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Abstract—Ethereum is a decentralized Blockchain system that
supports the execution of Turing-complete smart contracts. Al-
though the security of the Ethereum ecosystem has been studied
in the past, the network layer has been mostly neglected. We
show that Go Ethereum (Geth), the most widely used Ethereum
implementation, is vulnerable to eclipse attacks, effectively cir-
cumventing recently introduced security enhancements. 1. Our
false friends attack exploits the Kademlia-inspired peer discovery
logic used by Geth and enables a low-resource eclipsing of long-
running, remote victim nodes. An adversary only needs two hosts
in distinct /24 subnets to launch the eclipse, which can then be
leveraged to filter the victim’s view of the Blockchain. We discuss
fundamental properties of Geth’s node discovery logic that enable
the false friends attack, as well as proposed and implemented
countermeasures.

I. INTRODUCTION

A dependable and secure network layer is vital for
blockchain systems, since they build on the assumption of
equal information at every peer [1], [2]. This assumption is
violated if eclipse attacks are possible. In an eclipse attack, an
adversary monopolizes the connections of a victim, effectively
filtering the victim’s view of the blockchain. Eclipse attacks
enable a variety of follow-up attacks such as double spending
and stubborn mining [3].

Despite its important role, the network layer has so far
received surprisingly little attention in systems like Bitcoin [2],
[4] or Ethereum [5], leading to vulnerabilities.

In [6], a low-cost eclipse attack has been proposed that
exploits the Kademlia-inspired [7] peer discovery logic of
Go Ethereum (Geth), the official reference implementation of
Ethereum2. The attack is mounted after a victim node has
been restarted and is based on flooding the node’s discovery
table with Sybil [9] nodes. Generating a new node ID, and
henceforth a new Sybil node, involves only an ECDSA key
pair generation, which makes the attack lightweight. As an
answer to the discovered attack vector, Geth ≥ v1.8.0 intro-
duces several countermeasures to increase the difficulty and
necessary resources to flood the complete discovery table.

However, as we show in this paper, eclipse attacks on Geth
are still possible with very limited effort. We propose the false
friends attack that enables the eclipsing of current Ethereum
nodes. Despite the subnet restrictions implemented in Geth

1We responsibly disclosed the vulnerability to core Ethereum developers,
see Sec. VII for a discussion of implemented countermeasures in Geth v1.9.0

2 Other clients might also be vulnerable. We focus on Geth as it is estimated
to be used in roughly 76% of clients [8].

v1.8.0, we only need two IP addresses from distinct /24
subnets for a successful attack. Additionally, and in contrast
to [6], we do not necessarily require a restart of the victim
node since peer churn is high and existing connections will
eventually be dropped. Instead of overwriting the complete
discovery table with Sybil nodes, we subtly insert adversarial
nodes with carefully selected node IDs, exploiting the interplay
between peer discovery and connection management.

Geth chooses new peers either by directly selecting nodes
from its discovery table or by starting a Kademlia-style lookup
to a random target, which yields new node contact information.
We compromise both mechanisms, in slightly different ways.
We insert a limited number of Sybil nodes into the victim’s
discovery table, with an activity pattern that favors these Sybils
when new connections are set up. For new contacts resulting
from lookup operations, we pre-compute a large number of
node IDs and present tailored choices when queried during a
lookup, effectively offering “better” (albeit false) peers than
all honest nodes visible to the victim.

Existing connections have to be terminated before the
available slots can be filled with adversarial nodes. However,
as we noticed through measurements, peer connections are
terminated regularly without additional intervention: 95 % of
connections longer than 60 s were shorter than 5.5 d We
were, in effect, able to successfully eclipse a live node by
actively waiting and incrementally injecting adversary nodes
into the victim’s peer lists3. Our measurements indicate that a
targeted false friends attack on a specific Ethereum node can
be successfully completed within a few days.

In summary, the contributions of our paper are:
• The discovery, description and evaluation of the false

friends attack, an eclipse attack on current Geth versions
that exploits fundamental properties of Geth’s peer dis-
covery logic

• A description and theoretical analysis of Ethereum’s net-
work layer management algorithms, based on an analysis
of the Geth codebase; previously available information is
scarce.

• The discussion of possible and implemented
countermeasures—both easy fixes to prevent the
presented attack and ideas for tackling the fundamental
challenge of securing Ethereum’s overlay network.

3 Without attacking nodes operated by other network participants, and
without risking any harm for the Ethereum network, of course.
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The rest of this paper is structured as follows. Section II
describes the high-level network architecture of Geth and
Section III gives a detailed explanation of the Kademlia-
inspired peer discovery. In Section IV we then present the
actual false friends attack, i.e. how we exploit Geth’s peer
discovery logic. We present our analytical evaluation and mea-
surements in Sections V and VI. Section VII discusses possible
countermeasures against the presented attack. We conclude
the paper with a summary of related work (Section VIII) and
concluding remarks (Section IX).

II. BACKGROUND: THE ETHEREUM NETWORK STACK

In the following, we introduce the overall architecture
of Ethereum’s Peer-to-Peer network as implemented in Go
Ethereum. Unlike similar descriptions in related works [6],
[8], the information presented here uses a naming of high-
level components that is more strongly aligned with the official
Ethereum terminology.

The overall network architecture of Ethereum is summarized
in Figure 1. Ethereum’s network layer consists of four major
components, namely: discv4 for node discovery; RLPx as a
secure transport layer; DEVp2p for session management on top
of RLPx and the actual Ethereum protocol (eth) which runs
on top of DEVp2p. The Whisper protocol (for decentralized
applications) and the Swarm protocol (for decentralized file
storage) are other subprotocols on top of DEVp2p.

