Machine learning (ML) and especially deep learning (DL)
applications transform modern technologies at an impressive
pace. Research progress and the availability of high perfor-
mance hardware enable the training of increasingly complex
models. Such DL models have achieved even super-human
results in a broad range of domains: From classical image
classification tasks [70], to outplaying humans in Go [67], or
even autonomously driving cars [10].

In numerous scenarios the security and safety are of cru-
cial importance. Errors in the ML processing pipeline can
affect our daily routine, lead to severe incidents in the users’
health, or threaten future critical infrastructures. Such errors
not only stem from inaccuracies in the training phase, but
also from intentionally performed attacks. Kurakin et al. [36]
for example showed the vulnerability of self driving cars and
demonstrated a successful attack. Hence, the security of sys-
tems incorporating DL concepts is a major task for engineers,
data scientists, and the research community.

Malicious actions aiming at DL models come in two
flavours according to their attack timing. Poisoning attacks
target the training phase, while evasion attacks are performed
in the test phase. For poisoning attacks the attacker induces
changes to the training dataset and especially to the labels
to provoke misclassifications, see [52, 54]. As the training
dataset is typically not available for attackers, the majority
of recent work focuses on evasion attacks. Here the attacker
manipulates the behavior of the DL model itself such that
intended misclassifications occur. In 2014, Szegedy et al. [71]
first demonstrated that small perturbations on images fed to a
deep neural network (DNN) can provoke such a misclassifica-
tion. Since then, new attacks and countermeasures have been
introduced at a fast pace without the discovery of a fundamen-
tal and general defense strategy, yet. Perturbed inputs which
successfully fool the target network are known as adversar-
ial examples. In this paper, we propose an effective defense
mechanism that detects such adversarial example attacks with
high accuracy. Our approach generalizes between a broad
range of state-of-the-art attacks and therefore does not only
cover contemporary attacks, but will most likely also defend
against future attacks. Further, our method defends against
attacks in image classification, natural language, and even
audio processing scenarios.

Currently, adversarial attacks seem to subdue correspond-
ing defence methods. Research in this field is yet to provide a
generally applicable solution to this problem, which motivates
the work in this paper. Our main idea is based on observing
neural activity during classification runtime. We were inspired
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by recent findings in the field of neural network testing and
its interesting prospects. Pei et al. [59] introduced the idea
of neuron coverage, which serves as a metric to guide test-
ing of neural networks. Since then, further coverage metrics
have been proposed and various testing techniques have made
use of them [44, 69]. Odena and Goodfellow [55] reported
promising results when applying concepts of coverage-guided
fuzzing to neural network testing using neuron coverage.

These recent findings indicate that the neuron coverage
of DL models carry security-sensitive information. This hy-
pothesis at hand led us to the main insight of this paper: we
show that neuron coverage exhibits a characteristic behavior
when processing adversarial examples. In particular, adver-
sarial examples provoke a unique pattern in the coverage
such that respective inputs become detectable. Interestingly,
this characteristic is independent of the attack method, as our
results strongly indicate. With this observation we optimisti-
cally assume that our approach will also defend against future
unknown attacks.

In summary we make the following contributions:

• We propose a general end-to-end method to detect adver-
sarial examples generated using different state-of-the-art
methods.

• We successfully detect adversarial examples in image
classification, natural language processing (NLP) and
DL-based audio processing.

• We implement and evaluate our approach to success-
fully detect prior unseen adversarial examples of various
attack methods.

• Finally, we evaluate our method during adaptive attacks
and achieve superior results compared to related meth-
ods.

The rest of this paper is organized as follows. In Section
2, we review related work and summarize latest findings on
defense strategies against adversarial attacks. We present our
main contribution, a novel concept of detecting adversarial
attacks on neural networks, in Section 3. Sections 4 and 5
present a thorough proof-of-concept including experiments
and evaluation of the according results. For future work on
this topic, we plan to publish our code and used datasets. In
Section 6, we discuss the cost of our method as well as the
add-on analysis regarding the real-world application, trans-
ferability, and generalisation to future attacks. Finally, we
conclude the paper with Section 7.

2 Related Work and Background

In this section, we discuss related work and the theoretical
background that forms the basis of our approach. We start
with adversarial attacks and discuss corresponding state-of-
the-art defense methods.

2.1 Adversarial Attacks
We focus on test-time attacks exclusively and therefore define
the following categories as introduced in [16]. The different
evasion attack types differ in the amount and nature of in-
formation available for the attacker. In white-box attacks the
attacker has full control over the target which includes knowl-
edge about the architecture and parameters of the trained
model. Hence, the adversary is able to deliberately craft ad-
versarial examples exploiting the knowledge of the model.
Contrary to that, in black-box attacks, the attacker has neither
knowledge of the target model architecture nor access to the
parameters after training. In the following, state-of-the-art
attacks belong to the class of white-box methods. The aim of
an evasion attack is to generate an adversarial example that is
misclassified by the targeted DL model. More formally:

Definition: Adversarial Examples. Let f(·) be a trained neu-
ral network used for classification tasks. Let H(·) be a human
oracle with the same classification capabilities. Assume that
for a given legitimate input x the following equation holds:

f (x) = H(x)

Let x′ be a mutated version of x that is close to x, i.e., ‖x′−
x‖ 6 ε for some small ε ∈ R+. Then x′ is an adversarial
example, if the following holds:

H(x) = H(x′) ∧ f (x′) 6= H(x′).

Informally, adversarial examples are slightly mutated ver-
sions of their original counterparts that lead the targeted net-
work to misclassification.

Szegedy et al. [71] first demonstrated the vulnerability of
neural networks to slightly mutated inputs. The authors for-
mulated the problem of finding those mutations with a mini-
mization problem. To solve this problem the authors used a
box-constrained L-BFGS [21].

In 2014, Goodfellow et al. [24] picked up the previous
findings and proposed their resulting “Fast Gradient Sign
Method” (FGSM).

Kurakin et al. [35] proposed the “Basic Iterative Method”
(BIM). In this attack, the inputs are mutated based on single
steps which aim to increase the loss function. After each step
the direction is adjusted.

Madry et al. [47] further refined the approach. The authors
showed the BIM attack being equivalent to “Projected Gra-
dient Descent” (PGD). By making use of the L∞ version of
this standard convex optimization method the authors further
improved the previously shown BIM.

Moosavi-Dezfooli et al. [51] proposed DeepFool, which
generates adversarial perturbations by iteratively pushing the
inputs towards the decision boundary of the attacked network.
In order to model the decision boundary in a simplified man-
ner, it is linearized and represented using a polyhydron.
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The majority of current attacks are restricted by the L∞ or
L2 norm between benign and adversarial examples. In contrast
to that, Papernot et al. [56] proposed in their “Jacobian-based
Saliency Map Attack” (JSMA) to restrict the perturbations
with respect to the L0 norm. Hence, the attack tries to mini-
mize the amount of input points being changed rather than
restricting the global change to the input.

This idea was picked up by Su et al. [68]. In this publication
the authors successfully fooled DNNs using their One Pixel
Attack.

Currently the most powerful attack was proposed by Car-
lini and Wagner (C&W) in [11]. This method is capable of
crafting adversarial examples even for targets protected by
state-of-the-art defense methods. The basic idea of the attack
is, instead of optimizing the loss function directly, to introduce
a cost function fy as substitute.

Moosavi-Dezfooli et al. [50] presented Universal Adversar-
ial Perturbations. Rather than calculating individual adversar-
ial examples, the authors calculated a universal perturbation
such that when added to an arbitrary input, the target network
is fooled.

