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Abstract—The increasing demand for smart context-aware
services and the widespread use of location-based services
(LBS) have resulted in the proliferation of mobile devices
equipped with geolocation sensors (including GPS, geo-
magnetic field sensor, accelerometer, proximity sensor, et
cetera). As a result, service providers and telecommunica-
tions companies can collect massive mobility datasets, often
for millions of subscribers. To provide a degree of privacy,
dataset owners normally replace personal identifiers such
as name, address, and social security number (SSN) with
pseudorandom identifiers prior to publication or sale. How-
ever, it has been repeatedly shown how sensitive information
can be easily extracted or inferred from individuals’ mobility
data even when personal identifiers are removed. Knowledge
of the extent to which location data can be de-anonymized
is therefore crucial, in order to design appropriate privacy
mechanisms that can prevent re-identification.

In this paper, we propose and implement two novel and
highly effective de-anonymization techniques: the Forward,
and the KL algorithms. Our work utilizes a hidden Markov
model (which incorporates spatio-temporal trajectories) in
a novel way to generate user mobility profiles for target
users. Using a real-world reference dataset containing mo-
bility trajectories from the city of Shanghai (GeoLife, a
reference dataset also used in previous studies), we evaluate
the robustness of the proposed attack techniques. The results
show that our attack techniques successfully re-identify up
to 85% anonymized users. This significantly exceeds cur-
rent comparable de-anonymization techniques, which have
a success rate of 40% to 45%.

Index Terms—Location privacy, De-anonymization, DB-
SCAN Clustering, Hidden Markov model

1. Introduction

The widespread adoption of smart devices equipped
with geolocation sensors has led to the increased avail-
ability and use of location-based services (LBS). Such
services enable service providers (SP) and telecommuni-
cation companies to collect large mobility datasets, often
spanning millions of users who subscribe to these ser-
vices. These mobility datasets are particularly valuable, as
they can be used for urban planning, traffic forecasting,
network optimization, targeted advertising, and a variety
of other purposes, including contact tracing in the recent

Covid-19 pandemic [1], [2]. Service providers have there-
fore an incentive in publishing or selling such datasets.
A 2020 Grand View Research report on the market for
personal location dataset estimates the market value at
USD 10.6 billion in 2019, and predicts an annual growth
rate of 15.2% over the forecast period (2020-27) [3]. The
growth of open data policies across the world has also led
to an increase in the freely available mobility datasets [4].

Due to privacy concerns regarding sensitive infor-
mation that can be extracted from individuals’ mobility
data in published datasets, owners of mobility dataset
are often required to replace personal identifiers such as
name, address, and social security numbers (SSN) with
pseudorandom identifiers to make the dataset (pseudo)
anonymous. However, privacy risks still exists even if per-
sonal identifiers are removed before the mobility dataset is
published or sold, and a large body of research has demon-
strated that personal data of individuals is still at risk of
exposure, even if their personal identifiers are removed
[5]. For example, the analysis of places and geographical
areas that are frequently visited by pseudonymous indi-
viduals in a dataset (areas of interest) can reveal their
home, workplace, and place of worship [5]. Moreover,
side information such as social networks geo-tagged posts
(on platforms such as Twitter and Instagram), and publicly
available mobility trajectories databases can easily be used
to de-anonymize individuals whose data is included in
the mobility dataset [6]. This is true even in the case
of very large scale datasets: the work of Kondor et al.
[7] presented a large-scale re-identification attack using
mobile networks and transportation card usage, achieving
a success rate of about 55% over four weeks of activities.
Recent work by Farzanehfar et al. [8] confirms that the
threat of re-identification persists even in a country-scale
mobility dataset.

Even without secondary information, depending on
how the personal identifiers are removed or how the
dataset is sanitized, retrieving the auxiliary information
from the same target dataset is sometimes feasible. This
was illustrated in the work of De Montjoye et al. [9],
who mined anonymized users’ mobility records to uncover
mobility patterns associated with the individuals in the
target dataset. Another technique uses the home/work
locations couple as a quasi-identifier to re-identify the
users in the anonymized mobility dataset [5].

Given the various re-identification attacks proposed
in the relevant literature, it is difficult to estimate the



actual level of privacy (if any) achieved by anonymizing
a dataset. For this purpose, Shokri et al. [10] developed a
framework for quantifying location privacy. Their works
address the difficulties inherent in comparing various lo-
cation privacy protection mechanisms (LPPMs) due to the
lack of a systematic process.The work of Wang et al. [11]
makes a case for a performance mismatch between algo-
rithms and theoretical privacy bound. They ascribed the
discrepancy to an underestimation of the impact of spatial-
temporal data from a variety of sources. The performance
of these algorithms was evaluated using two real-world
datasets and then proposed algorithms to improve the
performance.

