

Delft University of Technology

Vulnerability Detection on Mobile Applications Using State Machine Inference

van der Lee, Wesley; Verwer, Sicco

DOI
10.1109/EuroSPW.2018.00008
Publication date
2018
Document Version
Accepted author manuscript
Published in
Proceedings - 3rd IEEE European Symposium on Security and Privacy Workshops, EUROS&PW 2018

Citation (APA)
van der Lee, W., & Verwer, S. (2018). Vulnerability Detection on Mobile Applications Using State Machine
Inference. In Proceedings - 3rd IEEE European Symposium on Security and Privacy Workshops,
EUROS&PW 2018 (pp. 1-10). IEEE. https://doi.org/10.1109/EuroSPW.2018.00008

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/EuroSPW.2018.00008
https://doi.org/10.1109/EuroSPW.2018.00008

Vulnerability Detection on Mobile Applications Using State Machine Inference

Wesley van der Lee∗ and Sicco Verwer†
Department of Intelligent Systems

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, The Netherlands

E-mail: ∗wesleyvdlee@gmail.com, †S.E.Verwer@tudelft.nl

Abstract—Although the importance of mobile applications
grows every day, recent vulnerability reports argue the appli-
cation’s deficiency to meet modern security standards. Testing
strategies alleviate the problem by identifying security vio-
lations in software implementations. This paper proposes a
novel testing methodology that applies state machine learning
of mobile Android applications in combination with algorithms
that discover attack paths in the learned state machine. The
presence of an attack path evidences the existence of a vul-
nerability in the mobile application. We apply our methods to
real-life apps and show that the novel methodology is capable
of identifying vulnerabilities.

1. Introduction

Mobile applications play an ever-more important role
in modern society. We do not only use the applications
for a multitude of purposes on our smartphones but also
deploy the applications to other types of smart devices.
The multi-platform deployment of applications is, in par-
ticular, true for applications that are designed to run on
the Android operating system, because Android is the most
popular operating system for smart devices [1]. Although
the Android platform is well-established regarding utility,
new vulnerabilities are being discovered in mobile Android
applications every week. One of the main reasons why
mobile applications unsuccessfully meet modern security
standards is because application developers fail to adopt
adequate security testing during the development process
of the application. Testing tools that aid the process of
security examination come in the three flavors of white-
box, grey-box, and black-box testing [2]. White-box and
grey-box testing require prerequisite knowledge about the
application’s internal structure or documentation before ad-
equate test cases can be defined. Black-box testing does not
demand the application’s insight because the technique by
only observing the output that corresponds to an input.

Black-box testing techniques can also be fine-tuned to
understand the applications internal logic, by modeling the
application logic as a state machine. A state machine visu-
ally shows the application behavior and what input leads
to what state and depicts the corresponding application
responses. Modeling of a state machine with black-box

testing is what state machine learning algorithms do. By
observing a large number of traces, a combination of inputs
and outputs, a state machine can be constructed that is
consistent with the observed behavior. The inferred state
machine reveals detailed information about the applications
logic, and might as such function as input for identifying
bugs or vulnerabilities in the application.

Learning state machines through active learning has
gained increasing popularity in the last years, due to its
success in revealing insight information on black box im-
plementations. State machine learning showed promising
results when inferring a model of a botnet command and
control server [3] or drivers that implement the TLS protocol
[4]. Active state machine learning is often implemented
according to the Minimally Adequate Teacher (MAT) frame-
work as first proposed by Angluin [5], which is composed
of a learner and a teacher. The goal of the learner is to infer
the state machine model of a System Under Test (SUT),
by posing membership queries and equivalence queries to
the teacher. Membership queries ask whether the SUT rec-
ognizes a particular input sequence. The input and answer
combination together form a trace, and a sufficient amount
of traces enables the learner to hypothesize a state machine
model. The learner then poses an equivalence query to the
teacher for the established hypothesis, which determines

Figure 1: Active Learning with the MAT Framework

whether the model correctly describes the SUTs input/output
behavior. If this is the case, learning halts because at that
point a sufficiently correct model has been inferred. If the
model is inequivalent to the SUT, the teacher provides a
trace that distinguishes the model and the SUT. The trace
that is returned by the teacher is also called a counterexam-
ple because the trace invalidates the hypothesized model.
The learner uses the counterexample to refine the hypoth-
esis. The process repeats itself until an equivalence query
yields success. Figure 1 visually shows the discussed MAT
framework.

The goal of this research is to improve the mobile
application security by providing a testing methodology that
applies vulnerability detection on inferred state machine
models. To achieve this goal, a framework for learning
state machines of mobile Android applications is required,
and secondly, an approach that analyzes the inferred state
machines to identify vulnerabilities must be established. To
the best of our knowledge, there exists no other frame-
work that automatically learns behavioral state machines on
mobile Android applications and neither does there exist a
method for automatic vulnerability detection on the learned
models. The code of the framework’s implementation has
been published open source 1.

2. Model Learning

State machine models can be learned with active learning
algorithms. The real-time execution of sequences of inputs
on the SUT distinguishes active learning from passive learn-
ing. Hence active learning allows for the inference of more
complete models. Because the generation of traces can be
steered, the equivalence query that must be answered by
the learner entity can be optimized as well to fulfill our
mobile application domain’s needs. This section discusses
the principles of model learning. First, a formal notation to
keep the terminology from different types of work consistent
is established. Second, multiple active learning algorithms
are presented, and third, various approaches are explained
that the teacher entity can apply to determine the equivalence
problem between the SUT and its hypothesized model.

