
Using Process Mining and Model-driven Engineering
to Enhance Security of Web Information Systems

Simona Bernardi
Centro Universitario de la Defensa

Zaragoza, Spain
Email: simonab@unizar.es

Raúl Piracés Alastuey, Raquel Trillo-Lado
Universidad de Zaragoza

Zaragoza, Spain
Emails: raul.piraces@gmail.com, raqueltl@unizar.es

Abstract—Due to the development of Smart Cities and
Internet of Things, there has been an increasing interest in
the use of Web information systems in different areas and
domains. Besides, the number of attacks received by this kind
of systems is increasing continuously. Therefore, there is a
need to strengthen their protection and security. In this paper,
we propose a method based on Process Mining and Model-
Driven Engineering to improve the security of Web information
systems. Besides, this method has been applied to the SID
Digital Library case study and some preliminary results to
improve the security of this system are described.

Keywords-process mining; model-driven engineering; secu-
rity; web information systems

I. INTRODUCTION

Since the last decades, most institutions and compa-
nies have opted for the use of Web applications due to
their advantages over traditional desktop applications (cross-
platform compatibility, interoperability, accessible anywhere
from a wide range of devices, etc.). The bigger their adoption
of Web applications is, the more attractive they become to
people related to cybercrime. Thus, according to the security
reports by Symantec [1], the number of attacks to Web
information systems in 2015 is the double as in 2014.

Web information systems are usually composed of two
main components: the front-end, or presentation layer, and
the back-end. The front-end is composed of multiple re-
sources (html templates, images, CSS and JavaScript files,
etc.) which are accessed by means of the users’ browsers and
provide the main interface of the system; while the back-end
provides different functionalities or services and, generally,
it is not directly accessed by the final users. Currently, there
exists a wide set of technologies and languages to develop
Web information systems such as PHP, .Net, Java Enterprise
Editions (JEE), Ruby on Rails, etc. Nevertheless, all these
types of Web applications are based on similar principles
and use the stateless Hyper Text Transfer Protocol (HTTP).

In this paper, we propose a method based on Process Min-
ing [2] and Model-Driven Engineering [3] to improve the
security of Web information systems that does not depend
on a specific technology. In particular, the method supports
the detection of attack patterns by identifying the deviations

from the known system behavior, which is represented by
a normative model. This model is automatically generated
from the UML specification of the system, by applying a
model transformation technique, and it is the input of a trace-
driven simulator, together with the logs produced by the
system in operation, to identify deviations. Such deviations
are further analyzed by using the fuzzy mining discovery
technique to detect attacks to the system. Besides, in this
paper, we also describe how this method has been used to
analyze the logs of the last ten years of the Web information
system SID Digital Library1 and provide some preliminary
results to improve the security of that system.

The paper is organized as follows. Firstly, related work
is analyzed in Section II. Secondly, an overview of the
proposed method, describing its main steps, is presented in
Section III. Details of the main steps and how they have been
performed to analyze the logs of the SID BiD are presented
in Sections IV, V and VI. Finally, conclusions and future
work are given in Section VII.

II. RELATED WORK

Traditionally, information systems have been protected by
means of preventive and reactive approaches to intrusion
detection [4], which mainly rely on data mining and ma-
chine learning techniques [5]. Preventive approaches estab-
lish rules in Security Information and Event Management
(SIEM) systems to reduce or remove the success conditions
of cyberattacks. Rule based detection via known signature is
the most common approach, where the analysis techniques
compare data against a set of signatures of attack features.
This approach is simple to implement, however it can be
applied when the features of an attack pattern are known. On
the other hand, reactive approaches are based on anomaly
detection techniques that analyze the behavior of the sys-
tem in operation and look for deviations from what it is
considered to be normal. Reactive approaches are therefore
more suitable than the former to detect attacks which exploit
unknown vulnerabilities, such as the zero-day attacks. The

1SID BiD is a Web information system developed with Java technologies
available at http://sid.cps.unizar.es/BiD/.



main disadvantage is the generation of false positives and
false negatives.