Most de-anonymization attacks on geo-located
databases, including those discussed previously, usually
consider the user’s temporal or spatial mobility trajectories
(or both) in de-anonymizing or inferring sensitive
information from the target database. These attacks are
generally categorized as either linkage attacks or inference
attacks. In the former, separate user accounts that belong
to the same individual but are either anonymous or under
different usernames are re-linked through data analysis. In
the latter, an adversary tries to reveal personal identifiers
or sensitive information of anonymized records in a
target database using secondary information (auxiliary
information) different from the target database or hidden
values from the same target database.

In general, to carry out a de-anonymization attack,
one must first decide on the most appropriate strategy
for gathering background information on the target in-
dividuals (user fingerprinting) in the target database. The
adversary then decides on the type of de-anonymization
technique (for example, feature matching, graph-based,
mobility models matching, statistical matching, etc.) that
best suits the background knowledge modelled after the
user fingerprinting. Finally, the de-anonymization attack
is performed using the choosen de-anonymization tech-
nique. The success rates of these techniques are normally
quantifiable and, as discussed in [12], the combination
of the type of attack technique chosen and the back-
ground knowledge has an impact on the success of the
de-anonymization attack.

Among the various de-anonymization techniques that
have been presented in the research literature, a number
are based on the hidden Markov model (HMM), a statis-
tical approach that is frequently used in linear sequence
‘labeling’ problems [13]. In the context of location, the
HMM approach has proved effective in extracting hidden
information from complex trajectories [11], [14]. Gener-
ally, modelling HMM to build background knowledge on
the target database mainly involves two phases. First, is
the use of a clustering algorithm to identify the areas of
interest to feed into the model. For instance, if the areas
of interest represents the hidden states, identifying them
from the raw mobility dataset usually requires a cluster-
ing algorithm (such as K-Means, DBSCAN, Hierarchical,
etc.). In line with this, the Density-based spatial clustering
of applications with noise (DBSCAN) algorithm is used in
this work. The second phase is to compute the transition
probabilities based upon the hidden states transitions, and
the emission probabilities using the observation sequence.

A successful de-anonymization threat usually leads to
identity disclosure, linking two or more de-anonymized

accounts of different networks to the same user and
disclosure of sensitive information such as an address,
email, SSN etc. [15] identifies and classifies the above
three primary threats emanating from a successful de-
anonymization attack, and names them content (disclosure
of sensitive data inferred from the location), linkage and
identity (full re-identification of the user).

1.1. Contribution

In this work, we propose two novel Hidden Markov
Model-based attacks that take into account both the tem-
poral and spatial influences on user mobility trajectories.
Our model, in particular, provides initial predictions about
the user’s regions of interest and, based on these predic-
tions, constructs a hidden Markov model that output the
probabilities of a user visiting any of these areas of interest
for some observed given days of the week. Together, this
process sums up the user’s profile (which we describe as
user fingerprinting) to re-identify the target individuals.
Based on this user profiling, we propose and implement
two de-anonymization attack mechanisms: the Forward
algorithm and a divergence measure algorithm (based on
the Kullback-Leibler divergence).

Finally, we evaluate the performance of the de-
anonymization algorithms using real-world mobility traces
from publicly available dataset (GeoLife [16]. Experi-
mental results show that our proposed de-anonymization
algorithms achieve a re-identification success rate (over
80%) that is significantly higher than those achieved by
comparable studies, over the same dataset.

2. Preliminaries

This section presents preliminary information that is
useful in the understanding of the remainder of the paper.
In particular, we present the main techniques that are used
as a basis for the construction of the novel de-anonymizers
proposed in this work.

Two main techniques are used in this paper for build-
ing the mobility behaviour model of users: DBSCAN
(presented in Section 2.1) and HMM (Section 2.2). In
particular, the DBSCAN, a clustering algorithm, is used to
cluster each individual’s areas of interest. In other words,
it is an unsupervised learning problem in which we seek
to discover some structures (interesting locations) in an
unlabeled dataset. The hidden Markov model (HMM) is
a statistical model whose ability to modelled data without
prior knowledge of the hidden states makes it useful in
a variety of settings. It is used in this work to model the
mobility behaviour of each user considering the days of
the week and areas of interest predicted by the DBSCAN.
Thus, these two techniques are combined to understand
mobility behaviour for each user in the dataset.