2.1. Prerequisites

A Deterministic Finite Automaton (DFA) U is used to
formalize state machines. A DFA can be described by a
5-tuple U = (Q,Σ, δ, q0, F), where
• Q is a finite set called the states,
• Σ is a finite set called the alphabet,
• δ : Q× Σ→ Q is the transition function,
• q0 ∈ Q is the start state, and
• F ⊆ Q is the set of accept states.
Let q be a state in Q and a be a symbol in Σ, the

transition function δ(q, a) returns the state q′ that is reached
from q with input a. We also say that q′ is the a-successor

1. git@github.com:wesleyvanderlee/AppSecurity.git

of q. By defining δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a)
for q ∈ Q, a ∈ Σ and w ∈ Σ∗, words w ∈ Σ∗ the transition
function δ(q, w) implies the extended transition function:
δ(q, w) = δ(q0, w) as proposed by [6]. For input words
w ∈ Σ∗, DFA U accepts w if δ(q0, w) ∈ F . If U accepts
w, the lambda-evaluation λ(w) returns 1, i.e. λ(w) ⇐⇒
δ(q0, w) ∈ F , and 0 otherwise. The set of all words that
are accepted by U is denoted as the language of U : L(U).
Furthermore, U [w] denotes the state q in U that can be
accessed by input w, i.e. U [w]⇐⇒ δ(q0, w).

2.2. Learning Algorithms

Learning Regular Sets from Queries and Counterexam-
ples by Angluin [5] forms the basis of many modern state
machine inference algorithms. Her research introduces the
polynomial L* algorithm for learning a regular set, a task
which before was computationally intractable because it was
proven to be NP-hard [7].

2.2.1. L* Algorithm. The L* algorithm implements the
MAT-framework that describes a learner and a teacher.
The learner’s task is to establish a hypothesized DFA
H = (QH ,Σ, δH , q0H , FH) for a system whose behav-
ior can be characterized by an unknown DFA M =
(QM ,Σ, δM , q0M , FM). Initially, the learner only knows the
input alphabet Σ and the learner’s assignment is to learn M
by posing two types of queries to the teacher:
• A membership query asks for the output of the SUT to

an input sequence w ∈ Σ∗. The teacher ascertains the
output for w by simulating the actions depicted in w on
the SUT and the teacher returns the SUT’s response.

• An equivalence query asks if the hypothesized DFA H
is equivalent to M . The teacher is able to compute the
equivalence between a DFA and an actual implementa-
tion through conformance testing methods. The teacher
answers yes if H is equivalent to M or supplies a
counterexample, which is a sequence t ∈ Σ∗ for which
holds λH(t) 6= λM (t).

The learner keeps track of all the traces information in
an observation table (S,E, T). Each input word of a trace
consists of a prefix part and a suffix part. The observation
table vertically labels the set of prefixes S and horizontally
labels the set of suffixes E. Each entry (s, e) in the table
for s ∈ S and e ∈ E is assigned the value 0 or 1
depending on the membership query response for word
w = s · e. For each row of values in the table, the row(s)-
function returns an array of outputs for words s · e for all
e ∈ E. If the observation table is closed and consistent, a
hypothesis DFA can be constructed. An observation table
is closed if for each state that is characterized by the table
a one-letter prefix extension is present that describes the
transition, i.e. ∀w ∈ S × Σ there is a s ∈ S such that
row(w) = row(s). An observation table is consistent if all
by the table characterized states have the same one-letter
behavior, i.e. ∀s1, s2 ∈ S where row(s1) = row(s2) all
a ∈ Σ depict row(s1 · a) = row(s2 · a).

If the observation table is closed and consistent, a DFA
H = (QH ,Σ, δH , q0H , FH) can be constructed as follows:
• QH = {row(s)|s ∈ SH}
• q0H = row(ε)
• FH = {row(s)|s ∈ SH and TH(s, ε) = 1}
• δ(row(s), a) = row(sa)

According to the L* algorithm, the hypothesized DFA is
then subjected to an equivalence query to the teacher, who
either returns yes in which case learning halts, or returns
a counterexample word w that distinguishes both H and
M . The learner adds all prefixes of the counterexample to
set S, which causes the observation table not to be closed
and consistent anymore because the hypothesis’ output for
w needs to be corrected. The learning process continues
until the table again is closed and consistent, and the teacher
returns yes to an equivalence query.

2.2.2. TTT Algorithm. A drawback of the observation table
is that entries S × E in the observation table (S,E, T)
contain redundant information. An approach to overcome
redundant entries is proposed in the TTT algorithm that
replaces the observation table with a discrimination tree
[8]. When using the TTT algorithm, the learner maintains
a set S of access sequences to states. The states of the
hypothesis correspond to leaves of a discrimination tree T ,
where inner nodes are labeled with elements from a set
of discriminators E. A hypothesis DFA is constructed by
sifting words w ∈ S×Σ through the discrimination tree that
starts at the root of the tree. For every inner node v ∈ E
of the tree the sifting process passes one branch to the left-
or right- child of v depending on the value λ(w · v), until
a leaf node is reached. By convention, if λ(w · v) returns
0 the process branches to the left child of v, otherwise the
process branches to the right child. The leaf node indicates
the resulting state for the sequence w.

2.3. Equivalence Problems

The active learning algorithms explain how to construct
a hypothesis DFA H , but do not answer how the teacher
can verify equivalence between H and the machine corre-
sponding to the implementation of M . Conformance testing
offers methods to discover this equivalence [9]. A straight-
forward implementation of a conformance method is the
direct search for a counterexample by performing random
actions on both the hypothesis machine and the SUT. This
technique is also called a RandomWalk. If for a high number
of actions both machines yield the same result, they are
determined to be equivalent. If at some points the outputs
differ, the sequence of actions that led to the difference in
output is regarded as the counterexample.