DEVp2p not only provides the foundation for the Ethereum
protocol and other application protocols, it also manages
connections to other peers which form the overlay on which
blocks and transactions are distributed. Geth by default has
a total of 25 TCP connections to other peers speaking the
Ethereum protocol. Of these 25 slots, 17 are reserved for
inbound connections (initiated by other peers), whereas the re-
maining 8 are allocated for outbound connections. In this case,
inbound means that a remote peer sent a SYN-packet to start
a TCP connection with the local peer. No further restrictions
apply to inbound connections; if an inbound slot is available
Geth simply accepts any connecting peer that supports the
Ethereum protocol and operates on the same network (main,
testing, etc.). The 8 outbound slots are therefore especially
important, as they are the most difficult ones to get under
control for an attacker mounting an eclipse attack.

In contrast to DEVp2p, the discv4 node discovery stores
information about all node types in the overlay. This includes
nodes without support for the Ethereum protocol (which is a
perfectly valid case in the design logic of Ethereum’s protocol
stack). The discv4 node discovery is inspired by the Kademlia
DHT [7]. Information about known overlay nodes is stored in
a table separated into so-called k-buckets (or simply buckets,
in the following).

The outbound connections are established to nodes that are
returned from the discovery table. Every time not all outbound
slots are occupied, the DEVp2p peer management requests the
discovery table in two distinct fashions depicted in Figure 2.

First, half of the currently empty slots (rounded down) are
filled with a direct request to the discovery table via the
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Figure 1. Overview of the Ethereum Network Stack.
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Figure 2. How outbound connections are established.

function ReadRandomNodes. Second, the remaining slots
are filled from the lookup-buffer, which holds the result of a
Kademlia-like lookup to a random target ID. Note that this
procedure is repeated every time an outbound slot becomes
available. Therefore, Geth fills half of the currently avail-
able slots with each mechanism. Depending on the situation,
this skews the distribution of outbound connections towards
either mechanism. If only one slot becomes available at
a time, the lookup-buffer is favored (ReadRandomNodes
gets b0.5c = 0 slots). Otherwise, if two lookup-buffer slots
become available repeatedly, ReadRandomNodes is favored
in comparison to the lookup-bufer.

Our false friends attack exploits these two interfaces be-
tween node discovery and peer management. The discovery
table therefore constitutes a particularly important component
of Ethereum for our purposes, and deserves a closer look.

III. NODE DISCOVERY AND SELECTION

Ethereum’s node discovery table largely resembles a
Kademlia [7] routing table. Unlike in Kademlia, however, its
sole purpose is to manage a set of known nodes which serves



as a basis for establishing connections in DEVp2p. In [10]
it is conjectured that Kademlia was chosen as a basis due to
future plans to shard the blockchain, i.e., to partition it over
the network.

A. Kademlia in a Nutshell

Kademlia is a UDP-based, peer-to-peer distributed hash
table (DHT) that is used to locate decentrally stored data
efficiently [7]. Each node is uniquely identified by its randomly
generated 160-bit node ID. A data item stored in the DHT
is found by its key, which is simply a 160-bit hash of
the data itself. Hence, node IDs and keys share the same
representation; in the following we use the term ID for both.
Kademlia leverages this by storing data at nodes whose node
ID is “close” to the data’s key. Closeness is defined as the
bitwise XOR between two IDs, taken as an integer value, i.e.,
d(x, y) = x⊕y. A node stores its known neighbors in so-called
k-buckets which partition the known network based on the
local node’s ID. Every k-bucket (or simply bucket) stores up
to k neighbors. Intuitively, node IDs are treated as the leaves
of a binary tree and each bucket stores a distinct branch of
the tree. Bucket i stores nodes whose distance is in [2i, 2i+1),
which effectively corresponds to the length of the common
prefix between two node IDs.

Items in the DHT and nodes on the network are located by
so-called lookups. A lookup successively queries nodes that
are closest to the desired target ID (key or node ID).

B. Node IDs

As in Kademlia, node IDs in Ethereum serve as public
identifiers for each node in the Ethereum network. A node
ID in Ethereum is a marshaled 512-bit ECDSA public key.
However, distance computations only operate on Keccak256-
hashes [11] of node IDs, effectively yielding node IDs with
256-bit length. When referring to node IDs in the following
we implicitly mean hashed ECDSA public keys. Node IDs
are supposed to be static, as stated in the official Ethereum
documentation:

Each node is expected to maintain a static private
key which is saved and restored between sessions.
It is recommended that the private key can only be
reset manually [...].4

It is easy to generate and use many different identities by
creating ECDSA key pairs.

C. Buckets and Log-Distance-Metric

The buckets of Geth’s discovery table hold up to k = 16
nodes each. Exactly as in Kademlia, the nodes in each bucket
share a common property: the distance, according to some
metric, between their node ID and the local node’s ID is
the same. [6], [8] state that Ethereum uses the so-called log-
distance metric. We argue that this metric is identical to
the distance metric used to determine buckets in Kademlia.
The log-distance between two hashes can be defined as

4https://github.com/ethereum/devp2p/blob/
6504d410bc4b8dda2b43941e1cb48c804b90cf22/rlpx.md, accessed 15.04.19

blog2(N̄1 ⊕ N̄2)c, or equivalently, 255 - the length of their
common prefix – which is exactly how buckets are organized
in Kademlia. Due to the uniqueness assumption of node IDs,
this yields |{0, ..., 255}| = 256 possible distances.

In response to the eclipse attack by [6], Geth ≥ 1.8.0
restricts the number of buckets to 17, starting from the furthest
distance of 255 to the minimum possible log-distance of 239.

The log-distance metric leads to a skewed distribution of
nodes between buckets: most of the lower buckets are empty,
since the probability to fall into a specific bucket decays
exponentially with the associated distance [7].