The term de-anonymization is sometimes referred to
as re-identification. Throughout this paper, both terms may
be used interchangeably.

2.1. The DBSCAN

The Density-based spatial clustering of applications
with noise (DBSCAN) is a well-known algorithm in data



TABLE 1: Notation: acronyms and symbols

Symbol Meaning

N the total number of states
n the total number of users
π initial probability distribution over all states
∇ area of Interest or states
δ the days observation sequence of size T
βi,j the emission probabilities of moving to state ∇i of

type δj
γ the transition probability matrix with members rep-

resented as γij
T maximum size of observation sequence

mining [17]. The main idea is to use a distance and points
threshold input to group data points closer together as a
cluster. It excels at detecting data patterns and can easily
differentiate dense clusters from low clusters. Moreover,
the DBSCAN can form clusters of varying shapes and is
very robust to outliers and noise. Its robustness to outliers
makes it applicable to mobility datasets, as they generally
have many outliers and noise. The DBSCAN algorithm
has two main parameters input:

• Epsilon(eps)- It defines the radius distance between
two data points. Thus, the distance between two
points less than or equal to eps belongs to the same
cluster.

• minPoints- This input defines the minimum number
of data points that can form a cluster.

After eps and minPoints are determined (supplied by the
user), the algorithm randomly picks a starting point by
creating a circle (using eps). Following that, a distance
measurement is used to determine the distance between
two data points (for example, the Euclidean distance).
The starting points are then categorized as core points
(greater than minPoints), Border points (contains at least
one data point but less than minPoints) and finally noise
(has zero data points within epsilon distance). The clusters
are finally computed using the concept of reachability
(within epsilon distance ) and connectivity (defines if two
pints belongs to the same cluster). For a full explanation
of DBSCAN, we refer the reader to [17]

2.2. Hidden Markov Model (HMM)

A hidden Markov model is a statistical tool used in
modelling sequential observations (visible) that probabilis-
tically depend on a hidden sequence of events (hidden
states). Our work considers both the spatial (areas of
interest, or AoI) as well as temporal (days of the week)
factors in the formation of these clusters. We propose
a hidden Markov model [18], [19] to define a user’s
underlying AoI (e.g. home, place of work or worship etc.)
by observing the sequences of days of the week. This
allows us to build a mobility profile for each anonymous
user to aid us in de-anonymizing them.

3. Hidden Markov Model (HMM) for loca-
tion trajectories

In order to model trajectories, in this work we for-
mally parameterize a hidden Markov model as HMM =
{N,Ω, γ, β, π}, where:

• N , is the number of states (∇). The states represent
the area of interest (AoI) visited by the user on
any particular day as identified by the clustering
algorithm (based on the assigned parameters) used.
The area of interest (hidden states) is basically where
a user frequently visits and spends considerable time.
Such places, typically generated using a clustering
algorithm, are usually sensitive, and the user may
not wish to disclose them. These locations include
but are not limited to one’s home, work, place of
worship, and shopping centre. The place of visits
or area of interest together makes up the state set;
∇ = {∇1,∇2, · · · ,∇N}.

• Ω, is the number of distinct symbols observed. For
example, the observed symbols in this work are
the set of distinct days (δ) of the week. Thus, the
maximum number of Ω is 7. These observations are
captured when the user visits any of these states.
Hence, if a user visits more than one area of interest
(state) on a particular day, say Tuesday, then this day
would be recorded multiple times in line with the
number of states visited. The sequence of observation
symbols, δ1 · · · δT , has a maximum size of T.

• γ, is an N × N transition probability matrix with
members represented as γij . It basically represents
the probability distribution of transiting from one
area of interest (state) to the other. Each member γij
is the probability of moving from state ∇i to state
∇j , i.e., the number of times a user moves from state
∇i to state ∇j over the number of times a user moves
from state ∇i. We formally define γij as:

γi,j =
σ(i, j)∑N−1

j=0 σ(i, j)

where σ(i, j) is the number of transitions from state
(∇i) to state ∇j such that

∑
j γi,j = 1 ∀ i.

• β, is the emission probabilities with members rep-
resented as βi,j , which is an N × Ω matrix. It is
the probability of a given state (∇) generating a
particular observation symbol (δ). That is the prob-
ability that a user visited an area of interest (∇) on
a particular day (δ).

