
HAL Id: hal-01576752
https://hal.science/hal-01576752

Submitted on 23 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating short history for improving clustering based
network traffic anomaly detection

Juliette Dromard, Philippe Owezarski

To cite this version:
Juliette Dromard, Philippe Owezarski. Integrating short history for improving clustering based net-
work traffic anomaly detection. International Workshop on Autonomic Systems for Big Data Analytics
(ASBDA 2017), Sep 2017, Tucson, United States. 8p. �hal-01576752�

https://hal.science/hal-01576752
https://hal.archives-ouvertes.fr

Integrating short history for improving clustering
based network traffic anomaly detection

Juliette Dromard, Philippe Owezarski
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Index Terms—Communication networks, anomaly detection,
clustering, traffic history, ground truth, Spark Streaming

Abstract—Traffic anomaly detection is of premier importance
for network administrators as anomalies have a dramatic im-
pact on network performances, and QoS perceived by users.
It is, however, a very time consuming and costly task that
often requires decision from network and security experts. For
making anomaly detection autonomous, many research works
started investigating the use of unsupervised machine learning
techniques, and in most cases traffic clustering. Identifying the
clusters corresponding to anomalous traffic classes among the full
set of detected clusters still remains a challenge. This is mostly
due to the nature of clustering techniques that work on traffic
samples of a given duration, each cluster being classified after
an uncertain post processing stage. In this paper, we show how
anomaly detectors can benefit from keeping a temporal track
of the clustering results along time. This improvement has been
added to ORUNADA (Online Real-time Unsupervised Network
Anomaly detection Algorithm) that aimed at providing efficient
anomaly detection on high speed networks. This new ORUNADA
version - called H-ORUNADA for History-ORUNADA - is then
evaluated on a new ground truth, called SynthONTS, that is
currently designed to provide a modern and complete dataset
with labeled anomaly. H-ORUNADA has also been implemented
on Spark Streaming for being able to work on very high speed
networks (targeting several hundreds of Gbits/s), and evaluated
on the Google Cloud Platform.

I. INTRODUCTION

With the booming in the number of network attacks, the
problem of network anomaly detection has received increasing
attention over the last decades. Existing solutions are mainly
knowledge-based and this knowledge must be continuously
updated to protect the network. However building signatures
or new normal profiles to feed these detectors takes time and
money. As a result, current detectors often leave the network
unprotected for long periods of time.

To overcome these issues, a new generation of detectors has
emerged which takes benefit of intelligent techniques which
automatically learns from data and allows bypassing the stren-
uous human input: unsupervised network anomaly detectors
[14]. These detectors aim at detecting network anomalies in
an unsupervised way, i.e. without any previous knowledge
on the anomalies. One of such solutions leverages Principal
Components Analysis (PCA) and has been widely studied
[8], [13]. However, the majority of unsupervised techniques
relies on clustering techniques [12], [2] as K-mean [11],
SVM [7] or DBSCAN [15] to quote a few. The related
improvement in term of quality of detection is significant, as
these clustering based anomaly detectors can now detect 0day

attacks. These attacks may appear as outliers or new clusters
in the clustered traffic, whereas legitimate classes of traffic
appear as temporally regular clusters.

It is then obvious that temporality of clustered information is
of high importance. But the existing detectors do not consider
temporal information. They only consider the information
gathered at a time slot to decide whether it is normal or not.
It may be important to consider the evolution of the data and
keep track of the history of this information.

In this paper, we then show how anomaly detectors can
benefit from keeping a temporal track of the clustering results
along time. This improvement has been added to ORUNADA
(Online Real-time Unsupervised Network Anomaly detec-
tion Algorithm) [6], leading to H-ORUNADA (History-
ORUNADA). For reducing significantly the time to detect
anomalies in the traffic, and improving the capacity in working
with large throughput networks (working in real-time on
flowing traffic in current networks is a big data challenge), H-
ORUNADA has been implemented on the Spark Streaming big
data platform. H-ORUNADA has then been evaluated on a new
ground truth, called SynthONTS, that is currently designed to
provide a modern and complete dataset with labeled anomaly
for efficient evaluation of the detection accuracy of anomaly
or intrusion detection tools, as well as on the Google Cloud
Platform for evaluating its ability to handle the traffic of high
speed networks.

The rest of this paper is as follows: section II details the
characteristics of anomalies on long periods of time, and
then details the problematic for classifying them. Sections
III and IV present the preprocessing stage for building the
research space, taking into account long term tracking of the
traffic, and then how the clustering is done for efficiently
achieving accurate results. Section V presents the evaluation
results on the detection accuracy. Then section VI presents
some elements about the implementation of H-ORUNADA
with Spark Streaming, and presents its performance evaluation
on Google Cloud Platform. Finally, section VII concludes the
paper.