The method presented in this paper is a mixed approach
(preventive-reactive) since it supports the detection of un-
documented threats in Web information systems and the
enhancement of their security by adding new detection rules
for such threats. The proposed method is based on the
process mining discipline [2] which provides techniques
for process discovery, i.e., deriving process models from
logs, conformance checking, i.e., checking the alignment
of an existing/derived process model and logs, and process
enhancement, i.e., enriching the process model through
mining additional perspectives such as timing. The data
input for process mining may come from different sources
and needs to be pre-processed to get event logs, which are
structured data related to ordered events occurring within a
process. Process mining mainly addresses business processes
and, to the best of our knowledge, few proposals [6], [7]
apply it to solve security issues in the information system
domain. In particular, the work [6] explores the potential
capabilities of discovering techniques for anomaly detection
in security audit of business processes. Concrete discovery
algorithms are instead proposed in [7] to detect anomalies
in information systems: such algorithms mainly focus on the
detection of infrequent execution traces.

III. METHOD OVERVIEW

The proposed method consists of five main phases or steps
(see Figure 1):

• Step 1. Specification of the system behavior by means
of the Unified Modeling Language (UML) [8].

• Step 2. Automatic generation of a formal model from
the UML-based specification that we call normative
model.

• Step 3. Control and monitoring of the Web information
system to get data logs that represent its operative (or
real) behavior.

• Step 4. Pre-processing of the logs of the system to get
event logs, which can be analyzed using process mining
techniques.

• Step 5. Identification of deviations between the nor-
mative model and the operative behavior by means of
different process mining techniques.

Notice that Steps 1 and 2 (i.e., obtaining the normative
model) can be carried out in parallel with Steps 3 and 4
(i.e., obtaining event logs). Nevertheless, Step 2 and Step 4
must have finished in order to execute Step 5 (the analysis
and comparison between the expected and real behavior of
the system).

The detected deviations can represent anomalies (attacks)
or, simply, new use case scenarios that were not considered
in the initial specification. When a new use case scenario
is discovered, the initial UML diagrams are enriched to
include it and avoid detecting deviations in those cases. On

Figure 1. Overview of the proposed method.

the other hand, if the deviation represents a potential attack,
then, system administrators must adapt the configuration of
the Web server or other Security Information and Event
Management (SIEM) systems in order to mitigate or remove
the conditions on which that potential attack can happen.

These steps have been applied to the SID Digital Li-
brary, a Web information system developed by the SID
research group of the University of Zaragoza to manage
the publications of its members and other researchers from
research groups that usually collaborate with SID members,
such as the BDI research group2 from the University of
Basque Country and the OEG research group3 from the
Technical University of Madrid. The SID Digital Library
was developed in 1997. Nevertheless, it was completely
updated and re-implemented in 2010. Since then, it has had
little updates. Currently, this system offers 14 uses cases
(insert publication, search for publications with different
criteria, edit references, etc.) and it is used by around 35
different researchers to manage their publications. Besides,
anonymous users use this system to obtain information about
papers published by researchers from SID, BID and OEG.

IV. GETTING A NORMATIVE MODEL

The first two steps of the method concern the defini-
tion of the system expected (or known) behavior and the
derivation of a formal model from the system specifications.
This formal model is named normative model, and can be
analyzed by using process mining techniques. To this aim
we apply model transformation approaches in the literature,
that propose the generation of Petri Net models from UML
activity diagrams [9] or sequence diagrams [10]. Although
the correctness of the transformations have not been proved
formally, they rely on mature approaches and have been
empirically validated with an extensive set of case studies.

Since the system is already in operation, we could assume
that UML-based behavioral models are already available.
However, when the maintenance of the systems and the
management of the life cycle of software is not appropri-
ate, this kind of models can be missed. In these cases,

2BDI research group website: http://bdi.si.ehu.es/bdi/.
3OEG research group website: http://mayor2.dia.fi.upm.es/oeg-upm/.



these models can be obtained from the implementation of
the system by using reverse engineering techniques and/or
refining the design specifications. For example, the initial
UML behavioral models used to develop SID BiD were not
available when we started this study.