A more comprehensive, but intensive, approach to iden-
tify counterexamples is the W-Method [10]. In essence, the
method creates a large test set of input queries for which
the DFA and the SUT should yield the same behavior
to be equivalent. The test set is created by appending a
transition cover set (S · Σ) with a traversal set (Σl that

contains all input sequences of length l = m − n + 1,
where m = |QM | and n = |QH | and a characterizing set
(E) that distinguishes all pairs of states [10], [11]. Note
that since M is unknown, |Qm| is unknown as well and
has to be estimated by human judgment. If one test word
w ∈ S ·Σ×Σl×E yields a different output for H and M ,
then w is a counterexample. If no such w exists, H and M
are equivalent.

3. Setup

The goal of this research is to improve mobile security
by proposing a method to detect vulnerabilities in mobile ap-
plications. The method constructs an abstraction of a mobile
app. The inferred model is then examined for the presence
of patterns that coincide with patterns of vulnerabilities.
The vulnerability detection technique is thus twofold. First
of all, state machine models that describe the behavior of
the mobile application need to be inferred. Because the
system under test can be interactively queried for outputs,
active state machine learning can be applied to generate
the set of traces that are required to learn a deterministic
and finite state machine. Secondly, a detection methodology
is proposed that identifies the presence of vulnerabilities
based on the inferred state machine. The method applies
vulnerability-based pattern detection algorithms that detect
the presence of a weakness from the model. The twofold
parts of the technique are setup as follows.

Modeling Mobile Applications. The previous section
discussed two active state machine learning algorithms that
can infer a model by interaction with an application. The
LearnLib library accommodates the learning algorithms and
auxiliary helper classes that alleviate the active learning pro-
cess [12]. Learning models with LearnLib requires a mapper
that associates the queries which are posed by LearnLib
to commands that are understandable by the system under
test. The system under test is in this instance an Android
application, and as a consequence, the mapper also needs
to execute the commands on the system and observe the
application’s behavior. One of the available drivers that can
perform the types of commands required for active learning
is Appium [13].

All mentioned components can be integrated according
to the MAT framework. The learner poses membership and
equivalence queries to the teacher. The teacher translates
both queries to a simulation command which is mapped
to an Appium understandable command by the mapper
instance. Appium then executes the test on the mobile device
and observes the system’s response. The result is returned
to the learner in reverse order. Figure 2 visually depicts the
integration of all the mobile learning components.

Vulnerability Detection in Models. After the application
is abstracted to a state machine model, the model functions
as a new source of information to assess the application’s
security. The state machine model shows what type of
actions are allowed within the application and illustrates the
cohesion of logical components. To detect vulnerabilities
from a state machine model, paths that constitute to a

Figure 2: Mobile learning components integrated according
to the MAT framework.

violation of a class of vulnerabilities must be identified. The
paths in the state machine then represent an attack scenario
that violates a predefined vulnerability class.

The malicious paths can be identified by designing de-
tection algorithms that detect the exposure of predefined vul-
nerability classes. For demonstration and within the scope
of this research, we limit ourselves to the vulnerabilities
that are discussed in the infamous OWASP Top 10 Mobile
2016 [14]. The list is the most recently published list of top
10 crucial vulnerability classes that need to be addressed
when examining mobile security. For each class that is
enumerated in the top 10 list, the question of how the specific
vulnerability class would materialize in a state machine
model needs to be answered. This question can only be
answered for vulnerability classes that are behavior-driven,
such that paths of violations would appear in a behavioral
state machine model.

4. Model Inference on Android Applications

Before active learning starts, two challenges that are
specific to the mobile environment must be solved. Firstly,
the input alphabet must be defined before the learner and
the teacher can start interacting. Secondly, a mobile appli-
cation introduces behavior that might be inconsistent/non-
deterministic due to external mobile factors. The learning
algorithms can only cope with deterministic behavior, and
as a consequence, we must mitigate this problem. At the
end, this section presents multiple models that are learned
using different types of learning algorithms and equivalence
oracles.

4.1. Input Alphabet

The learner and the teacher share one set of common
knowledge: the input alphabet Σ. Σ must be defined before
learning starts and cannot be changed during learning ac-
cording to the L* and TTT learning algorithms. We want
to infer a model that describes the application’s behavior
on the interaction level. Inference of such a model can be
achieved by applying the appropriate level of actions as the
input alphabet. The mobile application responds to internal
and external actions. The application facilitates internal ac-
tions, such as navigating through the application by pressing
buttons. Commands that are external to the application are
facilitated by the operating system or other applications,
such as toggling the WiFi mode on the mobile device or

pressing the home-button. The application’s behavior can
change when such settings are modified.

External actions are less suitable to be included in the
alphabet because these actions are executable from every
state. As a consequence, the external actions clutter the
state machine model with transitions that are possible to
perform from each state and behavior-wise do not contribute
to a better understanding of the model. Only the internal
commands are thus used as input alphabet. We distinguish
the following user interaction commands: push for pushing
on buttons and elements, check for toggling checkboxes, and
enterText for entering text in a field.