βi,j =
τ(i, j)∑Ω−1

j=0 τ(i, j)
, where 1 ≤ i ≤ N

1 ≤ j ≤ Ω

τ(i, j) is the number of times a user visits an
area of interest (∇i) on a given day (δj), also∑

j βi,j = 1 ∀ i

• π, is the initial probability distribution over all states
(∇), where

πi =
σi∑N−1

j=0 σj

, and 1 ≤ i ≤ N

where σi is the total number of times, a user first
start from a state (∇i) or a place of interest (AoI)
for all given days.

4. Experimental Setup and Pre-processing
In preparing the target dataset for profiling of users,

we sort the dataset by the number of days spent by each



user and divide it into two non-overlapping datasets: the
training dataset, which accounts for approximately 80%
of the total ground-truth dataset, and the auxiliary dataset
(testing dataset), which accounts for the remaining 20%.
This is in deviation from other setups in the literature
[5], [20], where the testing dataset is not disjoint from the
training dataset (and in fact is a subset of it). As argued in
[21], this leads to a testing dataset that is heavily biased,
and to artificially high de-anonymization results. Similarly
to [21], our dataset is instead non-overlapping (trained and
testing datasets are disjoint) to avoid bias. Unlike [21],
however, where the dataset was split into two halves, one
for training and one for testing, in this work the former
makes up the bigger (80%) portion of the dataset. This, in
a real-world scenario, would constitute anonymous users
mobility datasets published by a service provider. The
testing dataset is the adversary knowledge of a known user
mobility traces, which should constitute a small fraction
of the published mobility dataset and not necessarily be
the same as the published datasets. The assumption is that,
the adversary may only gain limited knowledge about the
mobility behaviour of the target user.

Furthermore, for each user in the anonymous dataset
(training datasets), a clustering algorithm is used to group
each user’s mobility traces (longitude and latitude) into
clusters (Area of Interest, or AoI). The number of clusters
(AoI) output depends on the clustering algorithm and the
temporal and spatial resolution of the raw mobility traces.
For instance, selecting smaller values for the selected
clustering algorithm parameters may return more areas of
interest (states) per user, which, in effect, may impact the
success of de-anonymization.

These clusters (AoI), generated by the clustering al-
gorithm, acts as the hidden states in the HMM as de-
fined in Section 3. Generally, these clusters or areas of
interest contain sensitive information (like home, place
of work, place of worship, the type of health facility the
user usually visits, etc.) that the adversary is likely to
discover for each anonymous user in the target database
(training dataset). Figure 1 depicts an example of a user
whose mobility trajectories are classified into five clusters
(areas) by the clustering algorithm, with the black points
representing noise (outliers). The user in the picture is part
the GeoLife dataset, described in Section 6.1. The specific
days of the week during which users entered these clusters
(areas of interest) represent the observational sequence
used to learn about these areas of interest (clusters).

Then, using the HMM algorithm, we create a profile
of each anonymous user’s mobility traces (Markov model)
from the training data. These profiles act as the fingerprint
or unique identifier (trajectory model) for each anonymous
user in the target database. An adversary can then easily
associate one of these profiles with a target user whose
identity and a limited set of spatiotemporal trajectories
(testing dataset) are known to the adversary.

To speed up the re-identification process, we created
a database (Λ) to hold the model (λ) of each anonymous
user such that: Λ = {λj}nj=1, where λj = {N,Ω, γ, β, π}
is the model parameters for each anonymous user, and
n is the total number of anonymous users. The database
(Λ) is updated each time the temporal and spatial resolu-
tions are modified. Depending on the selected resolution
parameters, the clustering algorithm may identify more or

fewer areas of interest and accordingly affect the overall
computation of the model parameters (N,Ω, γ, β, π) and
consequently affect the re-identification process. The ef-
fect of this modification is illustrated in the analysis in
Section 6.2

The testing data, which is just a fraction of the training
dataset, is assumed to be the auxiliary knowledge (Spatio-
temporal points) the adversary has about the target user,
and wants to link to one of the anonymous users in the
target database (training dataset). These spatiotemporal
datasets (testing dataset) in the sense of auxiliary informa-
tion is similar in granularity to that of the target database
(training dataset) but not a subset of the target database.
Thus, the adversary knows the target user but owns very
limited Spatio-temporal trajectories (testing dataset) about
this user and wants to link this auxiliary information to
one of the anonymous users in the database. Though
these users in the target database are unknown, their
Markov mobility patterns containing sensitive information
are known to the adversary.