If the attacker does not have access to the target model
and its parameters, black-box attacks still pose an alternative
to manipulate the classifications. In this paper, we focus on
Transfer Attacks exclusively, when confronted with a black-
box situation. Here, the attacker uses a neural network over
which she has full control and creates adversarial examples
for it. The attacker then transfers the resulting examples to
the actual target to provoke a misclassification.

2.2 Defenses against Adversarial Attacks

Akhtar and Mian [8] categorize adversarial defenses using
three classes. The first class introduces a modified training
procedure or various prepossessing methods to the input data,
respectively. In the second and third class, modifications to
the targeted model itself or an additional model are introduced
to increase overall robustness. For both classes, some tech-
niques aim to increase the robustness by detecting adversarial
examples. As we propose a new technique to achieve the
same goal, we sum up related methods into a fourth class. In
the following we make use of this categorization and present
previous findings for each class and explain them briefly. We
pay special attention to the methods trying to detect adversar-
ial examples. For further analysis of state-of-the-art detection
techniques we refer to the survey by Carlini and Wagner [14].

2.2.1 Changes to the Training Process or Input Data

Adversarial training: The most intuitive and widely per-
formed defense technique is to include adversarial exam-
ples in the training phase of the model to protect. This is
achieved by simply extending the training set with adversarial
examples [36]. Adversarial training is often introduced by

authors of attacks as the first strategy to prevent a successful
attack [24, 51, 71].

The authors of [24] proposed training based on a modi-
fied objective function. The idea is to force the prediction
of adversarial and benign images of one class to the same
direction. Additional regularization avoids over-fitting, which
again increases the robustness of the network against unseen
adversarial examples [24, 64].

In 2017 Madry et al. [47] interpreted adversarial defense as
a robust optimization problem. The authors claimed the PGD
attack method to be a universal attack as it supposedly makes
use of the local first order information about the target net-
work in a superior way compared to other attack techniques.
Hence, the authors used examples created with PGD during
the adversarial training. The resulting networks are robust
against other adversaries, which is also shown in [13].

As adversarial training is easy to implement it may act as
a first line of defense against known attacks. Nevertheless, it
should not be used as the single approach to protect against
adversaries. Moosavi-Dezfooli et al. [50] showed that adver-
sarially trained models are still vulnerable using other known
attack methods. Moreover, Tramèr et al. [34] presented a two-
step attack method which also circumvents security provided
by adversarial training. The final drawback of adversarial
training is the fact, that it is prone to black-box attacks [53,58].

Data compression and feature squeezing: Dziugaite et
al. [19] first showed that adversarial images created with the
FGSM method can be classified correctly if JPG compression
is applied. Based on this finding, further experiments using
JPG and JPEG compression resulted in successful defense
methods [17, 26]. However, Shin and Sing [66] showed that a
considerable amount of adversarial images are not vulnerable
to a JPEG compression, especially when crafted with the
C&W method.

Similar strategies have been proposed in [74] and [40].
Here “Feature Squeezing” is used to reduce the complexity of
the inputs, by reducing the color depth or applying smoothing
filters. Additionally, adversarial example detection can be
conducted which we will discuss in Section 2.2.4.

The disadvantage of using the above mentioned techniques
prior to the classification is a decreasing classification accu-
racy. Since no prior knowledge about the images is given,
each has to be compressed before being classified, resulting
in a information loss for benign images.

Data randomization reprocessing: Luo et al. [42] pro-
posed to apply the targeted neural network only to a certain
region of the currently classified image. This technique is
shown to be a valuable countermeasures against adversar-
ial images created by L-BFGS and FGSM based algorithms.
Xie et al. [73] analyzed the effects of random resizing and
padding. The authors reported positive effects on the classi-
fication accuracy of adversarial images. Similarly, Wang et
al. [72] made use of a separately executed data-transformation
module, which partially removes adversarial perturbations.
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2.2.2 Modifying the Network

In recent years, a substantial increase of DL robustness was
achieved by making changes directly to the network. The
inputs remain unchanged which reduces preprocessing time.

Gradient Hiding limits the accessibility of the gradients
and successfully circumvents associated attacks. Nonetheless,
this technique does not provide protection against black-box
attacks, as shown in [58].

Related to Gradient Hiding, Ross and Doshi-Velez [61]
introduced Gradient Regularization. The authors proposed
to penalize the degree of variation of the output, based on
changes in the input. This concept led to further techniques
like [43] and [65].

In 2015, Papernot et al. [57] presented Defensive Distilla-
tion. The originally introduced distillation technique shown
by Hinton et al. [28] aims to simulate a neural network using
a smaller one. In contrast to that, the authors try to generate a
smoother, less sensitive version of the original model. This is
achieved by reusing the probability vectors of the training data
during the training of the model. In 2017, Papernot and Mc-
Daniel further improved the concepts conveyed in the initial
publication. Nonetheless, Carlini and Wagner [11] claim their
C&W attack to be successful against Defensive Distillation.

2.2.3 External Network Add-Ons

Akhtar et al. [7] proposed the idea of Perturbation Rectifying
Networks (PRN). These sub-networks are added in front of
the original network and are trained separately after the actual
training phase. The PRN rectifies the perturbations on the
adversarial images, which are subsequently identified by an
additional detector.

Since the 2014 released paper by Goodfellow et al. [23],
Generative Adversarial Networks (GANs) are widely used
and referred to in numerous publications. Some promising
publications using GANs to protect DNNs against adversarial
attacks are [31, 38, 63].

2.2.4 Detecting Adversarial Examples

Our concept can be added to this class of defense strategies,
hence, we provide a detailed overview of the latest related
findings. As mentioned before, detection techniques can be
based on both, changes to the input data or to the model it-
self. Additionally, observations of the model behaviour or the
model’s input provide insights on whether processed inputs
are of adversarial nature or not. In Section 2.2.1 we showed
various preprocessing and compression methods which can
be applied in order to reduce the effects of adversarial pertur-
bations. Moreover, these methods can additionally be used to
detect attacks.

Baluja and Fischer [9] showed this by using the so-called
feature squeezing technique: the authors created different
versions of the input, based on different squeezing methods

and let the target network classify them. If the returned labels
differ, the authors assume this input to be adversarial. In a
follow-up work, Xu et al. [74] used this technique to protect
networks against the C&W attack.

Similarly, Hendrycks and Gimpel [27] performed a prin-
cipal component analysis (PCA) on the inputs of neural net-
works. The authors found that for adversarial examples, a
higher weight is placed on larger principal components in
comparison to benign examples. With this knowledge, a bi-
nary classifier can detect attacks.

Liang et al. [40] interpreted adversarial perturbations as
noise and tried to detect them by using scalar quantization
and smoothing filters.

A more straightforward approach was evaluated by Gong
et al. [22]. By applying a binary classifier on the input ex-
amples directly, the authors were able to detect adversarial
input among benign examples. Positive results were achieved
using the MNIST dataset exclusively, during a later analysis
in [14] the approach failed to reach similar detection rates for
different datasets.

Meng et al. [48] proposed their framework MagNet, which
evaluates the original dataset and analyses the manifold of
the benign examples. If a new examples is passed to the
network to be classified, it is compared to the findings about
the manifold. This method is shown to be vulnerable against
attacks incorporating larger perturbations shown in [15].