4.2. Overcoming Non-Deterministic Behavior

The behavior of mobile applications depends on a set
of environmental influences. The most well-known example
is the loss of Internet connectivity. At arbitrary moments,
due to a large number of factors, the mobile device or the
application instance can experience a loss of connectivity
with the Internet. The reason why the external influences
on the behavior are essential to consider when learning a
DFA is that different behavior in time causes the model
to be non-deterministic. Since the goal is to infer a de-
terministic finite automaton, the non-deterministic behavior
forms a contradiction with the earlier observed behavior.
The contradiction causes the learning application to crash.
These environmental influences do not necessarily originate
from an improper network connection, but can also arise
due to inconsistencies in GPS positioning details, Bluetooth
connections, the battery level and much more.

To overcome the occurrence of non-deterministic behav-
ior, we propose and implement a roll-back solution that uses
the cache. The implemented cache stores combinations of
inputs and the corresponding outputs to reduce evaluations
of membership queries. The cache can be used in the fol-
lowing way to overcome the occurrence of non-deterministic
behavior. Figure 3 illustrates the roll-back process. The
figure depicts a sequence w of input symbols for which
at two points t0 and t1 in time λt0(w) 6= λt1(w). This
situation is depicted in Figure 3a, where at time t0 the output
from λ(w) equals 0, whereas at t1 the output from λ(w)
is 1. Because the lambda evaluation differs for the same
input word, one of the two traces is incorrect. If an activity
after w can be successfully executed, the corresponding trace
has not been affected by external influences. Therefore, the
learner assumes that the trace that depicts new behavior
is correct instead of the trace that contends the opposite.
There are numerous of dependencies that depend on the
environment and thus change in time, that cause an action
to be inadmissible. However, if the additional behavior can
be executed once, the action must thus be legal and not be
subjected to external influences.

During the learning period between t0 and t1, any num-
ber of queries could have been posed by the learner that
(partially) depended on the cached result of w computed
at t0. Because the result of w is assumed to be uncertain,
the queries posed between t0 and t1 that incorporate w’s

(a) (b) (c)

Figure 3: Cache rollback methodology to resolve observed
non-deterministic behavior. At (a) a contradiction is discov-
ered, (b) the cache is reverted and (c) the contradiction is
resolved.

cached result could also be false. For that reason, the cache
is reverted to the last trace before t0, which is shown in
Figure 3b. The positive result for w is cached at t0 and
learning continues. If for the new cache at time t1 the query
result is equivalent, the learning process continues.

4.3. Learning with L* and RandomWalk

Before active learning can start, two variables of the
MAT framework have to be determined. The variables are
the active learning algorithm and the technique that is used
to determine the equivalence between a hypothesized model
and a software implementation. The inferred model is an ap-
proximation of the application and different settings for the
variables conclude different approximations and consume a
different amount of time.

Different values for the active learning variables will be
used that aim to result in a complete model by consuming
a low amount of time. Without loss of generality, various
models will be learned for the 92922 Android application,
which is a Dutch public transport planning service.

Figure 4 shows the model that is inferred when using the
classic L* algorithm for learning and the RandomWalk al-
gorithm to determine the equivalence. The model is learned
without receiving a counterexample, which indicates that the
first time the observation table became closed and consis-
tent, the RandomWalk algorithm was not able to find any
counterexample.

4.4. Learning with TTT and RandomWalk

One disadvantage of the L* algorithm is the storage
of redundant information in the observation table. Because
the observation table (S,E, T) needs to be complete, each
entry in S×E needs to be computed, hence also redundant
fields are evaluated. Redundant entries cause superfluous
membership queries, and as a result, the entries negatively
influence the learning time performance. The learning time
of the model inference discussed above consumes more than
26 hours. The feasibility of model inference increases when
the learning algorithm does not query for superfluous data.

2. https://play.google.com/store/apps/details?id=nl.negentwee

Figure 4: The inferred machine for the 9292 application
using L* and RandomWalk.

Figure 5: The inferred machine for the 9292 application
using TTT and RandomWalk.

An active learning algorithm that uses a space-efficient data
structure for storing observations is the TTT algorithm. the
TTT algorithm yields the model depicted in Figure 5.

The inferred model in Figure 5 obviously yields an
incorrect result as the model does not depict the behavior
from the 9292 application at all. The difference between
the models presented in Figures 4 and 5 show a decrease
in modeled behavior when using the TTT algorithm. The
reason why the same equivalence oracle results in a more
detailed model is that the L* algorithm generates more traces
than the TTT algorithm does. The random walk is even not
able to find a counterexample for this small model. The test
set constructed during an equivalence query must thus be
extended or changed to advance the inferred model.

4.5. Learning with TTT and RandomWalk-
HappyFlow

One method to expand the test cases is to test for a pre-
defined input sequence that is guaranteed to be accepted by
the SUT. The input sequence could, for example, be a happy
flow of the application. Software applications are often
developed with domain-specific use cases as a functional
requirement [15]. The use cases describe how a software
system should respond and are thus by definition accepted
by the SUT. Hence a happy flow can function as a coun-
terexample if the conjecture does not accept the happy flow.
Furthermore, if the input sequence w is a happy flow, then
for each n = 1 . . . |w| the sequence w′ = w0w1 . . . wn−1wn

is also a valid counterexample if the conjecture rejects w′,
since all steps until |w| are legally executable as well. The

https://play.google.com/store/apps/details?id=nl.negentwee

RandomWalk equivalence oracle has been extended, dubbed
as RandomWalk-HappyFlow, such that the equivalence or-
acle was able to search for a counterexample in the SUT’s
happy flow when the oracle otherwise would conclude that
the conjecture is equivalent.