II. CHARACTERISTICS OF ANOMALIES

An anomaly is usually defined as a flow which is different
from the other flows. However, this definition is quite vague.
Therefore, in the following, we characterize more precisely
what we consider as an anomaly.

First, we make some assumptions about the nature of the
anomalies, and how these anomalies should appear using

clustering techniques. First, let’s introduce some concepts of
clustering techniques applied to network anomalies. Usually,
the data to partition is represented by a matrix where each line
represents a flow and each column a statistic. This matrix is
called the space or feature space. Each flow represents a point
of the space and the coordinates of the point are the statistics of
the flow. The set of points is the space. A clustering algorithm
applied on a space (the data matrix) outputs a partition of the
feature space. It identifies clusters (group of points which are
close to each other according to a given distance function) and
outliers. An outlier is a point which is isolated.

In the following we assume, that any network administrator
wants to be aware of rare events going on in the network.
This event should be rare not only at a given time, but also
considering the traffic history. We define a rare event as either:

• A flow that is now different from the others but that was
not different in the past. If such a flow appears rarely but
always with the same characteristics (i.e. the flow set of
statistic stays the same over time), it however may not be
of interest for the network administrator. It may be just a
flow induced by a particular server on the network, like
the flow induced by the google DNS server for instance.
Such a flow may however appear as a new outlier in a
space, but is has not to be considered as anomalous, at
the opposite of what is generally done, as in [3].

• A flow different from the others whose statistics suddenly
change. Two cases have to be considered: a flow which
is always different from the other may not be considered
as an anomaly, as it can be related as a new kind of
application. However, If its statistics change suddenly, it
means that something special like an attack or a failure
is happening (on a server for instance). Therefore, such a
flow needs to be considered as an anomaly. Such a flow
may appear as an outlier shifting suddenly in the space.

• A set of flows which appear or disappear suddenly.
This set of flows can be, for example, induced by a
DDoS attack. For example, when a server is under a
DDoS attack the number of flows targeting this network
may increase in a significant way. Therefore, the cluster
representing the set of flows targeting this network may
increase drastically. Such an anomaly may appear as a
change (increase or decrease) in the size of a cluster or
as the disappearance or appearance of a new cluster.

By using clustering techniques, these rare and interesting
events can be defined in a formal way. To define them,
three new parameters (in addition to the clustering algorithm
parameters) are considered:

• T
his

: This parameter represents the length of the historic
in seconds that is considered. A cluster or an outlier is
considered as new in a space if it was not present in this
space during the T

his

last seconds. This value should not
be too long in order to adapt to the long term traffic
changes.

• N
clust

: This parameter is a threshold. When the number
of points of a cluster changes (it increases or decreases
of at least N

clust

points) the cluster (and all the flows
that it contains) can be considered as an anomaly.

Figure 1. Feature space computation at the end of each time-slot of �t
seconds

Figure 2. Feature space computation at the end of each micro-time-slot of
�t seconds

• d: This parameter is a threshold, if a point (flow) moves
of a distance of at least d during the T

his

last seconds.
We consider that the flow statistics changed.

We define formally an anomaly as either:
1) Every flow f detected as an outlier in the partition of

a subspace and which has never been detected as an
outlier during the T

his

last seconds.
2) Every flow f detected as an outlier in the partition of a

subspace and which slides of at least a distance d during
the T

his

last seconds.
3) Every cluster C which did not exist during the T

his

last
seconds.

4) Every cluster C whose size changes of at least N
clust

points during the T
his

last seconds.

III. PREPROCESSING : CONSTRUCTION OF THE FEATURES
SPACE

A. The discrete time sliding window

Before applying any unsupervised network anomaly detec-
tor, the network traces must be collected on the network link
in time slots. Time-slots have to be large enough (of length
�t) in order to gather enough packets to catch flows patterns.
Evaluations presented in [10] showed that time-slots of 15
seconds give good results in terms of detection performance:
True Positive Rate (TPR) and False Positive Rate (FPR).

Collected traffic is then aggregated into flows using N
different aggregation levels. In the following, we decide to
use 7 different aggregation levels that will be described
later. Therefore, our solution outputs 7 different data matrices
X1, X2, X3, ..., X7.