D. Entering a Bucket

A local node learns of neighboring nodes either by receiving
an unsolicited ping packet or in the course of a lookup
operation. The lookup process also initiates a ping/pong
exchange, which then triggers the node to be added to the
discovery table. In any case, before a node enters the discovery
table, a number of checks are performed which are depicted in
Figure 3. Assume that the local node receives either a ping
packet or a pong reply to a previously sent ping. Two cases
are to be distinguished: first, the node may already be in
its respective bucket; in this case it is simply moved to the
first position. This induces a “least recently active” sorting of
the nodes within a bucket [7], where activity simply means
sending (responding to) a ping-packet. Second, in case the
node is not already in a bucket, it is added if the bucket is not
full. If the bucket is already full, candidate nodes are stored
in a so-called replacement list that stores up to ten nodes.

Every 5 s (on average), the last node of a random bucket is
pinged and replaced with a random node from the respective
replacement list if it fails to respond. In contrast to buckets,
the replacement list is a simple FIFO queue that evicts the
last entry every time a previously unknown node is added
to the list. Last but not least, a node is only added to its
respective bucket (or replacement list) if it meets certain IP
address restrictions: Geth restricts the number of IP addresses
coming from the same /24 subnet to two per bucket, and to
ten in the whole discovery table.

E. FindNode-Requests

Lookups in Ethereum are used to discover new peers.5.
These lookups are performed iteratively by sending so-called
FindNode requests, to which the recipient answers with a
neighbors packet containing information about nodes from
its discovery table.

The most important use of lookups in our scenario is to
populate the so-called lookup-buffer. As already outlined, the
lookup-buffer is one of two methods by which the DEVp2p
subsystem finds new nodes to connect to. When the lookup-
buffer is empty, Geth populates it by starting a lookup to a
random target. That is, it sends a FindNode request to peers
that are “close” to the random target. For lookups, Ethereum
does not use the log-distance metric for sorting the buckets

5FindNode requests are also used to populate the discovery table and to
resolve node IDs to IP addresses [6], which is outside the scope of this paper.

https://github.com/ethereum/devp2p/blob/6504d410bc4b8dda2b43941e1cb48c804b90cf22/rlpx.md
https://github.com/ethereum/devp2p/blob/6504d410bc4b8dda2b43941e1cb48c804b90cf22/rlpx.md
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Figure 3. How nodes enter buckets.

(cf. Section III-C) but instead uses the plain xor-metric. To
illustrate, let N̄1, N̄2 be two node IDs and t a (random)
target ID. For Ethereum (and likewise Kademlia), N̄1 is closer
to t than N̄2 iff N̄1 ⊕ t < N̄2 ⊕ t, where ⊕ denotes the
bitwise xor-operation and the result is taken as the binary
representation of an unsigned integer. To ease notation, we
define the abbreviation <t as N̄1 <t N̄2 :⇔ (N̄1⊕t < N̄2⊕t).

The iterative lookup procedure to populate the lookup-buffer
is visualized in Algorithm 1. First, a random target ID t is
chosen. Subsequently, all known peers from the discovery
table are sorted according to <t, effectively yielding the 16
peers that are closest to the random target t. In a next step,
a FindNode request is sent to each of these 16 peers, asking
them for their respective neighbors that are closest to t. If
successful, each queried peer will answer with a neighbors
packet containing up to 12 peers (1280 byte). All received
neighbors are combined, sorted by <t, and again restricted to
the 16 peers closest to the random target t. This yields the
result set of the first round. This process is iterated until the
result set eventually stabilizes. If a result set contains the same
peers as the result set of the previous iteration, the procedure
terminates.

IV. THE FALSE FRIENDS ATTACK

After having established the necessary background in the
previous sections, we now describe the details of our false

Algorithm 1 Populate Lookup-buffer

t← random node ID
N0 ← {16 closest known peers to t}
loop

for oi ∈ N0 do
Fi ← {closest peers of oi to t, as returned by oi}

N ← N0 ∪
⋃15

i=0 Fi

N1 ← sort(N, t)[0 : 15] // 16 closest to t
if N0 = N1 then return N0

else
N0 ← N1

friends attack, with an in-depth analysis of the attack following
in Section V.

To eclipse a victim, its 8 slots for outbound connections as
well as the 17 slots for inbound ones have to be filled with
adversarial nodes. The inbound connections slots can easily be
filled since Geth does not impose any restrictions on inbound
connections. Hence, it suffices to start multiple Geth instances
on different ports and configure them to repeatedly connect to
the victim. Due to the lack of restrictions, one host with one
IP address is enough to fill the inbound slots. Note that these
Geth instances do not need to actively participate in block and
transaction distribution.

To fill the outbound connection slots, we have to make
sure that only adversarial nodes are proposed to the DEVp2p
peer management via the two mechanisms (cf. Section II).
Whereas [6] fills the whole discovery table with Sybil nodes
to ensure that only these are proposed to the peer management,
we leverage properties of the peer selection mechanism to
achieve the same result with only one Sybil node per neighbor
table bucket. It suffices to have one Sybil node in each bucket
of the neighbour table to make sure that only adversarial
nodes are returned to the peer management. This effectively
circumvents the implemented countermeasures and still needs
very little resources (two IP addresses in distinct /24 subnets).

In contrast to [1], [6] we do not necessarily require a restart
of the victim node for our attack to be successful, though it
speeds up the attack. In both cases, an adversary has to wait
until existing connections are terminated for other reasons,
such as timeouts. Our measurements (discussed in Section VI)
indicate that connections on the Ethereum network are rather
short-lived and a successful attack against a non-restarting
victim node is therefore possible in a matter of days.

Our attack is facilitated by the fact that countermeasures 2
and 3 from [6] were not implemented in Geth. Countermeasure
2, a fixed mapping between the IP address and ECDSA
key would raise the requirements for a false friend attack
to 25 unique IP addresses (one for each connection slot).
While moderately increasing the necessary resources for an
adversary, the impediment for the network is significant, since
multiple Geth instances behind a NAT would be impossible.
Countermeasure 3, making the mapping of IDs to buckets in



the neighbour table secret, is a theoretically viable mechanism
to drastically raise the bar for an attacker. However, one would
lose the benefits of Kademlia in case routing becomes relevant;
this might be the reason why the developers chose not to
implement countermeasure 3.