For this analysis, and in order to be able to quantify
the success rate, we assume the number of users in both
the training and testing datasets is equal. Although this
may not be the case in a real-world scenario, where the
adversary is likely to have just a fraction of the number
of people published in the target dataset (training dataset),
this is a common approach in the literature. For this
reason, let λ⋆ be the model (built from the auxiliary
knowledge) for the target user the adversary knows about.
This would be needed in performing the re-identification
attack. A preprocessing such as encoding the user’s obser-
vational sequences (δ1 · · · δT ) is performed before feeding
the testing dataset into the de-anonymizing algorithm. This
helps the model to understand better to assign a weight
to the dataset correctly. Depending on the selected de-
anonymizing algorithm and the dataset in question, the
testing data is tuned by modifying the Spatio-temporal
resolutions (in some cases, a new model is built on the
testing data) before performing the re-identification attack.

5. De-anonymizers

In this section, two de-anonymization attack tech-
niques (de-anonymizers) are presented: the Forward algo-
rithm and a Kullback-Leibler divergence-based algorithm.
The Forward algorithm is presented in Section 5.2. As it
relies on the likelihood estimator by generating sequence
of conditional probabilities in computing the likelihood,
we also present the likelihood estimator in Section 5.1.
The Kullback-Leibler divergence-based algorithm (Sec-
tion 5.3), on the other hand, relies on the divergence
between the two probabilistic distributions by quantifying
their distance. Both techniques allow to re-identify users in
the target dataset: experimental results of their application
to two real-world datasets are discussed in Section 6.

5.1. Likelihood

One of the problems a hidden Markov model can
solve in a real-world scenario is the probability for an
observation sequence of size T (assumed to be generated
by N-states) to belong to the model, or for the model
results in such an observation sequence, i.e., P (δ|λ). The
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Figure 1: The spatial representation of the movements of
a user in the GeoLife dataset: 5 areas of interest (clusters)
are recognized, with black points being noise. Where an
area is not connected to the rest of the graph, this could
indicate that the location is reached via means that prevent
GPS signal from being received (for instance, underground
metro, or a tunnel).

intuition behind the likelihood score is that if a model
(λ) is built based on observation sequence; δ = δ1 · · · δT
(from the target database) similar to the one created by an
individual (target user), this should result in a higher like-
lihood score, P (δ|λ). Ideally, computing the probability
of such an observation sequence δ = δ1 · · · δT can occur
when we know the states sequence ∇ = ∇1 · · · ∇T . Thus
computing the probability of the observational sequence
considering all possible states sequence is given by:

P (δ|∇, λ) =

T∏
t=1

P (δt|∇t, λ)

= β1(δ1) · β2(δ2) · · ·βT (δT )

(1)

Moreover, the probability of states sequence given the
model is:

P (∇|λ) = π1 · γ12 · γ21 · · · γT−1T (2)

Hence the joint probability of being in a state (∇) of
a specific type of observation is given by:

P (δ,∇) = P (δ|∇)P (∇) (3)

Therefore, the probability of the observation sequence
assumed to be generated by the T states sequence is by
summing the joint probability over all possible hidden
states:

P (δ) =
∑
∇T

P (δ,∇) =
∑
∇T

P (δ|∇)P (∇) (4)

With the given model λ, the observational sequence
probability becomes:

P (δ|λ) =
∑
∇T

P (δ|∇, λ)P (∇|λ)

=
∑
∇T

π1β1(δ1) · γ1,2β2(δ2) · · · · γT−1,TβT (δT )

(5)

A direct computation of equation (5) for N states and
T observations is computationally infeasible due to NT

possible states sequence, especially when both N and T are
large numbers. Thus having a computational complexity
of approx 2T ·NT for such computations is not ideal in
calculating the likelihood. A more reliable and efficient
algorithm to avoid such an exponential algorithm is the
Forward algorithm [19], [22]. The derivation is similar to
the one presented in [22].

5.2. The Forward de-anonymizer

The brute-force summation procedure for every pos-
sible state is not feasible in practice. Thus the use of the
Forward algorithm [19], [22] to make such computations.
Like dynamic programming, the Forward algorithm re-
duces the number of calculations when computing the
observational probability. It computes the observational
probability by summing the probabilities for all paths (hid-
den states), resulting in such an observational sequence.