The equivalence testing algorithm first executes the orig-
inal RandomWalk algorithm to discover a counterexam-
ple. When this results in the value null, learning would
normally stop. At this point, the extended part of the
RandomWalk-HappyFlow algorithm engages, by searching
for a counterexample for each sub-word of all happy flow
words. This procedure has the following advantages regard-
ing the speedup of identifying a counterexample:

1) Because happy flow words and the corresponding sub-
words are computed only for the hypothesized con-
jecture, no simulation on the SUT is needed. Hence
identification of a valid counterexample from a set of
happy flows can be performed almost instantly.

2) The test words are generated from the smallest sub-
sequence to the largest subsequence. If the hypothesis
accepts a subsequence w = w0 . . . wn but the subse-
quence w·wn+1 is not accepted by the hypothesis, sym-
bol wn+1 is most likely a distinguishing suffix. Because
the counterexample is as small as possible, it reduces
the appearance of redundant entries in the observation
table and temporary nodes in the discrimination tree.

Although the extended RandomWalk algorithm yields a
better result opposed to the original RandomWalk algorithm,
a detriment of the procedure is that the happy flow must
be defined in advance. The happy flows can originate from
various sources, such as automated tests and application
logs. The source and format, if any, differ per application
and must thus be collected and processed for each applica-
tion as a test individually. Gathering happy flows requires
knowledge about the application before learning starts and
therefore surpasses the black box testing methodology.

4.6. TTT and the W-method

Another method to discover counterexamples is to sub-
stitute the equivalence oracle from RandomWalk to the W-
method, which is a more systematic and exhaustive method.
Two drawbacks of the W-method are the explosion of the
number of test cases as the number of unique states in the
SUT model increases and the excessive amount of symbols
the test queries contain, i.e., the query length. Both factors
negatively influence the time performance. After multiple
test runs with the W-method equivalence oracle, no test run
could finish, due to the quantity and size of the test cases
generated by the W-method. The run required more time
than 60 hours and was halted during the third equivalence
query where it had to loop through more than 38 million test
cases. The hypothesis conjecture consisted of 6 states, which
is known to be incorrect since the combination of L* and
RandomWalk already was able to find 9 states, as depicted
in Figure 4. The disadvantage of the W-method is the size

Figure 6: The inferred machine for the 9292 application
using TTT and a consolidation between the W-method and
Smetsers et al.’s work for creating a characterizing set.

of the test words. To decrease the length of the test words,
i.e., the number of symbols in a sequence, Smetsers et al.
propose a method for establishing the shortest distinguishing
sequence for each pair of states [16]. Smetsers et al. also
argue that the set of all minimal separating sequences for
all pairs of states can replace Chow’s W-method for estab-
lishing a shorter characterizing set. As a result, this process
would not only reduce the size of the characterizing set but
can also abolish superfluous elements in the distinguishing
suffixes and discriminators to limit redundant entries in the
observation table and omit temporary nodes in the discrim-
ination tree respectively.

The model that can be learned by combining Chow’s
W-method with Smetsers et al.’s work for creating a char-
acterizing set is shown in Figure 6. The last inferred model
depicts the model that best approximates the application’s
structure, as it has the highest number of states and transi-
tions. The final model could be learned within four hours.
The remainder of this paper uses TTT as the learning
algorithm and the modified W-method as the equivalence
oracle.

5. Vulnerability Identification on Models

After the determination of the most optimal parameter
values to successfully infer state machines of Android ap-
plications, a detection technique must be established that
identifies vulnerabilities from the inferred models. The de-
tection techniques attempt to discover a path that exploits a
given class of vulnerabilities as specified in the OWASP Top
10. If such a malicious path exists in the inferred model, the
application must contain the specific vulnerability.

The learned state machines are defined by the distin-
guishing observable application responses to user interaction
commands. Because the state machine depicts how the
components of the application are interconnected, the model
represents the app on an abstract level. The state machine
can also be enriched with information and properties that are

static to a given state or transition, such that the combination
of dynamic behavior and the static information can be used
for attack path discovery.

The following enumerates the OWASP Top 10 Mobile
and provides reasoning on their detection in a behavioral
model. If the class is capable of being detected in a be-
havioral model, an algorithm is presented that identifies
attack paths that exploit the vulnerability. If it is required
to enrich the model with properties that are local to a state,
the enrichment is mentioned and explained in the corre-
sponding vulnerability class. To keep consistency between
all algorithms, the discovered attack paths are saved in a set
R, which is returned at the end of the algorithm. A violation
is present if R is non-empty.

1. Improper Platform Usage This category covers the
applications failures to meet the platform security controls
and other scenarios where platform features are misused.
A violation of this class is detectable because the platform
controls also include Android intents such as the calling of
activities. Specifically for Android apps, intents have shown
to be a valuable source of input when assessing proper
platform usage as advocated by [17]. The intents that are
exhibited by the app can be carved from the app’s binary.
Under the assumption that the inferred model describes
normal application behavior, any new behavior that can be
invoked by calling an activity is superfluous and should thus
not be accessible by end users. The algorithm to detect paths
in the inferred model is depicted as Algorithm 1.

Algorithm 1 Improper Platform Usage Identification

Input: Inferred State Machine M = {Q,Σ, δ, q0, F}
1: R← ∅
2: A← activities from SUT’s binary
3: for all a in A do
4: if a is callable in M then
5: add a to R
6: end if
7: end for . R contains all callable activities
8: for all q in Q and R is not empty do
9: remove q’s activity from R

10: end for
11: return R

2. Insecure Data Storage The insecure data storage
category is violated when information which is processed
by the application, is stored locally on the device in an
insecure way. Android applications store data, preferably
encrypted and in the correct directory, in the mobile devices
file system. This category cannot be discovered from the
user interaction model abstraction of the application because
the data storing activity is not noticeable by the user or the
Appium driver.