The UML specification can represent a partial behavioral
view of the system: in the SID BiD system, we consider the
UML activity diagram shown in Figure 3, that models the
scenarios related to a subset of the use cases of Figure 2 (in
particular, the grey filled ones), where each action represents
an HTTP request from the user.

Advanced search

Edit reference

User login

Insert Reference

Generate BibTex

Get all bibTex

Quick search

Download article

BiD System

«include»

«include»

«extend»

«extend»

User

Figure 2. BiD system main functionalities.

quick-search.jsp

End

Start

advanced-search.jsp

show-publications.jsp

show-publications-bibtex.jsp

show-publications-bibtex.jsp?id=* attachedFiles

attachedFiles

attachedFiles

Figure 3. BiD system behavioral view (partial).

The Petri Net model of Figure 4 is the normative model
of the SID BiD system and it has been automatically
generated from the Activity diagram of Figure 3 by using
the DICE Simulation tool [11]. The latter implements the

model transformations in [9], [10], and generates a Petri
Net model in the PNML standard format [12]. In the figure,
the labeled transitions correspond to the homonym actions
in the Activity diagram, while the rest of transitions model
the control flow. The initial marking of the Petri Net model
represent the initial state (Start) of the activity diagram.

D3

Start

advanced-search.jspquick-search.jsp attachedFiles

show-publications-bibtex.jsp?id=*

show-publications.jsp

attachedFiles

attachedFiles

show-publications-bibtex.jsp

End

Figure 4. Petri Net normative model.

V. LOG PROCESSING

In order to apply the different process mining techniques
enumerated in Section II (process discovery, conformance
checking and process enhancement) and study the real
behavior of the system, extraction and analysis of the event
logs4 from the different components of the system are key
processes (as event logs are considered evidences of events
happening in the system while it is running). Due to the
fact that Web information systems involve a great number of
components and technologies (e.g., Web servers, Data Bases
Management Systems, File Systems, etc), the integration of
the information coming from the different logs is needed
before applying process mining techniques. Nevertheless, in
our case of study (the SID BiD Web information system)
only logs about the Web server (in particular, from the Web
server Apache Tomcat) were available. So, no integration

4An event log of a component of an information system is a basic
resource (e.g., a file or a database) that registers and stores information
about the different events happening in the component.



of information coming from different components (data
sources) was needed.

Moreover, to apply process mining techniques an event in
an event log must refer to:

• A case. A case is a particular execution of a process,
thus each event refers to a trace (or sequence) of related
events associated to the execution of a process.

• An activity. An activity is an action or task to be per-
formed in a process (as a process is a set of coordinated
activities or actions to achieve a particular goal).

• A timestamp. A timestamp is a mark indicating when
the event happened.

• Other information. Other specific data or information
related to the execution of the activity.

In our case of study, each entry of the Apache Tomcat
logs contains a timestamp and refers to an HTTP request
of a particular resource or URL (which we consider as
the activity identifier). Besides, in order to assign a case
identifier (case-id) to the entries available in the logs used
in the experiments, we considered the following options to
study the real behavior of system:

1) The work sessions of the users. This work sessions
are studied to analyze how a particular user interacts
with the system in a work session.

2) The use cases executed by a user. This parameter is
used to analyze how a particular user interacts with the
system in a work session when she wants to achieve
the goals associated to a particular use case.

However, the available logs for the study did not contain
fields referring to either user sessions or use cases of the
SiD BiD Web information System. So, different heuristics
were considered to obtain that information from the logs:

• Heuristic to identify the user session (HSession). Most
web servers have mechanisms to manage user sessions5

in Web applications, as HTTP is a stateless protocol.
Thus, this is a parameter that can be available on the
log entries of most Web servers. However, the user
session identifier was not available in the logs that
were considered for the experiments with SID BiD
Web information System. So, a strategy to tag the
entries with a user session identifier was developed. In
particular, we consider that two entries belong to the
same user session if and only if:

1) they come from the same IP address,
2) the time elapsed between the two entries is less

than a certain threshold (in our case we considered
30 minutes),

3) they have been performed by the same user if the
studied web application allows different users, and

4) they come from the same browser.

5A user session (generally identified by a session id) groups the activities
that a user spends on a Web site during a specified period of time.