A comparable pre-classification was introduced by Grosse
et al. [25]. The authors used the maximum mean discrepancy
test, based on sets of benign and adversarial examples. This
test provides evidence on whether the two sub-datasets are
drawn from the same distribution or not.

Hosseini et al. [30] added a new class to the used dataset
and try to unify adversarial examples in it. During training, the
network is set to assign adversarial images to this so-called
NULL class.

Metzen et al. [49] showed a method by adding a sub-
network to the original neural network. This sub-network
is adversarially trained and acts as a binary classifier during
the classification of the inputs. In [41], the authors showed
that this method can again be bypassed by an attack.

Lu et al. [41] hypothesized that adversarial examples pro-
duce a pattern of Relu activation values in the late stages of
a target network which differ from those based on benign
examples. In their framework called SafetyNet, the authors
used a radial basis function support vector machine (SVM) to
distinguish between original and perturbed examples.

Trying to increase the security of convolutional neural net-
works (CNNs), Li et al. [39] extracted the intermediate values
after convolutional layers. The authors performed a PCA of
the extracted features and a cascaded classifier to detect at-
tacks.

In 2017, Feinman et al. [20] tried to detect adversarial at-
tacks using two features which they extracted from dropout
neural networks. With these features a simple logistic regres-
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sion is performed as the basis for a binary classifier. The first
feature the authors introduced is the density estimate, based
on which the distance between a given example and the sub-
manifold of a class is quantified. For this purpose the authors
used the feature space of the last hidden layer of the target
network. With their second feature, the Bayesian uncertainty
estimate, the authors introduced an alternative feature to de-
tect adversarial examples missed by the first feature. Here,
points shall be detected which lie in low-confidence regions
of the original input space, indicating an attack.

Similar to our method Ma et al. [45] detect attacks by ob-
serving the NN’s hidden activations. The authors identify
two exploitation channels which form the basis of their detec-
tion approach. By extracting provenance and value invariants
attacks are detected using a one-class SVM. Compared to
this method, we propose a fully automated end-to-end system
without further feature engineering steps

3 Methodology

In this section we introduce our main concept of detecting
adversarial examples during classification time. The core idea
originates from our hypothesis as initially indicated in Sec-
tion 1: Adversarial examples provoke the dense layer neuron
coverage of neural networks to behave in such a distinctive
manner that attacks become detectable by observing their ac-
tivity patterns. We provide a detailed description on how to
expand and build upon this idea in the following.

Fig. 1 shows an overview of the overall process. In the
following, we discuss each step in detail. Joining these steps
provides an end-to-end pipeline for fully automated detection
of adversarial examples.

Our method is designed to help developers and maintainers
of neural networks to secure their models against attacks.
Hence, we assume access to the fully trained model as well
as (read-only) access to the benign training dataset Dbenign.
We refer to the model that we want to secure as the target
model Ntarget . Our overall aim is to generate a secure model
Nsecure

target that throws an alarm signal whenever an adversarial
example is being processed. To achieve this, we first generate
adversarial examples, second extract the dense layer neuron
coverage, and third train an alarm model that enables secure
operation of our initial target model.

3.1 Generating Adversarial Examples
In the first step of our concept, we generate adversarial exam-
ples Dadv for our target model Ntarget . We craft these examples
in a white-box manner by exploiting all available information.

It is important to note that we create adversarial examples
for each class of the dataset. Hence, we try to push the gener-
ated adversarial examples to be misclassified with an equal
distribution among all remaining (i.e. false) classes. This is a
crucial step during the generation phase in order to cover all

possible cases which might occur during the application of
our method in the field.

Once the adversarial examples are generated, we summa-
rize them in a dataset Dadv. The outputs of the adversarial
example generator, i.e., the elements of Dadv, are labeled as
adversarial, while the original unmutated samples Dbenign are
labeled as benign.

For the adversarial example generation, we use a wide
range of adversarial crafting methods, including state-of-the-
art techniques. As we discussed in Section 2, the attacks do
not only differ in success rates but also in their detectabil-
ity. Hence, by covering the currently strongest attacks we
try to circumvent this issue. Moreover, to cover the case of
black-box attacks, we recommend to use transferred adversar-
ial examples as well. It is important to note that only these
examples should be considered that actually provoke a mis-
classification of the target network.

3.2 Extracting Dense Layer Neuron Coverage
This step of our concept can be viewed as an additional pre-
processing phase prior to the application of the target model
in its intended environment. We refer to this step as feature
extraction. Here, the datasets Dbenign and Dadv are fed to the
well-trained target model which performs classifications using
the individual samples. Since the feature extraction is not part
of the actual function and objective of Ntarget , we ignore its
classification outputs. Instead, we extract the activation val-
ues of all available dense layers and concatenate them to one
sequence. The resulting datasets, which hold the sequences
for all samples, are called Ibenign and Iadv, respectively. For
further usage of the datasets, we adopt the labels to distin-
guish between adversarial and benign samples. In summary,
the dataset I<attackname> holds the activation value sequences
for all benign and adversarial examples regarding the target
model for one specific attack method. We preserve this sepa-
ration of the activation value sequences, because we assume
the different attack methods to have characteristic impacts on
the behavior of the target and the resulting features. This not
only enables us to detect the individual attacks, but also to
assess the impact of the individual crafting methods.

3.3 Training an Alarm Model
The dense-layer neuron coverage we extracted in the previous
step builds the basis for our core idea to detect adversarial
examples. Assuming that this coverage contains information
about the model, its behaviour, and the input sent to it, we
need a supplementary analysis of the extracted information.

Previous work [20], as discussed in Section 2.2.4, followed
a related idea. The authors try to extract information from
neural layers and further manually process them to detect ad-
versarial images. However, taking information directly from
all dense layers of the trained model is more efficient for
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Figure 1: Overview of our concept showing the required neural networks, datasets, and calculations.

providing an end-to-end solution without further processing
steps.

Accordingly, we propose the following method which gen-
eralizes well over different scenarios and model architectures:
We interpret the analysis of the dense layer features as a bi-
nary classification. Instead of including hands-on measures
and distinguishing between different scenarios, we train an
additional neural network to perform the required actions.
We refer to this network as the alarm model Nalarm in the
following.

To train the alarm model, we use the features stored in
I<attackname>. Therefore, the network is trained to distinguish
between activation values gathered during the classification
of benign and adversarial features, respectively. In the actual
secure operation phase, Nalarm performs a binary classification
of newly extracted features provoked by the current samples
to classify. This forms the final adversarial example detection
running alongside Ntarget .

The architecture of the alarm model heavily influences the
success of our approach. Furthermore, different architectures
need to be tested against each other to provide a viable solu-
tion. In Section 4, we give a recommendation for a specific
architecture. Still, future work needs to further evaluate this
part of the concept.

Note that we recommend to create one alarm model for
each introduced attack method. The attack methods differ in
their approach and complexity and thus influence the neuron
activation patterns distinctively. Hence, using a set of different
alarm models allows us to detect a broader range of attacks.
Furthermore, we are able to evaluate the capability of each
alarm model version of detecting different attack methods.
This provides information on the applicability of our concept
when detecting future attack methods.

3.4 Concept Overview

After we introduced the building blocks of our concept, we can
now link them and present an overview of our approach with
Algorithm 1. The application of our method in a real-world
scenario can be divided into two steps. A prior initialization
phase prepares our framework to enable a secure operation of
the target model Nsecure

target .
In the initialisation phase, we create adversarial examples

and perform the according feature extraction steps. We have
shown the importance of using different attack methods to
create the adversarial examples. This ultimately leads to an
assemblage of alarm models, each capable of detecting adver-
sarial examples created by one specific attack method.