3. Insecure Communication Most applications function
according to a client-server framework, where the applica-
tion (client) communicates with a server (back-end). The
communication between client and server often encloses
sensitive data, such as authentication credentials or confi-
dential files. Sending and receiving sensitive data should be

done on a cryptographically secured communication, such
as the transport layer security (TLS) protocol describes, or
apply custom cryptographic solutions, such as certificate
pinning [18].

A violation of this vulnerability can be detected because
the network requests exit the mobile device. If the web
request exits the mobile device, the request can be caught
with a proxy and assessed. Each transition in the model
is labeled with the web requests that correspond to the
action. Set R is then the set of all insecure web requests
that are performed by the application. Algorithm 2 depicts
the method to identify violations of this vulnerability class.

Algorithm 2 Insecure Communication Identification

Input: Inferred State Machine M = {Q,Σ, δ, q0, F}
1: R← ∅
2: for all t in δ do
3: r ← request insecure(t.request)
4: if r then
5: add r to R
6: end if
7: end for
8: return R

4. Insecure Authentication Authentication is the pro-
cess or action of verifying the identity of a user such that
restricted services and data can only be presented to autho-
rized users. Poor or missing authentication schemes allow
an adversary to execute functionality within the mobile app
or backend server used by the mobile app without the proper
restrictions. Functionality-wise, the violation materializes in
the same way as an insecure authorization violation and
hence detection is discussed in that category.

5. Insufficient Cryptography To enable secure data
storage, the implementation of cryptographic fundamentals
is required. The correct appliance of cryptography is a static
property that can be assessed by reviewing the source code
manually. The level of adequate cryptography is not visible
on the user interaction level. Hence insufficient cryptography
cannot be detected from a behavioral model.

6. Insecure Authorization Authorization associates the
appropriate level of operations to an authenticated identity.
A poor or missing authorization scheme allows attackers
to exploit functionality that is above their privilege. The
inferred model can be used to assess the authorization of
an application. By searching for paths to states that should
only be accessible for authenticated users, one can identify
an authorization bypass and diagnose an improper autho-
rization vulnerability in the application. States that are only
accessible after the login state are decided to be secured.
A path to one of the states that avoid the login state is a
violation of authentication. The algorithm that corresponds
to detect insecure authentication is presented in Algorithm
3. This algorithms determines which state represents the
authentication state based on login fields that are present,
such as a username field and a password field in the user
interface of a specific state.

Algorithm 3 Insecure Authentication Identification

Input: Inferred State Machine M = {Q,Σ, δ, q0, F}
1: a← authentication state of M . a ∈ Q
2: if a is null then . no authentication → no

authentication bypass
3: return R
4: end if
5: Marks← subset of nodes possible to reach after a
6: M ′ ←M − a . the machine without the

authentication state
7: for all m in Marks do
8: if a path from the q0 to m exists in M ′ then
9: add path to R

10: end if
11: end for
12: Q′′ ← Q−Marks
13: A← callable activities
14: for all q in Q′′ and A is not empty do
15: remove q’s activity from A
16: end for
17: add A to R
18: return R

7. Poor Code Quality The category of poor code quality
does not directly appear in a behavioral state machine model
because code quality is a static property of the code. Since
black box testing does not examined the source code, this
property cannot be identified from a state machine model.

8. Code Tampering and Extraneous Functionality
Modified forms of applications that are changed by a third
party are commonly distributed through official and unoffi-
cial marketplaces. In this case, an application is either torn
apart, the code is tampered with and then reassembled again,
or an entirely new application is made from scratch that tries
to impersonate the original application. The code tampering
class describes this scenario. The modified version tries to
trick users into thinking it is a benign application, but also,
the tampered application can perform malicious activities.

Under the assumption that tampering source code yields
different behavior, code tampering can be identified by
comparison of the inferred model to a reference model of
the application under test. This reference model can either
be inferred from a legitimate data source, such as the Google
Play Store, or inferred from an application that should
be genuine and benign. If the SUTs model is the result
of a tampered application, Algorithm 4 will identify the
difference between the two of them. The behavior that the
application under test contains in addition to the reference
model can potentially be malicious.

The category of extraneous functionality describes func-
tionality that enables a user to perform operations that is
not directly exposed by the user interface. Detection of this
vulnerability assumes that the extraneous functionality is an
addition or deduction of functionality when compared to a
reference model. Hence, this vulnerability class is detected
along with the code tampering vulnerability.

The algorithm computes the transition cover set of ac-
cess sequences, which is also used by the W-method. The
transition cover set is created in the same way Chow [10]
creates a transition cover set by the aid of a testing tree. Let
TCS(M) be the function that returns the transition cover
set for a DFA M , as proposed by Chow. The difference in
behavior is then computed by assessing the outputs for each
input sequence in the transition cover set by the inferred
model and the reference model.

Algorithm 4 Code Tampering Identification

Input: Inferred machine M = {Q,Σ, δ, q0, F} and refer-
ence machine M ′ = {Q′,Σ′, δ′, q′0, F ′}

1: R1, R2 ← ∅
2: TCS1 ← TCS(M)
3: TCS2 ← TCS(M ′)
4: for all w ∈ TCS1 do
5: if λM (w) 6= λM

′
(w) then

6: R1 ← w
7: end if
8: end for
9: for all w ∈ TCS2 do

10: if λM (w) 6= λM
′
(w) and w /∈ R then

11: R2 ← w
12: end if
13: end for
14: R← R1, R2

15: return R

9. Reverse Engineering Reverse engineering an ap-
plication is the process of extracting knowledge or design
information from an application. This knowledge can even
go back to the original source code of the application. This
category is also a static property that is not exploitable by
interacting with the application on the end user level and
can hence not be detected in a model.