To compute the Forward algorithm, let’s define
a forward probability (forward parameter); αt(i) =
P (δ1 · · · δt,∇t = i|λ), which is the probability of the
observational sequence, δ1 · · · δt after being in state ∇i at
time t for the given model (λ).

In computing the helper vector (forward parameter)
inductively:
First step:

α1(i) = πi · βi(δ1) where 1 ≤ i ≤ N , (6)

Inducting step gives:

αt+1(j) =

[
N∑
i=1

αt(i) · γij

]
· βj(δt+1) , (7)

where
1 ≤ j ≤ N
1 ≤ t ≤ T − 1

,

and where:
• αt(i) is the probability of observing δ1 · · · δt up to

being in state ∇i at time t ,
• γij is the transition probability of moving from state
∇i to state ∇j ,

• βj(δt+1) is the probability of observing δt+1 at state
∇j .

Finally, summing all αT (i)
′s at final time step t = T

for all possible previous states gives:

P (δ|λ) =
n∑

i=1

αT (i) (8)

Comparing this computation to the previous brute-
force summation of the likelihood for all possible states



(5) reduces the computation to order O(N2T ), where
N2 is as a result of computing N previous states (N
elements of αt) to all N states for each T observations.
Thus, with this forward computation, we can generate a
score for each model (anonymous users whose mobility
traces are known) to aid us in the re-identification (de-
anonymization) process.

We explore this solution by building a scoring algo-
rithm (maximum likelihood score) to de-anonymize (re-
identify) the anonymous users (whose mobility traces are
known) from the training dataset with a certain thresh-
old. Computing such a score, all the anonymous users’
models in the target database (Λ) are each called for each
target user’s observational sequence and the results (the
likelihood score) stored in the form of a matrix for the
re-identification analysis. Thus, let {Ω̃i}ni=1 be the total
target users with a known observational sequence in the
testing dataset and n be the total number of users where
Ω̃i = δi1 · · · δiT is the observational sequence for target
user i. Hence, from equation (8), we compute P (Ω̃i|λj),
the likelihood scores for user i from the testing dataset
given models λj from the training dataset (anonymous
users). Thus, from the likelihood scores, the model λj (an
anonymous user) that generates the maximum likelihood
score is likely to be the corresponding user from the
testing dataset (known users).

5.3. Kullback-Leibler divergence de-anonymizer

The next de-anonymization algorithm relies on a diver-
gence measure or relative entropy based on the Kullback-
Leibler divergence [23], which in itself is a generalization
of Shannon’s entropy. This divergence measure was first
proposed by [24] as a distance measure for any two
Markov models. It measures the difference between the
two models’ log probabilities based on the observations
generated by one of the models. Technically, it’s not a
distance measure as it does not satisfy the symmetric
or triangular inequality property. The divergence measure
Γ(·, ·), between two models λ1 and λ2 is defined as:

Γ(λ1, λ2) =
1

T
[log P (δ(2)|λ1)− log P (δ(2)|λ2)] (9)

where δ(2) = δ1 · · · δT , is the observation sequence of
size T generated by the model λ2. Looking at equation 9,
one can see that it is just the difference in the likelihood
computed in equation 8 between the models λ1 and λ2.
The interpretation of equation 9 is how well is model λ1

different from model λ2 or how divergent is model λ1

from λ2 based on the observation sequence generated by
one of the models.

As this score measure is not symmetric, we employ the
Jensen-Shannon divergence (JS) to make it symmetrized
and smoothened. The Jensen-Shannon divergence (JS)
between models λ1 and λ2 is given by:

JS(λ1||λ2) =
1

2

[
Γ
(
λ1,

(λ1 + λ2)

2

)
+Γ

(
λ2,

(λ2 + λ1)

2

)]
(10)

Based on this divergent measure, we are able to build
an evaluation score for all the trained models to make
predictions. A divergent score between λ1 and λ2 closer
to 0 simply means the two models, λ1 and λ2, are likely
to be identical.

The adversary explores this algorithm by constructing
a probability model of the target user’s Spatio-temporal
trajectories, similar to the one built for the users in the
target database. This model comprises transition probabil-
ities (the likelihood of moving from one area of interest to
the other) and emission probabilities representing the days
the users were seen in these locations (areas of interest).
Consequently, for each target user (λ⋆), the adversary
computes the divergence measure between (λ⋆) and each
anonymous users in the target database, Λ = {λj}nj=1.
From the divergent scores between the target user and the
anonymous users, the pair models (target user and any of
the anonymous users) that result in the minimum score;
min(λ⋆, λ) for a given threshold indicates a corresponding
match in the target database (Λ), i.e., the two models are
likely to be identical.