A. Taking Over ReadRandomNodes

The function ReadRandomNodes returns (per default) at
most 4 nodes from the discovery table, which are then used
by the peer management to establish outbound connections.
Most importantly, ReadRandomNodes only returns the head
of randomly chosen buckets. Presumably, this design choice
is due to the implicit sorting by activity within a bucket (cf.
Section III): peers in the front of a bucket are more active
and/or have a better latency than the others and are therefore
favorable to connect to. This behavior can easily exploited
by an adversary, since the sorting by activity merely requires
the adversary to regularly send a ping-packet to stay ahead
of the other peers. Therefore, it is sufficient for an attacker
to populate each bucket with one node instead of the whole
discovery table. To this end, an adversary repeatedly generates
new ECDSA key pairs, computes the node ID and checks
whether this particular ID is mapped to the desired bucket.

Current versions of Geth maintain 17 buckets and imple-
ment an IP-based restrictions such that at most 2 nodes from
the same /24 subnet can be included in the same bucket and at
most 10 nodes from the same /24 subnet can be in the whole
discovery table. With these current properties of Geth, only
two IPs from distinct /24 subnets are necessary for successfully
compromising ReadRandomNodes.

B. Exploiting the lookup-buffer

The lookup-buffer is the second source used by DEVp2p
to get potential peers to connect to. It is populated with a
Kademlia-like iterative lookup of a random target ID. To this
end, the local node sends FindNode-Requests with a random
target to those nodes from the discovery table that are closest
to that target (cf. Section III-E). From the received node set,
the 16 closest nodes are used to populate the lookup-buffer,
sorted by their distance to the target. DEVp2p then partially
fills the open outbound connections slots by going through the
lookup-buffer from the top (i.e. minimum distance).

To fill the lookup-buffer with adversarial nodes two steps are
necessary: First, an adversarial node must be queried during
the lookup-process. Second, the node IDs returned by the
adversary must be smaller than all other node IDs returned
during the lookup. The first step is always given when there
is an adversarial node in each bucket: the xor-distance is
mainly influenced by the length of the common prefix and each
bucket stores node IDs with a specific common prefix length.
Therefore, an adversarial node in each bucket ensures that the
attacker is always queried during a lookup (cf. Section V-B
for a detailed analysis).

The second step can easily be solved by generating suffi-
ciently many node IDs. Since node IDs are hashed ECDSA
keys, they are uniformly distributed over the ID-space; hence,

the more node IDs we generate, the higher the chances to
be smaller than the rest of the returned IDs. In the end, by
choosing the number of pre-computed keys high enough, it is
very likely that all of our 16 closest IDs are closer to the target
than any ID naturally occurring in the Ethereum network.

V. ANALYSIS OF THE FALSE FRIENDS ATTACK

In the following we analyze the mechanics of our false
friends attack. We compute the expected number of necessary
key pair generations and for entering every bucket and to
exploit the lookup-buffer. Furthermore, we study FindNode-
Requests in detail.

A. Entering a Bucket
Our false friend attack requires one adversarial node in each

bucket. The question arises how many key pairs we have to
generate and how much time it takes to do so.

Since SHA256 is a cryptographic hash function, we assume
node IDs to be uniformly distributed [12], i.e., each bit has a
probability of 1

2 of being 0 or 1. Therefore, each ECDSA key
pair generation with subsequent hashing corresponds to fair
coin tosses repeated independently of each other. Let N̄ be the
hashed node ID of the victim node, i.e., N̄ is fixed. Then, for
some generated hashed node ID, say h̄, the probability that the
first bit of h̄ is equal to the first bit of N̄ is 1

2 . Recall that the
log-distance metric measures the length of the common prefix
between N̄ and h̄ (cf. Section III-C). Hence, with probability
1
2 , the two hashes differ at the first bit, which corresponds to
a log-distance of 255. For subsequent buckets the concept is
similar: the probability to have a log-distance of 254 is 1

4 since
we have to be equal in the first and second bit, i.e., 1

2 ·
1
2 = 1

4 .
In summary, the probability to have a specific log-distance to
a given target hash is

p := P[log-distance(h1, h2) = i] = 2i−256. (1)

Changing perspective, we can now calculate the expected
number of necessary key pair generations to fall into a
specific bucket. Finding a key pair for a desired bucket, or
equivalently, a desired log-distance, can be modeled as a series
of independent Bernoulli trials until the first success. Each key
pair generation is a Bernoulli trial with success probability p
(from Equation (1)). Repeatedly performing Bernoulli trials
and stopping at the first success yields a geometric distribution.
Therefore, generating key pairs for a specific bucket can be
modeled as a geometric distribution, with expectation

E[# key pair generations for log-distance i] =
1

p
= 2256−i.

(2)

For example, to generate an ID with the (in Ethereum) lowest
possible log-distance of 239 one would, on average, need
217 = 131072 key pair generations and hash operations.
Generating a node ID for every bucket requires an average
number of operations of

255∑
i=239

2256−i =

17∑
i=1

= 2i = 262142. (3)



Note that these node ID generations need to be performed only
once per victim node.

B. Computing the Probability to Receive a FindNode-Request

In the following we analyze how probable it is to be asked
during a FindNode-Request round. We distinguish two cases;
first, the current implementation in Geth and second, when the
buckets would hold more than k = 16 nodes.

1) Implementation in Geth: We can assume that node IDs
are uniformly distributed in {0, 1, . . . , 2256 − 1} since they
are hashed public keys with 256 bit length. As in Kademlia,
each ID can be viewed as the leaf of a binary tree, thus,
each bucket stores node IDs from a specific sub-tree. For the
lookup-process, the victim generates a random target ID, say
D, and computes its 16 closest neighbors to D. Note, that
the number of closest neighbors that Geth computes coincides
with maximum possible number of nodes in a bucket.