During the secure operation of the target model, we con-
tinuously extract the features during classification of new,
unseen samples. The resulting activation sequences are fed to
all available alarm models to perform binary classifications.
If the classifications indicate an attack, our framework throws
an alarm signal and a human expert is consulted to evaluate
the current input. Here, the maintainer chooses if one assumes
an attack based on one or more alarm signals, majority votes,
or all alarm models synchronously indicating such an event.

4 Implementation and Experimental Setup

In the following, we present details regarding our proof-of-
concept implementation and our experimental setup. We dis-
cuss our choice of datasets and accompanying target model ar-
chitectures on which we tested our approach. The description
of feature extraction and the following alarm model training
form the core of this section. We introduce one exemplary
alarm model implementation to finally detect adversarial ex-
amples. Subsequently we present the test scenario for which
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Input: Dbenign, Dtest , Ntarget , Nalarm
Result: Nsecure

target
for Initialization do

Dadv ← CreateAdvExamples(Dbenign, Ntarget ) ;
Ibenign ← ExtractInformation(Dadv, Ntarget ) ;
Iadv ← ExtractInformation(Dbenign, Ntarget ) ;
Nalarm ← Train(NAlarm, Ibenign, Iadv) ;

end
while Secure Operation do

while 1 do
x← Sample(Dtest ) ;
ytarget ← Classify(Ntarget , x) ;
iytarget ← ExtractInformation(x, Ntarget ) ;
yalarm ← Classify(Nalarm, iytarget ) ;
if yalarm == 1 then

Alarm ;
ConsultHumanExpert();

end
end

end
Algorithm 1: Main algorithm, divided in an initialization
and a secure operation phase.

we show the evaluation results in the next section. This in-
cludes details regarding our test environment. Finally, we
introduce a series of extension test scenarios which are not
part of the actual proof-of-concept. Instead, we try to provide
the reader with a better intuition for our approach and rule
out possible restrictions. We motivate generality of our main
hypothesis as discussed in Section 1 and the resulting idea
of this paper. For this purpose, we included tests for noisy
images, two special target model architectures, and two addi-
tional dataset types, namely a natural language and an audio
dataset. Moreover we evaluate adaptive attacks, in which the
attacker has full knowledge and control over the target and
alarm model.

In this section of the paper, we solely covey information on
the executed experiments. Hence, we refer to the next chapter
for the respective results. We divided the proof-of-concept
into two sections in order to preserve the paper’s readability.

4.1 Datasets
For proof-of-concept, we considered the MNIST [18] and
CIFAR10 [33] image datasets. We decided to do so based on
the following two observations: First, to allow a comparison
of our method and state-of-the art defense techniques. Second,
the usage of image datasets enables us to better visualize
the adversarial examples and evaluate the performance of
different attack methods.

The MNIST dataset consists of 70000 handwritten digits
ranging from 0 to 9 of which 60000 build the training set
and 10000 the test set. Each digit is represented by 28×28

grey-scale pixels.
CIFAR10 consists of 60000 colored images of which again

10000 images build the test set. Each image is stored using
32×32×3 pixels, which makes this dataset more difficult to
classify. The CIFAR10 dataset therefore enables us to perform
tests close to a real-world scenario.

To prove detectability of adversarial examples in the natu-
ral language processing (NLP) context, we used the IMDB
dataset of movie reviews [46]. Both, the train and test set,
contain 25000 samples each. For both subsets, positive and
negative reviews are distributed evenly.

The audio examples we considered during our tests are
drawn from the Mozilla Common Voice dataset [3], which
contains 803 hours of recorded human sentences. Contrary to
the above mentioned datasets, the instances in the Common
Voice dataset are used for speech-to-text conversions rather
than being classified according to known classes.

4.2 Target Models
Throughout the proof-of-concept, we payed attention to use
state-of-the art target models in order to keep a close relation
to real-word scenarios. Table 1 sums up the used models
and shows their training and test accuracy as well as a short
summary on the individual architectures. For MNIST, we
chose LeNet [37] and a simple Multi-Layer-Perceptron (MLP)
[2] that we refer to as kerasExM. In contrast, for CIFAR10 we
decided to utilize ResNet [6] and a deep CNN [1], we refer to
as kerasExC.

Furthermore, in order to evaluate if our method can gen-
erally be applied to a wide range of DL architectures, we
conducted experiments using the two following examples.
On the one hand, we included a Long Short Term Memory
(LSTM) based target model. This architecture achieves a
remarkable performance, especially in image classification
tasks. On the other hand, we included a so-called Capsule
Network (Capsule NN), which is supposed to be more robust
than conventional models.

For our tests regarding the NLP dataset, we again used
an LSTM target model. We chose a pre-trained DeepSpeech
implementation (0.4.1) [4] during our tests on audio examples.
Hence, we did not add its training and test accuracy to Table
1. This neural network converts speech in the form of audio
files to according text.

4.3 Adversarial Attack Methods
We evaluate the detectability of the following attack methods:
FGSM, C&W, DeepFool, PGD, and BIM. The motivation
to do so originates from the nature and popularity of these
methods. We include diverse attacks, such that remarkable
differences in the basic idea can be seen. Moreover, we payed
attention to add attacks which differ in strength and complex-
ity. The C&W attack, for instance, is currently considered to

7



Table 1: Target models used during experiments. Showing details on the architectures and performance. Capsule and ResNet are
trained using the adam optimizer [32]. The remaining models are trained with stochastic gradient descent. The DeepSpeech
model is pre-trained.

Dataset Model Name Model Details Training Accuracy Test Accuracy

MNIST

LeNet [37]

– 2 convolutional layers with
filter size 5
– each convolutional layer is
followed by a max-pooling
layer with size 2
– 2 dense layers after each
max-pooling layer

0.976 0.987

kerasExM [2]
– one hidden layer with 512
neurons 0.972 0.985

CapsuleNN [62] – 10 capsules each of size 6 0.992 0.991

LSTM [29]
– 1 LSTM layer followed by
two dense layers with 64 and
32 neurons

0.975 0.978

CIFAR10 kerasExC [1]

– 4 convolutional layers with
filter of size 3
– each pair of convolutional
layers followed by a max-
pooling layer of size 2
– last hidden layer of dimen-
sion 512 is fully connected.

0.888 0.889

ResNet [6]
– 3 blocks followed by an av-
erage pooling size of 8 1.000 0.840

IMDB LSTM (for NLP)
– 1 embedding layer
– 1 64-neuron dense layer 0.996 0.81

Mozilla Common Voice DeepSpeech [4]
– containing 2 parts
– convolutional and recurrent
network

– –

be the most powerful attack. Hence, this and future adversar-
ial detection schemes need to be tested against this method.
Fig. 2 shows a series of adversarial images for both datasets
crafted with the above mentioned techniques.

Alongside the five stated attack methods, we include one
black-box attack as well. We create adversarial images in a
white-box setup on model A and try to fool model B with
the resulting examples. We call this transfer attack in the
following.

Since the actual crafting and implementation of the at-
tacks is not part of our concept, we applied the foolbox frame-
work [60] to generate adversarial examples for MNIST and
CIFAR10. To create adversarial examples based on the Com-
mon Voice dataset, we refer to [12]. Finally, for the IMDB
dataset we created an algorithm to create adversarial exam-
ples, which we briefly describe in Appendix D. In future work,
we will further explore and refine this attack method.