• Heuristic to identify the use case performed by a user
(HUseCase). In the context of a software application, a
use case is a set of possible actions or events defining
how a user interacts with the system to achieve a certain
goal; for instance, obtaining a list of papers that satisfy
a set of search criteria (published by a particular author,
in a specific year, etc.) is a use case of the SID BiD
Web information system (cf. the “Advanced Search”
use case in Figure 2). In general, several users may
interact concurrently with the system to achieve the
goals defined by the use cases. However, the entries
of the logs of Web servers do not include a specific
attribute that relates log entries to the use cases being
executed by the users. Therefore, we consider two
possible strategies:

1) updating the code (the implementation) of the
Web information systems in order to include the
use case identifier being executed in the logs of
the Web server, and

2) tagging the logs entries with use case identifiers.

The former provides precise results but may be not
feasible (for example, if the source code of the Web
information system is not available); while the latter
may introduce some errors in the tagging process, i.e.,
some log entries could be associated to an incorrect
case use identifier. In the study performed with SID
BiD, the tagging process approach was performed,
due to the fact that obtaining the source code of the
Web information system SID BiD was not possible. In
particular, two options were evaluated to tag the log
entries with an appropriate case use identifier:

1) Tagging based on the entry Web pages (or URL)
of the use cases. In this case, we consider that
an instance of a specific use case starts when an
HTTP request for its entry Web page appears in
the log and finishes when other HTTP request for
other entry Web page (corresponding to another
use case) appears (see Figure 5 for an example).
This option was discarded due to the fact that
several use cases in SID BiD have the same entry
Web page; for instance, “Insert Reference” and
“Insert Reference as BibTEX register” have the
same entry Web page.

2) Tagging based on the longest path of consecutive
activity events of a user. Firstly, in the setting
configuration phase of the proposed method, every
use case is associated to a list containing all
possible actions or events in its execution, i.e., a
use case is associated to the list of possible HTTP
requests performed when a user is interacting with
the system to achieve the goal associated to that
use case. After that, each log entry is tagged
with a use case identifier by considering in which



Event Log of a user session 

Eventsl Possible Tags I Final Tags 
1 1 

1 A 
1 

1 
1 

Beginning of Beginning of Beginning of Beginning of E 
1 

1, 2 
1 

1 
Use Case 1 Use Case 2 Use Case 3 Use Case 4 F 1 1 
(event A) (event B) (event C) (event D) 1 1 

3 3 
1 1 

J 
1 2, 3, 4 

1 
3 

K 
1 2, 3, 4 

1 
3 

Events Events Events Events D 4 4 
associated to associated to associated to associated to 1 1 

Use Case 1 Use Case 2 Use Case 3 Use Case 4 J 1 2, 3, 4 1 4 

(E, F, G) (E, G, 1, J, K) (J, K) (J, K, L) K 1 2, 3, 4 1 4 

L 1 4 1 4 

Figure 5. Tagging based on the entry Web pages of the use cases.

use cases is possible the request corresponding
to the log entry. If several options are possible,
the option that provides the “longest path of
consecutive events” is chosen, i.e., the use case
associated to more consecutive actions or events
is selected (see Figure 6 for an example).

Figure 6. Tagging based on the longest path of consecutive activity events.

Finally, we considered the following case-ids to study the
real behavior of system: 1) the user session identifier (ob-
tained by means of the heuristic HSession), and 2) the use
case executed in a user session (obtained by joining the user
session identifier to the use case identifier generated by the
heuristic HUseCase).

VI. IDENTIFICATION AND ANALYSIS OF DEVIATIONS

The normative model – generated via Model to Model
(M2M) transformation from the UML specification of the
system – is a formal representation of the system scenarios,

while the event logs – that result from the pre-processing
of data logs – consist of sets of execution traces, where
each trace describes a possible concrete behavior. The nor-
mative model is not exhaustive, since it considers a (set of)
system behavior scenarios. Similarly, the event logs provide
information about the running system, however they do not
include a full description of the system behavior.