Every flow is described by a set of features (these features
are different according to the aggregation level used to gen-
erate the flow) stored in a vector. All the vectors generated
with the same aggregation level are then concatenated in a
normalized matrix X

i

, where i 2 [1; 7] is the aggregation level.
The network anomaly detector processes independently every
data matrix. The process of consecutive time-slots is illustrated
in Figure 1.

However, using such a large time-slot size introduces an
equivalent delay before detecting anomalies, thus forbidding
any real-time detection. To avoid that attacks damage the
network, anomalies have to be rapidly detected. To speed
up the anomaly detection, we propose to update the N
feature space and launch the detection in a near continuous
way, i.e. every micro-slot of length �t seconds. Then, any
sufficiently fast and efficient detector can benefit from the
proposed solution to reach continuous and real-time detection.
However, if the feature space is computed with only the
network traffic contained in a micro-slot, it may not contain
enough information for the detectors to identify flows patterns
and thus anomalies. To solve this issue, we use a discrete time-
sliding window of length �t. The time window slides every
micro-slot of length �t. When it slides, the feature space is
updated. The feature space is the summary of the network
traffic collected during the current time-window (figure 2).

A discrete time-sliding window is made up of M micro-
slots with M = �t/�t. To speed-up the computation of a
feature space X , the sliding window associates to each of its
M micro-slots a micro-feature space mX . Each micro-feature
space is computed with the packets contained in its micro-slot.

For every aggregation level, the current window stores
the M micro-feature spaces in a FIFO queue Q =
(mX1,mX2, ...,mX

M

). mX
M

denotes the micro-feature
space computed for one aggregation level with the packets
contained in the newest micro-slot and mX1 in the oldest.
For a given aggregation level, when the window slides a new
feature space denoted X

new

can be computed as follows:

X
new

= X
old

+mX
new

�mX1 (1)

where X
old

is the previous feature space and mX
new

the
new micro-feature space. Finally, the FIFO queue is updated
(mX

new

is added to the FIFO queue and mX1 is removed). To
benefit from these feature space updates, we devise a detector
algorithm capable of detecting continuously anomalies. To
reach this goal this detector is based on an incremental grid
clustering step which has a low complexity.

B. Description of the aggregation levels and their associated
features

Incoming packets are collected in consecutive time bins �t
and aggregated into flows according to different aggregation
levels. An aggregation level can be described by a filter and
a flow aggregation key. Incoming packets are first filtered and
then grouped into flows according to a flow aggregation key.
A flow aggregation key specifies a set of fields to inspect
in a packet. Packets with similar values for these fields are
aggregated into flows. Each flow is then described by a set of
attributes or features. Anomalies identified by a detector may
be different according to the aggregation level used. Therefore,
we apply different aggregation level to the incoming traffic.
For every aggregation level i at the end of every time bin, it
outputs a set of flows forming a feature space Xi. We use
seven different aggregation levels. Every aggregation level is
described in Table I. This table displays for every level its
filter, its flow aggregation key and the features used to describe

a flow. To compute a feature space, they consider every packet
of flows in the current time slot (window). Some features
are based on the entropy, as previous studies showed that the
distribution of some traffic features may reveal anomalies [8].
For example, for the aggregation level at the IP source, we
compute the entropy of the source and destination ports and
the entropy of the IP destinations. A high entropy of the IP
destinations and a low entropy of the source ports imply that
the distribution of the source ports is very sparse while the
distribution of the IP destinations is very dense and this may
reveal a port scan.

We also use the TCP socket pair and the UDP socket pair as
aggregation levels. A socket pair is a unique 4-tuple consisting
of source and destination IP addresses and port numbers.

Packets are collected on a large network link in consec-
utive time slots. For every aggregation level except for the
aggregation level 7, our solution computes a large set of flows
at every time slot. This set is assumed to be large as our
solution is applied on the traffic captured on a large network
link. However, for the aggregation level 7, only one flow is
computed at each time slot. This unique flow summarizes the
behavior of the entire link. Therefore, our solution is slightly
different when it processes flows computed at the aggregation
level 1, 2, 3, 4, 5, 6 and flows generated with the aggregation
level 7.

For the aggregation level 1, 2, 3, 4, 5, 6, flows computed
during a time slot are directly partitioned using the solution
presented thereafter. However, for the aggregation level 7, a
certain number of time-slots must pass to collect enough flows
(one per time slot) to partition them. Once a set of N (with
N large) flows are collected they can be partitioned.