4.4 Alarm Model Architecture and Training
During our proof-of-concept, we exclusively used one spe-
cific alarm model architecture to detect adversarial examples.
We chose to do so in order to show the generality of our con-
cept and keep the space of tunable parameters as small as
possible. Hence neither the used dataset nor the applied target
model, which needs to be protected, affect our alarm model
architecture. For future work or in real-world applications, a
deliberate choice of the alarm model will likely further im-
prove the strength of our concept. In this paper, we use a
DNN with six dense layers which we train for ten epochs
and a batch-size of 100 in each scenario. We use the adam
optimizer [32] during training. Note that in some cases this
alarm model suffers from underfitting. We included a more
detailed description of the architecture in Appendix A.

4.5 Main Test Scenario
We have discussed all building blocks of the experimental
setup and the according preliminaries, in this section, we focus
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Original image  FGSM C&W DeepFool BIM PGD
MNIST

CIFAR10

Original image  FGSM C&W DeepFool BIM PGD

Figure 2: Adversarial images created with (from left to right):
FGSM, C&W, DeepFool, PGD, BIM. The top images are
based on the MNIST dataset and are crafted on the target
model LeNet. The bottom images are based on the CIFAR10
dataset and are crafted on the target model kerasExC.

on the actual test scenario and performed actions. We assume
ourselves in the position of the trained model’s maintainer
and try to increase its trustworthiness. Each step we present
is performed for all introduced attack methods. For the sake
of simplicity we neglect this fact in the following and show
each step once.

In the first step, we craft adversarial images using the above
stated methods. Since we have full control over Ntarget and its
parameters, we perform white-box attacks. During this pro-
cess, we pay attention to the way the datasets have been split
beforehand. Consequently, we create two separate adversarial
datasets, based on the train and test subsets, respectively. By
doing so, we simulate the real-world case in which the main-
tainer only possesses the training data. The samples in the
test set simulate inputs fed to the target during its usage in the
field. Additionally, we can later check detectability of adver-
sarial examples which are based on unseen benign inputs to
rule out a detection bias. We refer to the datasets as Dtrain

adv and
Dtest

adv, respectively. For both, MNIST and CIFAR10, we create
adversarial counterparts of Dtrain

benign and Dtest
benign containing a

similar amount of examples: (60000, 10000) for MNIST and
(50000, 10000) for CIFAR10. We let Ntarget classify all sam-
ples in the four datasets and store the activation sequences
in Itrain

benign, Itest
benign, Itrain

adv , and Itest
adv . Each individual set contains

features extracted during the classification of benign and ad-
versarial samples while we preserve the division between test
and training samples. Note that we neglected this split of the
datasets in Algorithm 1 for the sake of simplicity.

In the second step, we use Itrain
adv and Itrain

benign to train the alarm
model. Hence, for each target model and attack method, we
create one specific alarm model which we call Nalarm. To test
our capability of detecting adversarial examples, we let Nalarm
classify all samples in Itest

benign and Itest
adv .

To further show the generality of our concept, we conduct
cross-testing cases. This means that we test a trained alarm
model against the features of a different attack. With this, we
simulate the scenario in which we encounter a new and yet
unknown attack.

Furthermore, we create a combined alarm model Ncombined
alarm

which is trained using all features gained during the extraction
of a specific target model. Here, we verify if considering more
information, based on a wider range of attacks, improves the
alarm model’s performance and provides a stronger setup in
the context of our concept.

4.6 Additional Experiments and
Adaptive Attacks

At the beginning of this section, we briefly introduced the sup-
plementary tests we conducted to further establish confidence
in our approach. These tests can be divided into four parts.

In the first part, we used the previously created adversarial
images for the MNIST and CIFAR10 datasets and conducted
transfer attacks targeting an LSTM neural network and a
Capsule network, respectively. This experiment gives insights
on whether our approach can be applied in the context of
different DL architectures or not.

In the second part, we run two experiments on the regular
target models classifying MNIST and CIFAR10 images. With
the first test we analyze if our concept is robust to noisy input
images. Hence, we exclude the possible effect in which our
framework is solely able to distinguish between clean, benign
images and adversarial images containing noise. We achieve
this by creating noisy benign images with the same amount of
distortion as their adversarial counterparts. For this purpose
we calculate the distances between the original and adversarial
images with respect to the used distance metric of the attack.
The resulting datasets now contain original, adversarial, and
benign noisy images.

Subsequently, we provide evidence for our initial hypothe-
sis of the paper presented in Section 3. We analyze the dense
layer activation values of the target models during misclas-
sification of original inputs. Thus, we extract the according
features and treat them as activation values gained during clas-
sification of adversarial examples. The features are then used
to train an alarm model which tries to detect misclassifications
during testing of the benign dataset.
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In the third part, we test our concept in the context of two
additional types of datasets. We investigate if we are able to
detect adversarial examples in NLP and audio datasets. This
test gives first evidence on the applicability in numerous DL-
based environments. State-of-the-art defense methods mostly
focus on image processing target models. Therefore, proving
the applicability of our concept in additional types of datasets
poses a significant step towards more robust defense methods.
We introduce the test environment and results in a stand-alone
paragraph in Section 5.4.

Finally we evaluate adaptive, white-box attacks in which
the attacker has perfect knowledge of the target model and
our detection method. As shown by Carlini and Wagner [14],
the majority of proposed detection methods can easily be
bypassed by an adaptive attack. To perform such an attack,
we require a loss function based on the new target Nsecured ,
which consists of the original target model Ntarget and our
alarm model Nalarm. We use the loss function defined by
Carlini and Wagner [14], which the authors use to attack
similar detection-based defense methods. Here, we profit from
the code the authors published to reproduce their results [5].
Thus, we generate adversarial examples for Nsecured , using the
C&W method exploiting perfect knowledge of the target and
alarm model. We perform this attack on the secured version
of LeNet for MNIST and on the secured version of kerasExC
for CIFAR10.

5 Evaluation

In this section, we sum up the evaluation results. We split this
into three parts. First, we discuss our analysis of the extracted
features and show their distribution for one specific example.
Second, we present the main results accumulated during our
experiments. This includes the performance of the different
alarm models while detecting adversarial examples. Third,
we present the results we gained during our supplementary
experiments including adversarial example detection in NLP
and audio datasets and adaptive attacks.

5.1 Feature Analysis

As the extracted features are the core of our hypothesis and
concept, we illustrate some findings during the analysis. In
Fig. 3 we show neuron activation sequences for the LeNet
target model for all attack methods after we reduced the dimen-
sionality of the data using PCA and t-distributed stochastic
neighbor embedding (t-SNE). The figures show the neuron
coverage of the dense layers during the classification of be-
nign and adversarial images. The red dots and gray crosses
represent the benign and adversarial instances.

We can clearly see a difference in the dense-layer activation
values. Interestingly, we can see artifacts of the ten classes of
the MNIST dataset in the t-SNE figures. This finding gives

first evidence on the verity of our initial hypothesis. Further-
more, we can show a first estimate for the complexity and
detectability of the attack methods. The PCA data points of
the C&W-based activation sequences overlap to a higher ex-
tent than for the remaining methods. This indicates a more
challenging detection of the C&W attack.

Nonetheless, since we want to provide an end-to-end frame-
work to detect adversarial examples, we directly use the raw
extracted data.

5.2 Detection Performance

In this section, we present the performance of our concept
using the differently trained alarm models. We assess the suc-
cess of our detection method with the f1-score. Furthermore
we present the the mean false positive and false negative rates.