In this step of the approach, we consider two types of
process mining techniques, implemented in ProM [13], to
identify and analyze deviations with respect to the known
behavior. Such deviations can reveal either attack patterns
or correct behaviors which were not included in the initial
UML specification. Firstly, we used the trace driven simu-
lation [14] to identify deviations (subsection VI-A). Then,
we applied the fuzzy model discovery technique [15] to
analyze in depth such deviations in order to detect attacks
and discover new usage scenarios (subsection VI-B).

We considered the logs of the SID BiD system, collected
during the month of April, 2015, and the Petri Net model
of Figure 4. The logs have been pre-processed to assign the
user session as case-id (i.e., HSession), and they include a
total of 2423 traces and 4805 different event types. More
experiments on the case study, which also consider larger
observation periods and the use case heuristics detailed in
Section V, can be found in [16].

A. Identification of deviations

The trace driven simulation [14] replays the traces in the
event log on the normative model, provided that a mapping
is set between the transitions in the model and events in
the logs. In the running example, the labeled transitions in
Figure 4 have a correspondence with the events in the log,
whereas the rest of transitions are assumed not observable.
One of the simulation results is the fitness value, that is
an indicator of the alignment of the traces with respect to
the normative model: in the SID BiD system the fitness
is about 58%, meaning that 42% of the traces in the log
cannot be completely reproduced by the firing of a transition
sequence, from the initial marking (i.e., place Start) to the
final marking (i.e., place End) of the normative Petri Net
model.

The ProM tool enables the visualization of the log-
model alignments that indicate, for each type of trace, the
sequence of event occurrences characterized by different
colors depending on the type of alignment with the model.
In particular, we are interested in the HTTP requests to re-
sources that are not represented in the normative model since
they reveal new behaviors: e.g., in the SID BiD logs there
are two traces characterized by 14 HTTP requests related to
uploadify.swf (cf. one of them in Figure 7). Similarly, four
traces of different lengths (i.e., including between 6 and 13
HTTP requests) but all related to FCKEditor6, a full featured

6URL: http://ckeditor.com/



GUI editor used by many web sites especially blog systems
like WordPress, have been identified.

Besides, there are also five traces corresponding to the
Download article use case scenario (i.e., attachedFile HTTP
request) that are characterized by a very high number of
attachedFile HTTP requests with respect to the rest of the
traces in the log. In particular, the longest one includes
123 attachedFile events. Although such traces are fully
aligned with the normative model, they deserve further
analysis due to the high frequency of the event occurrences.
Such traces have been identified manually, by observing the
log-model alignments visualization produced by the ProM
tool and by considering the third quartile as a frequency
threshold. Therefore, the numbers of HTTP requests that
fall above such a threshold are ouliers, and the execution
traces including such requests are labeled as suspicious.

/up
loa
dif
y/u
plo
ad
ify
.sw
f

/js
/up
loa
dif
y/u
plo
ad
ify
.sw
f

/ad
mi
n/u
plo
ad
ify
/up
loa
dif
y.s
wf

/up
loa
dif
y-v
2.1
.4/
up
loa
dif
y.s
wf

/as
se
ts/
up
loa
dif
y/u
plo
ad
ify
.sw
f

/lib
/up
loa
dif
y/u
plo
ad
ify
.sw
f

/fil
es
/up
loa
dif
y/u
plo
ad
ify
.sw
f

/pl
ug
ins
/up
loa
dif
y/u
plo
ad
ify
.sw
f

/in
clu
de
s/u
plo
ad
ify
/up
loa
dif
y.s
wf

/in
c/u
plo
ad
ify
/up
loa
dif
y.s
wf

/cm
s/u
plo
ad
ify
/up
loa
dif
y.s
wf

/ad
mi
n/i
nc
lud
e/u
plo
ad
ify
/up
loa
dif
y.s
wf

/eg
all
er
y/u
plo
ad
ify
.sw
f

/ad
do
ns
/up
loa
dif
y/u
plo
ad
ify
.sw
f

Figure 7. Anomalous trace.