6. Results

We combined model learning on Android applications
with vulnerability detection algorithms. The combination
has been applied to an extensive set of mobile applica-
tions. To verify the success rate of the detection algorithms,
known-to-be vulnerable applications have been tested. We
obtained the vulnerable applications from various sources,
such as GitHub repositories with reported vulnerabilities and
enterprises that developed applications with the intent to be
vulnerable for educative purposes. Because not all applica-
tions are publicly distributable, we present and discuss the
results of one test application. The results are shown in Table
1.

The InsecureBankv2 application is developed by
Dinesh Shetty for the self-educative of mobile hacker train-
ing [19]. The model learner was able to infer and enrich the
state machine model as depicted in Figure 7. The vulner-
ability identification algorithms were able to identify paths
that exploit one of the vulnerability classes. In total three
vulnerability classes were discovered to be violated.

InsecureBankv2 Violation
Improper
Platform Usage

There were new discovered states for activity
./ViewStatement

Insecure
Authorization

Authorization can be bypassed for activities
./PostLogin (to state 4) and.
/DoTransfer (to state 5).

Insecure
Communication

Data is sent the back-end unencrypted.
Transition from state 3 to 4 requests:
POST http://57.97.2.11:8888/login.

TABLE 1: Identified vulnerabilities for the applications In-
secureBankv2

First of all, a path, depicted in green, induces behavior
that is not described by the inferred model by using a
platform control. The new behavior is discovered when
analyzing the activities from the SUT’s binary. Because
the action is new to the model and we assume that the
model represents the entire application, the platform control
is misused, and improper platform usage is detected. If
the inferred model would be incomplete, the vulnerability
detection algorithm raises (a lot of) false positive results. If
the latter is the case and substantially occurs, one should
aim to infer a model as complete as possible in order to
successfully assert the security properties. Therefore the path
that exhibits the new behavior should be included in the
model by extending the input alphabet or adding the path
as a happy flow.

The second exploitation path, depicted in red, that has
been discovered bypass the login state and therefore con-
stitutes with a secure authorization violation. Because post
login activities can be reached without going through the
proper authentication scheme, insecure authorization is de-
tected. Detection of other ways to reach new behavior is
achieved likewise the Improper Platform Usage detection,
but the property that the actions are known to the model and
normally only accessible after the login state are utilized to
distinguish the classes of exploitation. The Insecure Autho-
rization class can produce faulty results in two ways. Way
one would be that the login state is incorrectly determined,
which causes the behavior to be known to the model and
not to be restricted. As a result, no vulnerability will be
detected which would be a false negative result. The false
negative rate can be reduced by optimizing the classification
technique that is used to determine if a state is a login state.
The second way a result can be faulty is when information
for an authorization bypass cannot be obtained from the
SUT’s binary and can therefore not be detected. These type
of results are difficult to reduce and is a limitation in the
way we use models for vulnerability detection, because the
vulnerability then is not known.

At last, insecure communication was detected because
some transitions, such as the transition between state 3 and
4, initiate a web request that does not implement modern
security standards. The web requests are not encrypted and
are hence vulnerable to a man-in-the-middle attack. All
identified violations were expected before testing and manu-
ally verified to be present. We conclude that the combination
of model learning and vulnerability identification was able

0

1 2

3

4

5

?

enter username

enter password

enter password

enter username

push login

push transfer

login

./DoTransfer

./PostLogin

./ViewStatement

Figure 7: Simplified model of the InsecureBankv2 app

to assess the application’s security correctly and discovered
three significant classes of vulnerabilities to be present.

The algorithm to identify code tampering or extraneous
functionality can be applied to a scenario where a counterfeit
version of the SUT has been learned and the differences in
terms of functionality need to be assessed. The detection
technique is not applicable to the InsecureBankv2 scenario,
since no counterfeit version is available. If such an ap-
plication would be available, the corresponding detection
algorithm identifies the difference in behavior, which if
detected confirms that the app is a modified version.

6.1. Future Work

The presented work can identify vulnerabilities in mo-
bile applications based on their behavioral model. There
is, however, ample opportunity to enrich the inferred state
machine models and apply additional vulnerability detection
techniques.

Model Completeness Within the scope of this research,
we assume that the inferred state machine model is com-
plete, such that the model describes the behavior of the
entire application. Model completeness depends on the com-
pleteness of the input alphabet and the thoroughness of the
equivalence oracle. One way to measure the accuracy of
model completeness is to compute the code coverage of all
actions depicted in the model. If we can compute the code
coverage per action, the learning algorithm can guide the
learning process by selection of test cases that generate the
most or new code coverage. Moreover, an equivalence al-
gorithm can be established that generates a counterexample
based on the conditions to reach the uncovered code. This
methodology has shown to be effective for the discovery of
more reachable states by Smetsers et al. [20].

Platform Extension Another lookout is to apply model
learning to other mobile platforms, such as iOS. One use
case to support both platforms for model learning is to

verify consistency between the two applications. To reach
the largest target audience, applications are written both for
Android and iOS. Because a development team is often
specialized in code development for a specific platform,
the different applications are often developed separately
from each other [21]. Although the applications are separate
products, they should depict the same behavior. Comparison
of state machine models can identify differences or verify
equivalence regarding behavior.