“Close” is defined in terms of the simple xor-metric; for
two IDs a, b the distance is defined as d(a, b) := a⊕ b, taken
as integer. Under the xor-metric, node IDs that have a longer
common prefix D are thus considered closer than ones with a
shorter common prefix. Each bucket partitions the binary tree
of node IDs into branches by their common prefix. Therefore,
the closest neighbors to D are the ones in D’s bucket.

Recall from the previous section that we insert an adversar-
ial node ID into each bucket for our false friends attack. Hence,
searching for the 16 closest neighbors will always return at
least one attacker-controlled node ID.

2) Situation with Larger Buckets: A simple countermeasure
to the current situation in Geth is to simply increase the size of
the buckets. In the following we analyze the probability for an
attacker to receive a FindNode-Request in different scenarios.

Without loss of generality assume node IDs to be within
[0, 1], as a simplification assume them to be continuously
distributed on said interval. Let D ∈ [0, 1] be the uni-
formly random target ID chosen by the lookup-process and
Y1, . . . , YN be the IDs of honest nodes stored in the bucket of
D, say b. We consider the case N > 16.

Assume for the moment that the adversary has exactly one
node ID in b, with ID Z. Although the Y1, . . . , YN share a
common prefix, their suffix is distributed uniformly at random
because node IDs are hashes. For an attacker to receive a
FindNode-Request it suffices to be smaller (w.r.t. D) than the
17-th closest ID, i.e., the 17-th order statistic. We denote the
ordering of IDs Yi with respect to D as Y(1) <D Y(2) <D

. . . <D Y(N), where Y(1) is the node with minimum distance.
It now remains to compute the following probability:

P[Z < Y(17)]. (4)

The density of Z is fZ(z) = 1, due to its uniformity. Simi-
larly, let fY (y) denote the density of some Y . By definition of

probability and the expectation we have for any independent
Y, Z with Z ∼ U [0, 1]:

P[Z < Y ] =

∫ 1

y=0

∫ y

z=0

fZ(z)dz︸ ︷︷ ︸
=y

fY (y)dy (5)

=

∫ 1

y=0

y · fY (y)dy (6)

= E[Y ]. (7)

It is well-known that the order statistics of uniform variables
are Beta-distributed [13], i.e., Y(l) ∼ Beta(l, N + 1 − l).
Inserting that into Equation 7 we get

P[Z < Y(l)]
(7)
= E[Y(l)]

Beta distr.
=

l

N + 1
. (8)

In general, the attacker can have multiple, say a ∈ N nodes
in the bucket b. To get queried, at least one attacker ID has
to be within the closest nodes. Denote the adversarial IDs by
Z1, . . . , Za ∼ U [0, 1]. Then we obtain:

P[At least one attacker ID within k closest] (9)
= 1− P[Z1 > Y(l) ∧ Z2 > Y(l) ∧ . . . Za > Y(l)] (10)
i.i.d.
= 1− P[Z1 > Y(l)] · . . . · P[Za > Y(l)] (11)

(8)
= 1−

[
1− (

l

N + 1
)

]a
. (12)

Intuitively, the more adversarial nodes there are in bucket b, the
more unlikely it becomes not to get queried during the lookup-
process. Figure 4 shows the result of Equation (12). The
probability for the adversary to receive a FindNode-Request
is plotted over the number of adversarial nodes in bucket b.
For the number of nodes per bucket we consider three cases:

1) N = 32, double the size of current buckets.
2) N = 136, i.e., the size of a bucket corresponds to half

of the current size of the complete discovery table.
3) N = 272 which corresponds to the maximum size of the

current discovery table (17 buckets à 16 nodes each).

C. Filling the Lookup-buffer with Pre-Computed Node IDs

Recall, that in order to take over the lookup-buffer, we
identified two necessary steps: First, an adversarial node must
be queried during the lookup-process. Although this is purely
a matter of chance, we saw that the probability to get queried
is relatively high even with a small number of nodes. In a
second step, the node IDs returned by the adversary must
be smaller (with respect to the random target) than all other
node IDs returned during the lookup. Intuitively, this can
be ensured by pre-computing a large number of node IDs,
since each ID generation corresponds to a draw from the
uniform distribution. Every draw has the same probability to
be smaller than any other node ID on the Ethereum network.
Therefore, the more node IDs we generate, the more likely
this event becomes. The question that remains is the following:
how many ECDSA key pairs should an adversary generate in



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20
Number of Adversarial Nodes

Pr
ob

ab
ili

ty
to

re
ce

iv
e

a
Fi

nd
N

od
e-

R
eq

.

No. Nodes
32

136

272

Figure 4. Probability that the adversary gets queried with a FindNode-Request
for a given number of adversarial nodes in the victims discovery table.

advance in order to almost always return the smallest node
ID?

To model this scenario, assume all other nodes already
replied to the FindNode-Request with target D, which yields
node IDs (sorted w.l.o.g) 0 ≤ x1, < x2 . . . < xm ≤ 1. 6 Each
node ID induces two intervals around itself on the space of
possible node IDs:

[0, x1), (x1, x2), (x2, x3), . . . , (xm, 1]. (13)

For a new node ID to be the minimum, it has to fall into
the first interval and only the first interval. Each interval is
equally likely to occur, because the likelihood of falling into
an interval only depends on its size when sampling from a
uniform distribution. Since the existing node IDs x1, . . . , xm

are uniformly distributed themselves, the intervals have, on
average, the same size.

Let Y ∼ U [0, 1] represent a node ID generation. There are
m + 1 intervals, the chances of falling into the first interval
(i.e., having the minimum node ID) by uniform sampling is

P[Y <D min{X1, . . . , Xm}] =
1

m + 1
. (14)

In other words, every generated node ID has a chance
of p := 1

m+1 of being the minimum node ID. Therefore,
repeating the process of generating node IDs again yields a
Bernoulli trial with success probability p.