B. Attack detection and process enhancement

The deviations from the expected behavior were further
analyzed by filtering the logs according to the value of
an event attribute, concretely the HTTP status code, and
applying fuzzy mining discovery techniques [15]. The log
filtering enables to select those traces that include HTTP
requests characterized by the provided HTTP status code.
Thus, the selected traces only include such HTTP requests,
i.e., the other HTTP requests in the trace with a different
HTTP status code are removed. The fuzzy models generated
from the filtered logs are directed graphs, where each node
represents an HTTP request and an arc between two nodes
represents the causal relation between the HTTP requests.
Observe that, due to the considered filtering criterion, the
causal relation between two HTTP requests may be direct or
indirect. Additionally, the fuzzy models incorporate several
significance and correlation metrics useful to detect attack
patterns (e.g., the frequency associated to a node/arc and the
time proximity of two nodes).

The anomalous behaviors, that possibly represent attack
patterns, are detected by considering HTTP request errors
(i.e., 4XX and 5XX codes related to the client and server
side, respectively) and correct HTTP requests with partially
delivered resources (i.e., 206 code). Whereas, new behaviors

can be discovered by considering successful HTTP requests
(i.e., 200 code).

In the SID BiD system, different attack patterns can be
discovered by using log filtering and fuzzy mining. For
example, if we consider the HTTP status code 404 (i.e.,
not found resource), the fuzzy model generated from the
filtered logs under analysis consists of a set of separate
sub-models where different patterns are detected. Two of
them are attempts to find vulnerabilities associated to the
uploadify.swf script7 and to the FCKEditor, respectively,
as mentioned in the Subsection VI-A. Indeed the high
proximity values of the nodes belonging to each sub-model
(i.e., equal to one, the maximum value) indicate that the
corresponding HTTP requests have the same timestamp,
therefore we consider that they are automated.

On the other hand, the fuzzy model that was generated
from the logs filtered by the HTTP status code 206 (Figure 8)
represents iterative file download HTTP requests: similarly,
the proximity value associated to the node with itself is
one. Therefore, the high frequency of such requests within
the same user session (i.e., a trace) and their simultaneous
occurrences (i.e., same timestamp) reveal Denial of Service
attack attempts.

Figure 8. Fuzzy model from filtered logs (partial delivery).

In the experimental activities that were carried out with
the SID BiD system [16], other interesting attack patterns
were identified and detected, by following this analysis ap-
proach, such as: cross-site scripting (XSS) attempts, through
the exploitation of the already mentioned vulnerabilities
of the uploadify script, brute force attacks to get access
passwords and attempts to edit publications by unauthorized
users.

Finally, the fuzzy model discovered from the logs, which
have been filtered by the HTTP status code 200 (i.e.,
successful request), reveals new behavioral patterns. The
model includes four separated sub-models with a total of
10 legal new HTTP requests that are not represented in
the initial UML specifications. These requests either refine
the use case scenarios, initially modeled with the activity
diagram, or belong to other use cases. In particular, one
HTTP request is common to the use case scenarios already

7The database of the National Institute of Standards and Technology
provides a list of known vulnerabilities associated to this script (see URL:
https://web.nvd.nist.gov/view/vuln/search)



considered in the activity diagram of Figure 3, three HTTP
requests are related to the edit reference use case and an
HTTP request belongs to the generate BibTex use case (cf.
Figure 2), whereas the rest of HTTP requests reveals new
use cases (e.g., the help functionality).

VII. CONCLUSION

In this work, a method based on Process Mining and
Model Driven Engineering has been proposed in order to
improve the security of Web information systems. Besides,
the proposed method has been applied to the SID BiD case
study, and some promising preliminary results have been
obtained. Despite the fact that the experimental results have
been obtained by considering a particular technology to build
Web information systems (in particular, JEE), the proposed
approach is technology independent.

Currently, the analysis has been performed off-line and
several different tools have been used as a support of
the method, that is, the logs of the SID BiD system in
the operational environment have been copied in order to
perform the analysis in detail in a development environment.
Nevertheless, we would like to fully automatize the proposed
method to be used in DevOps environments in real time.
In particular, our first next goal is incorporating a Security
Information and Event Management system (SIEM), such
as Zabbix8, to monitor the activity of the SID BiD system.
After that, we would like to automatically incorporate rules
to the SIEM and to the Tomcat Web server in order to
improve the security levels of the SID BiD system. Those
rules must remove or reduce the conditions in which the
attack patterns or threats (discovered with the process mining
techniques) can happen. Finally, to validate the proposed
method, we plan to apply it to other Web information
systems in operation.