C. Feature space normalization
In the following, data for each aggregation level is repre-

sented by a matrix X of size F*D where each row represents
a point (or flow in our case) x = (x1, x2, ..., xD

) and
each column a feature (or dimension). To apply data mining
techniques, data features must be comparable and therefore
have the same common domain. Data normalization refers to
the creation of shifted and scaled versions of every feature.
It allows mapping the features values via a transformation
function in a common domain. After normalization, features
values can be compared. As explained in [1], normalization
may be sensitive to outliers and should be removed for the
normalization process. To overcome this issue, we propose
a robust normalization method. It processes each feature
independently and assures that most of the values are in the
range [0,1]. The normalization of a feature takes place in two
steps. First, it selects data situated between the ↵ and the 1�↵
percentile and remove the lowest and the largest values and
therefore, potential outliers. It then computes the feature max
and min value.

In a second step, it applies the max/min normalization, using
the max and the min value computed during the first step.
Therefore, for a point represented by a vector x, its normalized
vector is denoted x

norm

. It can be computed as follows:

x
norm

=
x� perc

min

(X)

perc
max

(X)
(2)

Table I
DESCRIPTION OF THE DIFFERENT AGGREGATION LEVELS AND ASSOCIATED FEATURES.

Aggregation
level

Filter Aggregation key Features Number
of
features

1 TCP
packets

TCP socket pair nbPacketsIP1, nbPacketsIP2, nbSyn, nbAck, nbCwr, nbUrg, nbPush, nbRst, nbFin,
bytesIP1, bytesIP2, land, nbChristmasTree, nbMoreFrag

14

2 UDP
packets

UDP socket pair nbPacketsIP1, nbPacketsIP2, bytesIP1, bytesIP1, land, nbMoreFrag 6

3 ICMP
packets

Pair of IP addresses nbPacketsIP1, nbPacketsIP2, bytesIP1, bytesIP2, land, nbReply, nbEcho, nbOther,
nbRedirect, nbUnreach, nbTimeExceeded, nbMoreFrag

12

4 no Pair of IP addresses nbPacketsIP1, nbPacketsIP2, nbSyn, nbAck, nbCwr, nbUrg, nbPush, nbRst, nbFin,
bytesIP1, bytesIP2, land, nbChristmasTree, nbTimeExceeded, nbUnreach, nbEcho,
nbRedirect, nbReply, entPortIP1, entPortIP2, nbICMPOther, nbMoreFrag, nbPacket-
sTCP, nbPacketsUDP

24

5 no IP source nbPackets, nbSyn, nbAck, nbCwr, nbUrg, nbPush, nbRst, nbFin, bytes, nbland, nbChrist-
masTree, nbTimeExceeded, nbUnreach, nbEcho, nbRedirect, nbReply, entPortSrc, ent-
PortDst, nbICMPOther, nbMoreFrag, nbPacketsTCP, nbPacketsUDP, entIPSrc, simIP-
Src,

24

6 no IP destination nbPackets, nbSyn, nbAck, nbCwr, nbUrg, nbPush, nbRst, nbFin, bytes, nbland, nbChrist-
masTree, nbTimeExceeded, nbUnreach, nbEcho, nbRedirect, nbReply, entPortSrc, ent-
PortDst, nbICMPOther, nbMoreFrag, nbPacketsTCP, nbPacketsUDP, entIPSrc, simIPSrc

24

7 no no nbPacketsIP1, nbPacketsIP2, nbSyn, nbAck, nbCwr, nbUrg, nbPush, nbRst, nbFin,
bytesIP1, bytesIP2, land, nbChristmasTree, nbTimeExceeded, nbUnreach, nbEcho,
nbRedirect, nbReply,entPortIP1, entPortIP2, nbICMPOther, nbMoreFrag, nbPacket-
sTCP, nbPacketsUDP

24

with perc
min

(X) and perc
max

(X) are respectively a vector
made up of the min and max value of every feature computed
during the first step. The max and min values for every feature
are stored in order to re-use them to normalize the data
obtained in future slots.

However, data may evolve in time. Therefore they should be
recomputed to adapt to network changes. These values should
be recomputed when an important percentage of the normal
data do not lie any longer under the max and min value of the
feature. We make the assumption that an anomaly is a temporal
event and should then not last longer than n slots. Therefore,
the max and min values of a feature should be recomputed if
the percentage of data not lying between the ↵ and the 1�↵
percentile for at least n slots is superior to a certain threshold
in order to ensure that this shift in the feature distribution is
not induced by an anomaly. To summarize, the max and min
value of a feature is recomputed when the percentage of the
data lying in the ↵ and the 1�↵ percentile is under a threshold
th (for example 90 %) during more than n slots (for example
n ⇤�T equals 60 minutes).