In reality, we do not know the other node IDs before
we start generating our own, meaning that whether a draw
was successful cannot be determined. Instead, an adversary
pre-computes a large number of IDs and simply returns the
smallest ones with respect to the random target, if she receives
a FindNode-Request. Still, we can bound the probability that
at least one of our draws is smaller than the minimum returned
by the honest nodes. Let there be m node IDs in the Ethereum

6Technically, the sorting is w.r.t. to <D . The xor-operation only induces
a permutation of the xi, preserving the uniform distribution. We therefore
purposely omit the xor-operation for the ease of understanding.
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Figure 5. Probability that the lowest node ID is returned, depending on the
number of honest nodes in the network.

network and n pre-computed node IDs by the adversary.
For convenience, we define Ymin := min{Y1, . . . , Yn} and
Xmin := min{X1, . . . , Xm}.

P[Ymin <D Xmin] = 1− (1− 1

m + 1
)n (15)

Naturally, this is a lower bound on the probability, since a
lookup normally does not yield the minimum node ID of
the complete Ethereum network. The resulting probability is
depicted in Figure 5 for different choices of n, the number of
node IDs in the network. It can be seen that the more honest
nodes there are, the smaller the probability for an adversary
to have the minimal node ID becomes.

Note that we have to distinguish between node IDs in
the discovery table and actual nodes on the main Ethereum
network. The Ethereum protocol is running concurrently with
other protocols on the same communication channels and
packet structures; therefore the number of node IDs is ten
times larger than the number of Ethereum nodes at roughly
3 · 106 node IDs [8]. In case of returning the smallest ID for
a FindNode-Request, this behavior slightly raises the bar for
an attacker.

The red and green lines depict a situation where every
node ID would correspond to an actual node on the Ethereum
network. The red line shows the probability for n = 9000
nodes, as reported by Ethernode7. The green line corresponds
to n = 25000 nodes in the network, the sum of all approaches
discussed in [8]. The blue line corresponds to an upper bound
on the number of node IDs of n = 5 · 105 nodes. In all cases,
however, 5 · 106 pre-computed ECDSA key-pairs are enough
to return the minimal node ID almost certainly.

VI. EVALUATION

We evaluated the previously described concepts using a
victim node deployed specifically for this task. The victim

7https://www.ethernodes.org/network/1

https://www.ethernodes.org/network/1
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for 100 runs.

had the latest Geth version from github (v1.8.20) and was
connected to the Ethereum main network.

A. Pre-Computing Node IDs

The generation of node IDs is essential for placing a node in
each bucket and to ensure that the lowest ID is returned during
the lookup-process. Therefore, we measured the calculation
time for new ECDSA key pairs and the corresponding hashes.
Our measurements were conducted on a system with an
Intel R© CoreTM i5-6600K processor with four logical cores.
The results depicted in Figure 6 show that, on average, 35000
ECDSA keys and corresponding hashes can be generated
per second when using four parallel threads. Generating a
node ID to enter bucket number 239 (the smallest bucket)
would therefore only take 7.5 s on average. For the real-world
implementation of the attack, we pre-computed 5·106 node IDs
to hijack the lookup-buffer. Computing this many IDs takes
roughly 2.5 min using four parallel threads and 11 min with a
single thread. Note that even when attacking different victim
nodes this computation has to be performed only once, since
the target of a lookup is random and does not depend on any
victim-specific information.

B. Attack Implementation

First, to compare the performance of the attack to [6], we
repeatedly attacked a recently restarted victim. Recall that we
do not necessarily require that the victim is restarted, since
our attack relies on high peer churn. The reliance on churn
implies a delay, as previously established connections must be
terminated before their slots can be occupied by an adversary.
However, the waiting time is small for recently restarted nodes.

The attack was started immediately after the victim node
became online. No connection slot was yet occupied, but
the neighbor table always contained benign nodes, due to
countermeasures introduced in [6]. We measured the time
until every slot was filled with an attacker-controlled node,
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Figure 7. Log-scale box plot of attack durations when attacking a recently
started victim. The plot depicts the median duration as well as the upper and
lower quartile and all outliers outside 1.5 times the interquartile range.

with a cutoff timeout of 24 h after which the experiment was
restarted. One could argue that also in unsuccessful attempts,
the victim would eventually have been eclipsed. The attack
was repeated 50 times, out of which 45 times were successful
within the cutoff timeout, whereas 5 attempts did not complete
in that time. Figure 7 shows the results in a log-scale box plot.
The box depicts the upper and lower quartile of measured
durations, the median is indicated as a solid line inside the
box. Measurements outside 1.5 times the interquartile range
are considered as outliers, plotted as dots.

It can be seen that out of the 45 successful attacks 75 %
completed in just over 60 min, indicating that an adversary
can eclipse recently restarted nodes within a reasonable time
span. This finding implies that peer churn in the neighbor table
and in the peer management is high in recently restarted nodes.

C. Distribution of Connection Durations

Since recently restarted nodes exhibit low-duration connec-
tions and high churn, the question arises if the same behavior
is true for long-running nodes, i.e., how connection durations
are distributed. To this end, we ran a unaltered Geth node
for 18.76 d (450 hours) and logged the duration of every
connection. The results are depicted in Figure 8, showing the
cumulative distribution of durations in the trace. To improve
the readability of the Figure, we excluded connections with
a duration shorter than 60 s, which were 90.26 % of all
connections, yielding a total of 361 connections8.

8 We suspect the heterogeneity of the discovery table as the major cause for
the abundance of connections shorter than 60 s [8]. Ethereum is embedded
in a family of protocols (Section II), all of which use the same ports and
message structures. Kim et al. [8] report that only 10% of node IDs in
the discovery table correspond to peers speaking the Ethereum protocol, out
of which only 50% operate on the Ethereum main network. Hence, in the
majority of situations DEVp2p tries to establish connections to peers which
are not useful and immediately discards them again.