ACKNOWLEDGMENT

This work has been partially funded by the following
projects: “Desarrollo de técnicas de detección de ciber-
ataques en sistemas de información mediante minerı́a de
procesos” (UZCUD2016-TEC-06), “Infraestructuras crı́ticas
resistentes a ciber-ataques: Aplicando la minerı́a de procesos
y el diseño software orientado a la seguridad” [CyCriSec-
TIN2014-58457-R], and “Developing Data-Intensive Cloud
Applications with Iterative Quality Enhancements” [DICE-
H2020-644869].

REFERENCES

[1] Symantec, “Internet Security Threat Report,” Symantec Cor-
poration, Tech. Rep., April 2016.

[2] W. M. P. van der Aalst, Process Mining - Data Science in
Action, Second Edition. Springer, 2016.

8Zabbix: http://www.zabbix.com/

[3] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Soft-
ware Engineering in Practice, 1st ed. Morgan & Claypool
Publishers, 2012.

[4] J. Andress, The Basics of Information Security: Understnding
the Fundamentals of InfoSec in Theory and Practice. Syn-
gress, Boston, 2014.

[5] S. Dua and X. Du, Data mining and machine learning in
cybersecurity. Taylor & Francis Group, 2011.

[6] R. Accorsi, T. Stocker, and G. Müller, “On the exploitation
of process mining for security audits: the process discovery
case,” in Proceedings of the 28th Annual ACM Symposium
on Applied Computing, SAC ’13, Coimbra, Portugal, March
18-22, 2013, 2013, pp. 1462–1468.

[7] F. Bezerra, J. Wainer, and W. M. P. van der Aalst, Anomaly
Detection Using Process Mining. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 149–161.

[8] OMG, “Unified Modeling Language,” Object Management
Group, Tech. Rep., March 2015.

[9] J. López-Grao, J. Merseguer, and J. Campos, “From UML
activity diagrams to Stochastic Petri nets: application to
software performance engineering,” in Proceedings of the
Fourth International Workshop on Software and Performance,
WOSP 2004, Redwood Shores, California, USA, January 14-
16, 2004, 2004, pp. 25–36.

[10] S. Bernardi, J. Campos, and J. Merseguer, “Timing-Failure
Risk Assessment of UML Design Using Time Petri Net
Bound Techniques,” IEEE Trans. Industrial Informatics,
vol. 7, no. 1, pp. 90–104, 2011.

[11] A. Gómez, C. Joubert, and J. Merseguer, “A Tool for
Assessing Performance Requirements of Data-Intensive Ap-
plications,” in Proc. of the XXIV National Conference of
Concurrency and Distributed Systems (JCDS 2016), 2016,
pp. 159–169.

[12] ISO, “Systems and software engineering – High-level Petri
nets – Part 2: Transfer format,” ISO/IEC, Geneva, Switzer-
land, Tech. Rep. 15909-2:2011, 2008.

[13] B. F. Van Dongen et al., “The ProM framework: A new era
in process mining tool support,” in Applications and Theory
of Petri Nets 2005. Springer, 2005, pp. 444–454.

[14] W. Van der Aalst, A. Adriansyah, and B. van Dongen, “Re-
playing history on process models for conformance checking
and performance analysis,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.
182–192, 2012.

[15] C. W. Günther and W. M. P. van der Aalst, “Fuzzy mining
- adaptive process simplification based on multi-perspective
metrics,” in Business Process Management, 5th International
Conference, BPM 2007, Brisbane, Australia, September 24-
28, 2007, Proceedings, ser. Lecture Notes in Computer Sci-
ence, G. Alonso, P. Dadam, and M. Rosemann, Eds., vol.
4714. Springer, 2007, pp. 328–343.

[16] R. Piracés-Alastuey, “PMS methodology,” URL: http://sid.
cps.unizar.es/PMS/, in Spanish.