6. Experimental Evaluation

We evaluate the performance of our de-anonymization
attacks based on individual-level ground truth mobility
trajectories from two different groups of users. The two
proposed de-anonymization attacks are both based on the
target user’s blueprint (unique Spatio-temporal profile)
built using the HMM. Parameters such as spatial and
temporal values were varied to test the robustness of the
proposed de-anonymizers. In addition, the success of the
de-anonymizers was compared with the state of the art
de-anonymizers in the literature. Specifically, we compare
our work to other attacks that used a similar dataset to
compute the accuracy of their algorithms.

6.1. Dataset

In evaluating the efficiency of the model and the de-
anonymization attacks, we exploit a publicly available
real-life mobility traces of users in the city of Shanghai
(GeoLife) [16].

The GeoLife [16] dataset, consisting of 182 users’
GPS trajectories, was collected by Microsoft Research
Asia spanning from April 2007 to August 2012 in Shang-
hai. The dataset collected at a high rate of 1 to 5 s covers
users’ daily routines such as shopping, sporting activities,
workplace, going home, etc. Users whose mobility traces
covers less than 8 days of GPS trajectories were filtered
out for this evaluation.

6.2. Experimental results

Our experiment considers how the de-anonymizers
perform separately on the real-life mobility dataset (Ge-
oLife [16]) and how the performance rates are affected
by varying spatial resolution. As presented in figure 2,
the success rate of the Forward deanonymizer (DFW ) on
the GeoLife dataset ranges from 72% to 65%, depending
on the chosen radius distance. This performance is a sig-
nificant improvement when compared to the performance
of other de-anonymizers in the literature (as discussed
in Section 6.3). From the figure, the radius distance is
inversely proportional to the success rate of the Forward
de-anonymizer.

Successful re-identification of an anonymous user in
the target database implies that there is a similarity in



observational mobility trajectories used to build the model
and that of the known user, resulting in the algorithm
returning the highest score.

The DKL de-anonymizer was also tested on GeoLife
datasets, with even stronger results. Figure 2 depicts the
success rates of the DKL de-anonymizer on the GeoLife;
from the figure, the prediction rate increases from 74% to
85% as the radius distance decreases.

When it comes to the performance of both de-
anonymizers, the DKL de-anonymizer has a higher pre-
diction rate than the Forward algorithm. Figure 2 depicts
the superiority of the DKL algorithm over that of the For-
ward algorithm (DFW ) with varying spatial resolution.
However, the rates of increase within both de-anonymizers
were almost the same as the radius distance decreases.
This presupposes that the characteristics of the dataset in
question have an impact on the performances of the de-
anonymizer.
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Figure 2: Performance rate of the de-anonymizers on the
GeoLife dataset [16].

A property that makes the DKL de-anonymizer more
effective is the observational property matrix (emission
probabilities). Deviations in β return a higher dissimilarity
score DKL than in γ (transition between areas of interest).
Consequently, users are more likely to be re-identified if
they normally visit areas of interest on particular days.
Naturally users gravitate to places of interest on specific
days, like going to the theatre on Wednesdays or to a
stadium on Saturdays. For example, consider two users
who usually visit the same location, say a shopping mall;
the algorithm easily re-identifies them in a target database
as they normally make this visit on different days. Thus
even if the trajectories are similar, they are still likely to be
re-identified because of the weight placed on the identity
matrix.

From the analysis, nearly 66% of the user profiles
(Spatio-temporal user patterns) in the GeoLife dataset
built by the HMM were so distinct that both the Forward
and DKL de-anonymizers could re-identify these same
individuals. As a result of these users’ unique mobility

patterns based on the HMM model, the attacker could re-
identify them regardless of the de-anonymizer used in this
work. Furthermore, one intriguing finding from the study
is that when both de-anonymizers predict the same user,
as in 66% of the cases in the GeoLife dataset, then it
is almost a certainty. At no point did the two algorithms
(Forward & DKL) predicted the same user that turned out
to be false. This gives the assurance that combining these
two algorithms in the de-anonymization attacks will yield
a result with a high degree of accuracy.

6.3. Comparison to previous attacks

As the GeoLife dataset [16] is frequently used in the
literature, it is commonly regarded as a benchmark. For
this reason, we compare our results to previous results on
the basis of this dataset.