95% quantile0.00

0.25

0.50

0.75

1.00

0 5 10 15
Duration [day]

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Figure 8. Cumulative distribution of durations in the trace. 95% of the
considered durations where shorter than 5.5d.

It can be seen in Figure 8 that the longest connection
duration was 60 d, but the majority of connections was much
shorter lived. The quantile shows that 95 % of the considered
connections were shorter than 5.5 d; only 18 connections
where longer than this duration. Though the peer churn is
lower than in a restarted node, it is still surprisingly high for
which we have several conjectures: Geth’s development cycle
is fast and requires frequent updates, either due to security
fixes or protocol changes. Additionally, read (write) timeouts
of 20 s (30 s) on the TCP-level are relatively small compared
to other networks like Bitcoin. On the UDP-level, timeouts
are currently set at 500 ms, while [14] report average inter-
node latencies of roughly 180 ms, with 10 % of peers having
a latency higher than 276 ms. Consequently, buckets in the
discovery table experience a high level of churn, making it
easy to enter even fully filled ones.

Given that most connections on the Ethereum network are
rather short-lived, we conducted a proof-of-concept attack
without restarting the victim. We let the victim node run
without any attack activity for 72 hours to populate the
discovery table, mimicking a more realistic network state. In
our experiment the false friends attack was successful after
4.765 d (114.4 hours). 9

VII. COUNTERMEASURES

Several modifications to Geth are conceivable, some quickly
realizable and some more fundamental, to counteract the false
friends eclipse. In the following we propose several coun-
termeasures and subsequently describe the ones that where
implemented in Geth.

A. Proposed Countermeasures

First, we focus on quickly realizable modifications that
would immediately increase the cost of a successful false

9In two subsequent experiments, the victim was left with only one benign
connection after 4.875d and 9.5d, respectively (i.e., the node was only one
connection away from being fully eclipsed).

friends eclipse. One possibility are more stringent IP subnet
restrictions in the discovery table and on the DEVp2p connec-
tion layer. While increasing the bucket size is not promising
(cf. Section V-B), enforcing any subnet restriction on the
replies of FindNode-Requests would increase the number of
unique IP adresses necessary for a successful attack. Another
low-invasive countermeasure is to consider all known nodes
in ReadRandomNodes, instead of only the heads of each
bucket. Furthermore, we are only able to perform our attack
without requiring a restart of the victim node because peer-
ing relationships in Ethereum are currently very short-lived.
Increasing timeouts on both the TCP- and UDP-level could
decrease this volatility.

On a more fundamental level, we argue that the complexity
of Geth’s current node selection logic is a major enabler for
attacks such as [6] and our false friends attack. New peers
are chosen based on their node ID, which arguably does
not make any sense if the goal of the resulting overlay is
flooding identical information to all nodes (in contrast to ID-
based routing). Node IDs are, however, trivially manipulat-
able by adversaries to optimize the placement of adversary
nodes in peer discovery tables. The complexities of ID-based
peer selection are therefore not only unnecessary, but also
detrimental to security. For a sustainable, long-term fix we
strongly suggest to ignore node IDs for all aspects of peer
discovery for the Ethereum protocol. Instead, peering decisions
should be weighted by more expensive-to-manipulate node
characteristics, such as IP addresses or, perhaps, publicly
locked Ether stake linked to individual nodes.

Decades of research on Sybil-attacks in peer-to-peer-
networks [9] suggest that in a completely trustless setting it is
only viable to make the creation of a multitude of adversarial
nodes expensive, not impossible. The implications of this are
twofold. First, in the typical blockchain scenario one honest
node is sufficient to prevent an eclipse attack. Therefore, the
probability of filling the whole peer list with adversarial nodes
must be minimized by means that are robust to a potentially
substantial population of Sybil nodes. We suggest that a
promising approach for achieving this is a combination of
maintaining a large peer set and using a node selection process
which as closely as possible resembles a uniform draw from
the set of all network nodes. For example, Geth’s complex
Kademlia-inspired bucket structure and discovery logic can be
replaced with a single data structure holding a large number of
nodes (peer candidates) from which peers are drawn uniformly
at random. Second, nodes that are profitable targets for Eclipse
attacks (high-profile merchants, miners) should not rely on
a purely trustless node selection logic. Instead, these nodes
should statically include known and trusted nodes into their
peer list, as seems to be practice in the Bitcoin network [1]. In
other words, potentially attractive targets might want to invest
manual effort to choose their friends wisely.



B. Implemented Countermeasures

In response to our responsible disclosure and subsequent
discussions10 the Ethereum developers implemented several
low-invasive countermeasures that have been incorporated into
the 1.9.0-release of Geth. These changes mitigate the immedi-
ate threat of false friends eclipse attacks and raise the bar for
an attacker by requiring an increased number of Sybil nodes
to carry out an attack. Admittedly, we still strongly suggest
to fade out the structured Kademlia-based discovery for a less
structured approach, e.g., the addrman used in Bitcoin.

1) Raising the Number of Connections to 50: Pre Geth
v1.9.0, each node established a total of 25 connections by
default, 8 of which are outbound and 17 are inbound. The
number of outbound connections in Geth is defined as

# of outbound = bmax peers
3

c = b25

3
c = 8.

The total number of connections a Geth node establishes has
been double from 25 to 50, effectively doubling the number
of outbound connections as well. Therefore, an adversary
would require more resources to successfully eclipse a victim.
Furthermore, since the false friends eclipse is only successful
when existing connections to honest nodes are dropped, the
increased limit raises the chances of maintaining a long-lived
connection to an honest node, thwarting the eclipse as long as
these connections are sustained.