During the proof-of-concept, we conducted numerous ex-
periments. For the sake of simplicity and readability, we ex-
clusively include results significant for the proof of our main
idea and hypothesis. We provide the remaining results, tables,
confusion matrices and figures in the appendix of this paper.

In Table 2, we list the f1-scores of the individual alarm
models when tested against their dedicated attack method.
We can see a strong detection capability for all attack meth-
ods and target models regarding the MNIST dataset. The re-
spective f1-scores range above 0.9. For the CIFAR10 dataset
our framework detects the majority of examples and poses a
viable solution for real-world applications.

To evaluate if a combination of features while considering
different attack methods at once improves the performance
of our method, we created a combined alarm model. Hence,
for each target model, its combined alarm model is trained
with features extracted during the evaluation of all attack
methods. Table 3 provides an overview of this experiment.
The f1-scores show that the combined alarm models are able
to detect all tested adversarial attack methods. Comparing the
results to Table 2, we can report an superior performance of
this combined method.

Above, we indicated the evaluation of cross-tests. This cor-
responds to analyzing if the concept is capable of detecting
new, unseen adversarial attacks. In summary, for both datasets
and for each target model we tested seven alarm model ver-
sions against six attack methods. Five of the seven alarm
models are based on the attack methods FGSM, C&W, Deep-
Fool, PGD, and BIM. Two additional alarm models are the
combined one, and the alarm model trained using features
extracted during transfer attacks. The result-space of the cross-
tests exceeds the frame of this paper. Hence, with the follow-
ing two tables, we express the performance of our approach
during cross-tests with mean values. We added the individual
result values to Appendix B. Table 4 shows the mean perfor-
mance of the individual alarm models, when tested against all
attack methods. In Table 5, we show the mean detectability of
the individual attack methods, when utilizing all alarm models
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Figure 3: Visualization of the extracted features during the classification of MNIST-based adversarial and benign images for the
LeNet target model. For better visualisation, the dimensionality of the features were reduced using PCA and t-SNE, respectively.
Each column shows the plots for one attack method. The red dots and gray crosses represent the benign and adversarial samples,
respectively.

Table 2: F1-Scores of the individual alarm models when tested against their underlying attack method. Main results of the
evaluation.

Dataset Target Model f1- Score of the Alarm Models with the according attacks:
FGSM C&W DeepFool PGD BIM

MNIST LeNet 0.988 0.977 0.981 0.991 0.990
kerasExM 0.992 0.975 0.982 0.993 0.991

CIFAR10 kerasExC 0.847 0.733 0.855 0.843 0.852
ResNet 0.815 0.727 0.833 0.833 0.832

(except the model based on transfer attacks). With the results
we show that we are able to detect adversarial examples, for
which the underlying method has not been known beforehand.
Thus, our method most likely enables us to detect even future,
yet unknown attacks.

In the following we present the mean error rates during our
evaluation. The individual values can be found in Appendix C.
For MNIST, the mean false positive and false negative ratios
are 0.02 and 0.01, respectively. Similarly, for CIFAR10 we
report the mean ratios of 0.22 and 0.16, respectively. For both
examples we observe a higher false positive ratio. Hence, our
method does not miss a disproportionate amount of adversar-
ial examples. This is an important finding with regard to the
applicability in a real-world setup.

5.3 Results of further Experiments

During our tests with a Capsule and an LSTM target network,
we were able to detect adversarial images based on the MNIST
dataset with f1-scores of 1.000 and 0.968, respectively. The
positive results emphasize the applicability of our concept on
a wide range of neural networks using dense layers.

In Table 6, we show the results of the tests containing noisy
images. The performance of the individual alarm models are

decreased by 10% in the worst case. Hence, our method is
robust against noisy inputs.

As the core hypothesis of our paper is strongly correlated to
adversarial inputs, we introduced the tests regarding misclas-
sified images. We argued that the adversarial inputs provoke
distinctive neuron coverage patterns, enabling detecting. This
excludes ordinary misclassifications of benign images due
to inaccuracies in the model. Tests in which we treated a
misclassification the same way we treated attacks, provide
evidence for our hypothesis. In the tests we were not able to
detect regular misclassifications with our framework.

5.4 Experiments on Text and Audio Datasets

With the following test, we evaluate the generalizability of our
method to different application domains. During this analysis,
we craft adversarial examples based on an NLP and audio
dataset respectively. As previously introduced, we use the
IMDB and Mozilla Common Voice datasets. Subsequently,
we assess whether our framework is able to detect adversarial
examples when classified by the according target models.

The process of generating adversarial examples for the two
datasets is not part of the contribution of this paper. Never-
theless, some basic notes are worth mentioning. Regarding
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Table 3: F1-Scores of the combined alarm models when tested against each attack separately. The right most column holds the
f1-scores of the combined alarm models when tested with a combined dataset containing all used attack methods.

Dataset Target Model f1- Score of the combined Alarm Model with:
FGSM C&W Deep Fool PGD BIM Transfer Combined

MNIST LeNet 0.981 0.973 0.974 0.981 0.981 0.931 0.993
kerasExM 0.984 0.972 0.977 0.984 0.984 0.947 0.993

CIFAR10 kerasExC 0.771 0.741 0.771 0.772 0.772 0.754 0.932
ResNet 0.812 0.687 0.818 0.820 0.819 0.791 0.864

Table 4: Mean f1-scores of the individual alarm models when detecting all attack methods.

Dataset Target Model Mean f1- Score of the individual Alarm Models with all attacks, model name:
FGSM C&W DeepFool PGD BIM Transfer Combined

MNIST LeNet 0.918 0.945 0.940 0.878 0.885 0.950 0.970
kerasExM 0.892 0.962 0.943 0.875 0.888 0.959 0.975

CIFAR10 kerasExC 0.737 0.626 0.728 0.727 0.728 0.729 0.763
ResNet 0.733 0.723 0.747 0.735 0.737 0.584 0.791

the IMDB dataset we use Algorithm 2 found in Appendix D
to generate misclassified movie reviews. Instead of adding or
deleting words, we chose to replace words in the individual
instances. With this approach, we preserve the lengths of the
classified sentences and reduce the distance between benign
and adversarial examples. We are able to report a detection
f1-score of 0.960 for this dataset.

For the audio dataset, we used Carlini and Wagner’s [12]
approach to create adversarial examples. Extracting the fea-
tures of the audio files leads to neuron activation sequences
of different lengths. This is the result of the various sam-
pling rates during the recording of the original samples in
the dataset. To be able to perform binary classifications us-
ing all feature instances, we used a different alarm model
architecture here. The alarm model contains one LSTM layer
followed by one output layer with two neurons to enable the
detection of attacks. For this dataset we are able to detect
adversarial examples with an f1-score of 0.820.

We clearly see successful detection of the majority of adver-
sarial examples for the here used NLP and audio processing
target models.

5.5 Evaluation of Adaptive Attacks

To evaluate the robustness of our method against adaptive at-
tacks, we consider the mean L2-distance between adversarial
and benign images to either fool Ntarget or Nsecured , respec-
tively. Hence, we generate adversarial images for Ntarget and
Nsecured using the same attack parameters to preserve compa-
rability. We list the chosen parameters in Appendix E. For
MNIST and the LeNet target model, the mean L2-distance is
61.82% higher when attacking Nsecured , compared to attack-
ing the unsecured target model. Regarding related work, this
poses a significant improvement. Carlini and Wagner [14]

show that related defense techniques only reach a 10% higher
mean L2-distance. The authors also show that related defense
techniques can be bypassed with a success rate of 100%. Dur-
ing our evaluation we reduce this rate to 99%. For CIFAR10
and the kerasExC target model we achieve even better results.
When attacking Ntarget the mean L2-distance is 0.14. In con-
trast to that, when attacking Nsecured , the adversarial images
show a mean L2-distance of 5.06 with respect to their benign
counterparts. Moreover, only 84.1% of adversarial examples
of the adaptive attack are successful. Hence, we can report
a significant security improvement of our target DNNs, even
during white-box adaptive attacks.