To make a fair comparisons between our work and
other known de-anonymization attacks, we only consider
previous works that used a non-overlapping training and
the testing dataset. As discussed in Section 4, and to avoid
ambiguity, the training and the testing dataset should not
be overlapping, but rather disjoint (non-overlapping) to
avoid bias. As evidenced in [21], such bias results in
artificially high success rates for the de-anonymization.

The works of MMC [21] and UHMM [14] best met the
criteria outlined above. Both schemes re briefly outlined
in Section 7.

Figure 3 shows how our algorithm compares to MMC
[21] and UHMM [14] in terms of success rate. As illus-
trated in Figure 3, our de-anonymization attack outper-
forms other algorithms when using the same parameters;
our attacks DFW and DKL succeed at a rate of 72%
and 88%, respectively, compared to 40 to 45 per cent for
UHMM [14] and MMC [21], demonstrating the effective-
ness of our attack tools.

Further proof of the effectiveness of the proposed For-
ward and KL algorithms is that they surpass even attacks
evaluated over biased testing sets. Speifically, UHMM’s
achieved attack success rate is still lower than that of
our algorithms even when the training and testing datasets
overlapped (were not disjoint), at approximately 70%. We
however discarded this result from the comparison for the
reasons outlined above. Similarly, [20], which achieves a
performance rate of up to around 90% based on the cabs
dataset in San Francisco, comes closest to our algorithm’s
performance, but was again heavily biased because the
testing dataset was directly extracted from the training
dataset.

7. Related Work

De-anonymization attacks in the context of a geo-
located dataset have been in the study for a while. How-
ever, prior research has demonstrated that deleting per-
sonal identifiers like names, and email addresses etc., is
insufficient to anonymize individuals in the target mo-
bility dataset. According to the work of Mulder et al.
[25], individual behaviour in a Global System for Mo-
bile communication (GSM) network could be used to re-
identify users. They employed two different methods of
identification: sequence of cells ID and Markovian model.
The latter used static cells (GSM cells) as the states of the
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Figure 3: Comparing the performance of our method and
that of MMC [21] and UHMM [14] on the GeoLife [16]
dataset

model, which made it almost unlikely to form an ergodic
(every state could be connected in a single step) model,
i.e., the transition between cells is unlikely to happen
without neighbouring cells. Gambs et al. [21] also build a
Mobility Markov Chain (MMC) to de-anonymize users in
a mobility dataset. In their work, a state represents each
point of interest (frequently visited locations). As with
our work, each MMC is associated with a user, which
represents mobility behaviour. In addition, they proposed
distance metrics to measure the similarity between two
MMC where the minimum distance is the re-identified
user. One of the datasets used to evaluate the performance
of their algorithm is the GeoLife dataset. Freudiger et
al. [5] worked on re-identification attacks in the context
of geolocation. Their work considers both spatial and
temporal influences for de-anonymizing the target users.
In particular, they create a pair, home/work as an area
of interest, where a home is a location where the user
typically stays between 9 p.m. and 9 a.m., and work is
a location where the user typically stays between 9 a.m.
and 5 p.m. The home/work pair is then used as a quasi-
identifier to perform the de-anonymization attacks. Wang
et al. [14] proposed a user hidden Markov model that
took spatial and temporal influences into account when de-
anonymizing targeted users in a geo-located dataset. Each
HMM constitutes the mobility behaviour of the user in
the target dataset. Their technique is similar to our hidden
Markov model but with a number of differences. First,
they divided a day into a 24-time span, which corresponds
to the set of states while a place of visit is regarded
as the observational sequence. This is in sharp contrast
to our approach, which uses frequently visited locations
(AoI) as the set of states and the days of the week as
the observational sequence. In addition, their attack was
evaluated based on the GeoLife dataset using the ranking
and voting step as the output metric.

8. Conclusion

In this work, we proposed and implemented a
de-anonymization model for geolocation data. To de-
anonymize the target users, our attack employs the hidden
Markov model (by taking into account Spatio-temporal
trajectories) to create user mobility profiles (user finger-
printing).

We build the HMM by first predicting the users’ initial
areas of interest or frequently visited locations (known
as hidden states) and the days (observations) on which
users visited these locations before feeding into the model.
We assess the robustness of attack techniques based on
ground truth mobility trajectories from two different cities
(Shanghai and Rome). Based on the evaluation score,
our attack techniques successfully re-identify up to 85%
anonymized users in the GeoLife dataset. The proposed
algorithms significantly outperform other comparable de-
anonymization attack techniques in the literature.
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