2) ReadRandomNodes Considers All Nodes: The func-
tion ReadRandomNodes now selects nodes uniformly at
random from the set of all nodes in the table, instead of just
the bucket heads. An adversary would have to overtake the
whole table to deterministically ensure that only adversarial
nodes are returned. However, the maximum number of nodes
in the table is relatively small: 17 buckets with a maximum
of 16 nodes, i.e., 272 possible nodes in total. Assuming 18
adversarial nodes as used throughout this paper, the chances
of selection an attacker-node at random are 18

272 ≈ 7%. In
practice, having a full table is very unlikely, due to Kademlias
distance metric: the size of the potential node-set of each
bucket decreases exponentially. While the first buckets are
always filled, the later ones tend to be almost empty most of
the time. Marcus et al. [6] report an average table population
of 168 nodes, therefore increasing the chances of randomly
selecting an adversarial node to ≈ 11%.

We argue that while selecting peers uniformly at random is
a desirable strategy with respect to robustness, the node set
from which peers are drawn should be sufficiently large.

3) Throttle Inbound Connection Attempts: A major facil-
itator of our false friends eclipse is the ability to establish
inbound connections from the same IP address. All inbound
connection slots could be filled during our evaluation by
running just one server. Since IP addresses are the most
costly part in such an attack (in comparison to memory or
computational power), increasing the necessary number of
addresses to fill inbound connection slots is vital to raise the
bar for an attacker.

10We want to thank Felix Lange for his time and the fruitful discussions.

Since Geth v1.9.0, inbound connection attempts from the
same IP now have to wait 30 s. While this is a first step in
raising the bar for an attacker, we argue that this is not enough.
Additional subnet restrictions on inbound connections (e.g.,
only 2 IPs from the same /24 subnet) are an effective and
low-invasive way of making an eclipse more difficult.

4) Unchanged: The lookup-buffer: A major component of
our false friends attack is the exploitation of the lookup
buffer (cf. section IV-B). With one adversarial node in each
bucket (which is still possible) and a sufficiently large number
of pre-computed node IDs, an adversary can still ensure
that the lookup-buffer is filled with adversarial nodes. Since
ReadRandomNodes cannot be exploited without a signifi-
cant resource-investment, a compromised lookup-buffer does
not pose an immediate threat. However, we strongly suggest
to enforce subnet restrictions or ignoring the lookup-buffer
completely for peer-selection 11.

VIII. RELATED WORK

The literature on security considerations in peer-to-peer
networks in general and Kademlia-based networks in particular
is vast; in the following we focus on research most closely
related to our attack instead of providing a broad overview.

A. Attacks and Countermeasures in Overlay Networks

Singh et al. [15], Castro et al. [16], and Sit et al. [17] survey
eclipse attacks and countermeasures on peer-to-peer overlay
networks. Similar to our reasoning, [15], [16] conjecture that
Sybil attacks cannot be solved in a purely peer-to-peer fashion.
As a remedy, they propose a central trusted certificate authority
to bind node IDs to identities which subsequently enables
the implementation of countermeasures not possible in purely
trustless systems. A decentralized mitigation is proposed and
thoroughly analyzed in [18], which is based on purposely
letting lookups diverge, so that an adversary cannot easily
eclipse a target by poisoning its logical proximity.

B. Attacks on Kademlia-based networks

The security Kademlia [7] and its inspired implementations
have been studied extensively [10], [19]–[21]. Steiner et al.
[19] explore the space of possible attacks and implications
whereas subsequent works focus on optimizations of these
attacks [10], [21] and circumventing implemented countermea-
sures [20]. Most approaches require the ability to arbitrarily
choose node IDs. Similar to our false friend attack where
we insert carefully selected node IDs into the victim’s dis-
covery table, [21] present a low-resource approach to poison
routing entries in the KAD network. Given multiple attacking
nodes, the ID space is partitioned and routing entries hijacked
by spoofing messages. In Ethereum, message spoofing and
arbitrary node ID choice are impossible, making our attack
conceptually different, though closely related to previous at-
tacks on the KAD network. Most notably, [10] also conjecture
that a purely trustless countermeasure cannot exist, due to the
fundamental problem of Sybil identities [9].

11These things will potentially be addressed in future releases of Geth.



C. Eclipse Attacks in Blockchain Systems

Heilman et al. [1] were the first to study eclipse attacks on
peer-to-peer Blockchain-systems, in particular Bitcoin. Despite
the introduced countermeasures, eclipse attacks are still pos-
sible when exploiting BGP [22]. For Ethereum, [23] describe
an attack on the block synchronization mechanism. When an
Ethereum peer misses a block, it will start a synchronization
with exactly one neighboring peer. An adversary can leverage
this behavior to indefinitely stall the synchronization or inject
an adversarial chain of blocks.

As noted throughout this paper, several eclipse attacks on
Ethereum are described in [6]. Our approach differs since we
do not fill the complete table with adversarial nodes instead
insert node IDs with specific properties.

IX. CONCLUSION

We presented the false friends attack, an eclipse attack
applicable to current versions of Geth, the by far most popular
Ethereum node software. Our attack requires only 2 IPs from
distinct /24 subnets to be successful. Moreover, and in contrast
to previous attacks, it can be successfully mounted without
assuming that the victim node reboots at some point. Empirical
measurements of our attack in the live Ethereum mainnet
indicate that even without a restart of the victim node, a
false friends eclipse can be completed in a matter of days.
Our discovery is even more striking when considering that
countermeasures against similar attacks were only recently
introduced to the Geth codebase. We argue that the ongoing
vulnerability of Geth is at least partly due to a fundamentally
unsuited node discovery approach. While we propose both
short- and long-term countermeasures to the false friends
attack, existing literature hints that in a completely trustless
setting, eclipse attacks can only be made expensive, not
impossible. Potentially attractive targets might wish to invest
manual effort towards choosing their friends wisely.
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