7. Conclusion

The objective of this research was to apply time-
optimized state machine learning to mobile Android ap-
plications and establish algorithms that identify the pres-
ence of vulnerabilities in the application by assessment of
the inferred model. The objective has been divided into
three subgoals. First of all, we must apply active state
machine learning to mobile Android applications. Secondly,
to achieve time-optimization, we need to administer method-
ologies that improve the learning time. Lastly, the vulner-
ability identification algorithms that cope with the inferred
models need to be established.

The methodology and the accompanying proof of con-
cept that are presented in this research, achieve the research
objective by combining modern active learning algorithms
for model inference and applying techniques that specifically
enable state machine learning for the mobile environment.
The combination of modern algorithms, such as the TTT
algorithm and Smetsers et al.’s algorithm for finding minimal
separating sequences for all pairs of states, can curtail
redundant queries and reduce the query space and hence
optimize the time that is required to answer model equiva-
lence. The mobile application environment also introduces
non-deterministic behavior. A method to overcome the non-
deterministic behavior is presented, by applying the cache
rollback technique.

To achieve the last subgoal, one must be able to iden-
tify vulnerabilities on inferred models. Vulnerability iden-
tification is made possible by first of all enriching the
state machines with supplementary information. Secondly,
vulnerability identification algorithms have been proposed
that can determine paths of exploitation in the inferred and
enriched models. The paths then pose as evidence for the
presence of a vulnerability that belongs to a class defined
by OWASP.

The proposed testing methodology provides the first step
towards a new approach for testing and securing the mobile
environment. There remain opportunities to cover additional
classes of vulnerabilities and to improve active learning
on mobile applications. Nevertheless, we demonstrated that
state machine learning can be a valuable asset when search-
ing for vulnerabilities in mobile applications.

References

[1] T. Vidas, C. Zhang, and N. Christin. Toward a general collection
methodology for android devices. digital investigation, 8:S14–S24,
2011.

[2] M. Khan, F. Khan, et al. A comparative study of white box, black box
and grey box testing techniques. International Journal of Advanced
Computer Sciences and Applications, 3(6):12–1, 2012.

[3] C. Cho, E. Shin, and D. Song. Inference and analysis of formal
models of botnet command and control protocols. In Proceedings of
the 17th ACM conference on Computer and communications security,
pages 426–439. ACM, 2010.

[4] J. De Ruiter and E. Poll. Protocol State Fuzzing of TLS Implemen-
tations. In USENIX Security Symposium, pages 193–206, 2015.

[5] D. Angluin. Learning regular sets from queries and counterexamples.
Machine learning, 2(4):319–342, 1988.

[6] M.J. Kearns and U. Vazirani. An introduction to computational
learning theory. MIT press, 1994.

[7] E.M. Gold. Complexity of automaton identification from given data.
Information and control, 37(3):302–320, 1978.

[8] M. Isberner, F. Howar, and B. Steffen. The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning. pages
307–322, 2014.

[9] M. Krichen and S. Tripakis. Conformance testing for real-time
systems. Formal Methods in System Design, 34(3):238–304, 2009.

[10] T.S. Chow. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering, SE-4(3):178–187, 5
1978.

[11] R. Dorofeeva, K. El-Fakih, S. Maag, A. Cavalli, and N. Yevtushenko.
Fsm-based conformance testing methods: A survey annotated with
experimental evaluation. Information and Software Technology,
52(12):1286–1297, 2010.

[12] H. Raffelt, B. Steffen, T. Berg, and T. Margaria. Learnlib: a frame-
work for extrapolating behavioral models. International Journal on
Software Tools for Technology Transfer (STTT), 11(5):393–407, 2009.

[13] M. Hans. Appium Essentials. Packt Publishing Ltd, 2015.

[14] Z. Lanier et al. OWASP Top 10 Mobile, 2016. [Online] Available:
www.owasp.org/index.php/Mobile Top 10 2016-Top 10.

[15] Black R., E. Van Veenendaal, and D. Graham. Foundations of
Software Testing - ISTQB Certification. Cengage Learning EMEA, 3
edition, 2012.

[16] R. Smetsers, J. Moerman, and D.N. Jansen. Minimal separating
sequences for all pairs of states. In International Conference on
Language and Automata Theory and Applications, volume 9618,
pages 181–193. Springer, 2016.

[17] H. Ye, S. Cheng, L. Zhang, and F. Jiang. Droidfuzzer: Fuzzing
the android apps with intent-filter tag. In Proceedings of Interna-
tional Conference on Advances in Mobile Computing & Multimedia,
page 68. ACM, 2013.

[18] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl. To pin or
not to pin-helping app developers bullet proof their tls connections.
In USENIX Security Symposium, pages 239–254, 2015.

[19] S. Dinesh. Android-InsecureBankv2, 2017. [Online] Available:
github.com/dineshshetty/Android-InsecureBankv2.

[20] R. Smetsers, J. Moerman, M. Janssen, and S. Verwer. Comple-
menting model learning with mutation-based fuzzing. arXiv preprint
arXiv:1611.02429, 2016.

[21] S. Allen, V. Graupera, and L. Lundrigan. Pro smartphone cross-
platform development: iPhone, blackberry, windows mobile and an-
droid development and distribution. Apress, 2010.

www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
github.com/dineshshetty/Android-InsecureBankv2

	Introduction
	Model Learning
	Prerequisites
	Learning Algorithms
	L* Algorithm
	TTT Algorithm

	Equivalence Problems

	Setup
	Model Inference on Android Applications
	Input Alphabet
	Overcoming Non-Deterministic Behavior
	Learning with L* and RandomWalk
	Learning with TTT and RandomWalk
	Learning with TTT and RandomWalk-HappyFlow
	TTT and the W-method

	Vulnerability Identification on Models
	Results
	Future Work

	Conclusion
	References