6 Discussion

With the in-depth experiments in this paper we show the im-
portance of including an analysis of the dense layer neuron
coverage in future defense strategies to increase the trustwor-
thiness of neural networks. In Section 5, we sum up the most
important result values to demonstrate this fact. Nonetheless,
some aspects regarding detection performance, transferability,
and real-world applications require further discussion.

We have shown the mean false positive and false negative
rates in 5.2 and added the individual values to Appendix C.
With the given values we can report a lower false negative
error throughout our proof-of-concept. This corresponds to
rather classifying benign images as adversarial than missing
an attack on the target model. Hence, we can recommend
using our approach in security-sensitive setups.

Another aspect of our research worth supplemental assess-
ment are the results during the cross-testing of various alarm
model versions. We were able to detect adversarial examples
with alarm models trained using other attack methods. With
this, we give evidence for the special behaviour of neural net-
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Table 5: Mean detectability of the individual attack methods, when tested against all alarm models expressed with the accroding
f1-scores.

Dataset Target Model Mean f1-Score of the individual attacks when tested with all alarm models
FGSM C&W DeepFool PGD BIM Transfer Attack

MNIST LeNet 0.978 0.770 0.940 0.982 0.982 0.827
kerasExM 0.987 0.768 0.917 0.987 0.980 0.832

CIFAR10 kerasExC 0.813 0.500 0.803 0.807 0.805 0.528
ResNet 0.802 0.504 0.806 0.807 0.806 0.685

Table 6: Performance of our method when detecting adver-
sarial examples among clean and noisy benign images. Our
capability of detecting attacks is not reduced significantly.

Dataset Target Model Attack f1-score

MNIST LeNet FGSM 0.896
C&W 0.913

CIFAR10 ResNet FGSM 0.791

works when confronted with adversarial examples. Hence, we
can report two additional contributions and application scenar-
ios. First, future, yet unknown attacks seem detectable using
our concept. We will investigate this in future work including
potentially new attacks and those which are already published.
Second, with the results gained during our cross-testing we
are able to provide a ranking of the attack methods. This rank-
ing is based on two findings. First, the difficulty in detecting
the attack, expressed by the f1-score of the respective alarm
model, provides a score for rating the attack. A second attack
ranking is expressed by the performance of the alarm model
created for the attack itself when detecting examples crafted
with other attack methods. As an example, let’s focus on the
C&W attack on the ResNet target model which classifies CI-
FAR10 images. We can clearly see that this attack method
can only be detected by the alarm model especially created
for this purpose. Hence, we deduce the C&W attack being the
most powerful method. This interpretation of our results cor-
relates with current findings in the field of adversarial attacks
and defense strategies: as discussed in Section 2, the C&W
attack is currently considered to be one of the most powerful
attacks.

Regarding real-world application of our concept and the
transferability of the approach, some aspects are worth men-
tioning. In a real-world scenario DL models are often con-
fronted with noisy inputs. We have shown that such pertur-
bations do not dramatically decrease the performance of the
individual alarm models. Related to this is the question about
the transferability. To give first evidence on this assumption,
we tested detectability of adversarial examples in the NLP
and audio processing environment with positive results. In
future work we will provide a more analysis of the performed
tests in these application domains.

The second possible restriction, that our approach may suf-

fer from, is the architecture of the model to protect. One could
argue that we are not able to detect attacks if the target model
does not incorporate dense layers. This can be ruled out con-
sidering the following. The maintainer of the target model
creates a so-called substitution model which performs the
same task as the target model itself and achieves a similar
accuracy. If this substitution model uses dense layers, we
are again able to apply our concept. The positive results dur-
ing our experiments regarding transfer attacks indicate the
practicality of the substitution model.

Finally, we want to emphasize the simplicity of our ap-
proach. During our research on related work, we noticed some
defense strategies to be rather unintuitive including several
sources of errors when not applied correctly. Our method, in
contrast, is easy to use and seems intuitively reasonable. In
addition, our method does not decrease the accuracy of the
model to protect when tested against benign images, which is
the case for some state-of-the-art defense strategies.

7 Conclusion

In this paper, we introduce a general end-to-end framework
to detect adversarial examples during classification time. Our
approach consists of two main parts.

In the first phase we initialize our alarm model to detect
benign and adversarial inputs during unsecured target model
runtime. In this phase, we extract neuron coverage of the tar-
get model in order to train a secondary alarm neural network.
This approach is motivated by the initial hypothesis that the
dense layers of the target model carry security sensitive infor-
mation. Thus, the alarm network is trained to detect malicious
activity patterns in the neurons of the target network during
classification tasks.

In the second phase, the target model runs in secure opera-
tion mode, which is enabled by enhancing it with our trained
secondary alarm network. When the target model classifies
new, unseen inputs, the alarm network runs in parallel and
throws an alarm if an adversarial example is being processed
by the target. This approach leaves all parameters - especially
the accuracy - of the target model untouched, yet improving
overall application robustness significantly. In our proof-of-
concept implementation, we show the extensive capability of
our approach to detect adversarial examples in image, NLP,
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and audio datasets. The evaluation results strongly indicate
that we can not only defend with high accuracy against state-
of-the-art adversarial examples, but most likely also against
future, yet unknown attacks. Finally, with adaptive attacks
we show that an attacker needs to perform significantly more
adversarial perturbations to successfully attack our detection-
enhanced target model, compared to attacking the unsecured
target model.
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Appendix

A Alarm Model Architecture

In the following we provide more information on the architec-
ture of the target model we used throughout this paper. As we
said before, the alarm model is a seven-layer neural network.
The input flatten-layer accepts the concatenated extracted fea-
tures, while the output layer contains two softmax-neurons
in order to perform a binary classification. As hidden layers
we exclusively chose dense layers with the following amount
of Relu-neurons for each layer: 112, 100, 300, 200, 77. We
trained this model for ten epochs and a batch size of 100.

B All Result Values

In the following four Tables 7, 8, 9, and 10 we present all
result values gained during the proof-of-concept. The gray
cells in each table show the accuracy and f1-score of one
specific alarm model when tested against its dedicated attack
method. We emphasized the best test result in each table.

C Confusion Matrix Values

In Table 11 we show the confusion matrix values of each
performed test.

D Adversarial Example Generation for the
NLP scenario

With Algorithm 2 we generated adversarial examples for our
target model classifying IMBD reviews. The target model per-
forms a binary classification and tries to distinguish between
positive and negative reviews respectively.

Data: IMDB reviews
Result: adversarial IMDB reviews
train a Word2Vec Model with all reviews;
randomly pick one word to start;
while not at the end of this document do

find N most similar words of current word with
Word2Vec;

for substitute← next most similar word do
replace the current word with the substitute;
predict and calculate the margin;
if margin decrease then

break
end

end
if margin < MarginThreshold then

break
else

recover the current word to the original word;
move to next word;

end
end

Algorithm 2: Generation of adversarial examples in the
IMDB dataset containing movie reviews.
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Table 7: All result values for the MNIST dataset and target model LeNet.

Accuracy and f1-Scores of the Alarm Models when tested against: (acc; f1-score)
Alarm Models trained
with: FGSM C&W DeepFool PGD BIM all attacks

combined
transferred
examples

FGSM 0.988 0.988 0.802 0.758 0.953 0.945 0.987 0.987 0.987 0.987 0.917 0.947 0.924 0.839
C&W 0.943 0.942 0.977 0.977 0.943 0.933 0.957 0.956 0.958 0.957 0.944 0.965 0.951 0.905
DeepFool 0.987 0.987 0.862 0.843 0.983 0.981 0.987 0.987 0.987 0.987 0.949 0.968 0.930 0.857
PGD 0.989 0.989 0.719 0.615 0.935 0.921 0.991 0.991 0.991 0.991 0.881 0.923 0.895 0.760
BIM 0.986 0.986 0.740 0.655 0.933 0.920 0.990 0.990 0.990 0.990 0.887 0.927 0.899 0.772
all attacks combined 0.981 0.981 0.973 0.973 0.977 0.974 0.981 0.981 0.981 0.981 0.989 0.993 0.963 0.931
transferred examples 0.977 0.977 0.925 0.921 0.949 0.941 0.968 0.968 0.966 0.966 0.951 0.970 0.961 0.926

Table 8: All result values for the MNIST dataset and target model kerasExM.

Accuracy and f1-Scores of the Alarm Models when tested against: (acc; f1-score)
Alarm Models trained
with: FGSM C&W DeepFool PGD BIM all attacks

combined
transferred
examples

FGSM 0.992 0.992 0.767 0.700 0.917 0.892 0.992 0.992 0.985 0.985 0.890 0.929 0.893 0.792
C&W 0.973 0.973 0.975 0.975 0.968 0.962 0.968 0.968 0.961 0.960 0.969 0.981 0.959 0.933
DeepFool 0.986 0.986 0.868 0.850 0.985 0.982 0.988 0.988 0.980 0.980 0.946 0.966 0.928 0.871
PGD 0.992 0.991 0.734 0.641 0.899 0.865 0.992 0.993 0.986 0.986 0.873 0.917 0.885 0.773
BIM 0.992 0.992 0.752 0.674 0.912 0.886 0.992 0.993 0.991 0.991 0.886 0.926 0.893 0.792
all attacks combined 0.984 0.984 0.972 0.972 0.980 0.977 0.984 0.984 0.984 0.984 0.988 0.993 0.967 0.947
transferred examples 0.983 0.983 0.916 0.910 0.967 0.960 0.982 0.982 0.975 0.975 0.955 0.972 0.966 0.943

Table 9: All result values for the CIFAR10 dataset and target model kerasExC.

Accuracy and f1-Scores of the Alarm Models when tested against: (acc; f1-score)
Alarm Models trained
with: FGSM C&W DeepFool PGD BIM all attacks

combined
transferred
examples

FGSM 0.843 0.847 0.589 0.470 0.839 0.842 0.840 0.844 0.839 0.843 0.774 0.849 0.639 0.578
C&W 0.699 0.679 0.739 0.733 0.662 0.625 0.673 0.642 0.665 0.631 0.640 0.740 0.549 0.449
DeepFool 0.851 0.852 0.571 0.414 0.853 0.855 0.853 0.855 0.853 0.855 0.767 0.843 0.624 0.540
PGD 0.839 0.840 0.584 0.449 0.841 0.842 0.841 0.843 0.841 0.843 0.762 0.840 0.623 0.543
BIM 0.848 0.850 0.580 0.434 0.849 0.850 0.849 0.851 0.850 0.852 0.767 0.844 0.618 0.530
all attacks combined 0.708 0.771 0.678 0.741 0.709 0.771 0.709 0.772 0.709 0.772 0.882 0.932 0.688 0.754
transferred examples 0.749 0.777 0.577 0.557 0.738 0.766 0.743 0.771 0.743 0.770 0.769 0.852 0.704 0.732

Table 10: All result values for the CIFAR10 dataset and target model ResNet.

Accuracy and f1-Scores of the Alarm Models when tested against: (acc; f1-score)
Alarm Models trained
with: FGSM C&W DeepFool PGD BIM all attacks

combined
transferred
examples

FGSM 0.810 0.815 0.559 0.446 0.812 0.820 0.812 0.821 0.812 0.821 0.761 0.809 0.658 0.674
C&W 0.701 0.715 0.707 0.727 0.698 0.716 0.697 0.716 0.695 0.713 0.725 0.789 0.703 0.753
DeepFool 0.819 0.827 0.568 0.469 0.822 0.833 0.823 0.835 0.823 0.834 0.778 0.826 0.666 0.686
PGD 0.822 0.826 0.560 0.434 0.824 0.831 0.826 0.833 0.825 0.832 0.767 0.813 0.644 0.651
BIM 0.819 0.825 0.559 0.445 0.821 0.830 0.822 0.832 0.822 0.832 0.771 0.818 0.646 0.658
all attacks combined 0.788 0.812 0.677 0.687 0.792 0.818 0.793 0.820 0.793 0.819 0.812 0.864 0.744 0.791
transferred examples 0.672 0.614 0.570 0.440 0.655 0.593 0.655 0.595 0.653 0.592 0.583 0.602 0.662 0.670
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Table 11: Confusion Matrix values for all datasets, target models, and attack methods. Each result belongs to the detection of
adversarial attack methods with the according target model.

Dataset Target Model Attack Performance of the Alarm Models when tested
against the according attack method
True Positive True Negative False Positive False Negative

MNIST LeNet FGSM 1.00 0.98 0.02 0.00
C&W 0.98 0.97 0.03 0.02
DeepFool 0.99 0.98 0.02 0.01
PGD 0.99 0.99 0.01 0.01
BIM 0.99 0.99 0.01 0.01

kerasExM FGSM 1.00 0.99 0.01 0.00
C&W 0.98 0.97 0.03 0.02
DeepFool 0.99 0.98 0.02 0.01
PGD 1.00 0.99 0.01 0.00
BIM 0.99 0.99 0.01 0.01

LSTM Transfer 0.97 0.88 0.12 0.03
CapsuleNN Transfer 1.00 1.00 0.00 0.00

CIFAR10 kerasExC FGSM 0.87 0.81 0.19 0.13
C&W 0.72 0.76 0.24 0.28
DeepFool 0.87 0.84 0.16 0.13
PGD 0.85 0.83 0.17 0.15
BIM 0.86 0.84 0.16 0.14

ResNet FGSM 0.86 0.76 0.24 0.14
C&W 0.78 0.63 0.37 0.22
DeepFool 0.89 0.75 0.25 0.11
PGD 0.87 0.78 0.22 0.13
BIM 0.88 0.76 0.24 0.12
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E C&W Attack Parameters for the Adaptive
Attack

Table 12 shows the attack parameters of the C&W attack
during the adaptive white-box attacks for the MNIST dataset.

Parameter Name Parameter Value
max-iteration 3000
batch-size 100
learning-rate 0.005
binary-search-steps 20

Table 12: C&W attack parameters during the adaptive attack
for MNIST.

Table 13 shows the attack parameters of the C&W at-
tack during the adaptive white-box attacks for the CIFAR10
dataset.

Parameter Name Parameter Value
max-iteration 100
batch-size 100
learning-rate 0.01
binary-search-steps 5

Table 13: C&W attack parameters during the adaptive attack
for CIFAR10.
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