IV. THE CLUSTERING STEP

Every feature space (or data matrix X) is then processed
independently and partitioned in order to identify the clusters
and outliers in the data. In order to overcome the curse of
dimensionality, the feature space is split in different subspaces,
each being processed independently. The curse of dimension-
ality phenomena occurs with high dimensions. In high dimen-
sions, distance becomes meaningless and every point tends to
become an outlier. Due to this curse, unsupervised network
anomaly detectors tend, in high dimensions, to detect every
flow as an outlier, i.e. as an anomaly. Our solution is a robust
and efficient detector which addresses this issue by applying
subspace clustering and evidence accumulation techniques.
It divides the whole space in subspaces and partitions each

subspace independently. To speed up the execution time of the
clustering step, it takes advantage of a grid and incremental
clustering algorithm. Instead of clustering directly points, grid
clustering algorithms divide the feature space in cells where
points are placed, and partition the cells. As the number of
cells is much lower than the number of points, their complexity
is lower than usual clustering algorithms which cluster points
like DBSCAN and K-means.

Among available grid clustering algorithms, GDCA (Grid
Density-based Clustering Algorithm) [4] offers many advan-
tages; it is a density based grid clustering, able to discover
any shape of clusters and to identify noise. Our solution
takes advantage of both the discrete time-sliding window
and the incremental grid clustering algorithm IGDCA. Our
solution can be divided in three steps. The preprocessing
step during which each feature space X is updated every
micro-slot and then divided in N two-dimensional subspaces:
(X1, X2, ..., XN

). Next, the clustering step updates the parti-
tion of each subspace. To update the partition of a subspace
X

i

, IGDCA needs as input the points to add Xadd

i

and the
points to remove Xrem

i

from the previous partition P old

i

. Thus,
for each subspace, two matrices are provided in order to update
its partition. It can be noticed that the current subspace Xnew

i

can be computed from these two matrices and the previous
subspace denoted Xold

i

as follows:

Xnew

i

= Xold

i

�Xrem

i

+Xadd

i

(3)

For every subspace, IGDCA outputs a new partition Pnew

i

.
Among available grid clustering algorithms, GDCA offers
many advantages; it can discover any shape of clusters and
identify outliers. In GDCA, a group of consecutive dense cells
forms a cluster. For our solution we have slightly modified
GDCA. We denote S = (A1, ..., Ak

) a k dimensional space
where S = (A1, ..., Ak

) are the dimensions of S. Our modified
version of GDCA takes as input a feature space X of size

|F |⇤k made up of k-dimensional points. GDCA can be divided
into four steps:

1) The space is divided into non-overlapping rectangular
units or cells. The units are obtained by partitioning
each dimension into intervals of size l. Each unit has
the form u = {r1, ..., rk} where r

i

= [l
i

;h
i

) is a right
open interval in the partitioning of A

i

.
2) Points are placed into the cells. Cells containing at least

minDensePts are marked as dense units. A point x =
{x1, ..., xk

} belongs to a unit u = {r1, ..., rk} if l
i


x
i

< h
i

for all u
i

.
3) Set of connected dense units are grouped together to

form a cluster. Two k-dimensional dense units u1 and
u2 are connected if they have a common face or if
there exists another k-dimensional unit u3 such that
u1 is connected to u3 and u2 is connected to u3.
Units u1 = {r1, ..., rk} and u2 = {r01, ..., r0

k

} have a
common face if there are k � 1 dimensions, assume
A1, ..., A(k � 1) such that r0

i

= r
i

for all i 2 [1; k � 1]
and either h

k

= l0
k

or h0
k

= l
k

.
4) It returns the clusters whose number of points is superior

to minClusPts.
Points situated in cells which do not belong to any cluster

are considered as outliers. Let n be the total number of points,
c the number of cells, c

n

the number of non-empty cells, and
c
d

the number of dense cells, DGCA time complexity is then
O(n + c

d

.log(c
n

)). For the sake of comparison, DBSCAN
complexity is O(n2) and O(n.log(n)) when used with an R-
tree index. Therefore, and as usually c

d

< c
n

⌧ c ⌧ n holds,
DGCA has a lower complexity than DBSCAN.

There is an incremental version of GDCA called IGDCA
(Incremental GDCA). IGDCA is able to update a feature space
partition and, for a given input, outputs the same partition as
GDCA.

IGDCA requires three input parameters (the same as
GDCA): l the length used to divide each dimension into
intervals, minDensePts the minimum number of points in a
dense unit (or cell) and minClustP ts the minimum number
of points to return a cluster. As in GDCA, the space is
divided into non-overlapping rectangular units or cells. The
units are obtained by partitioning each dimension into intervals
of length l

i

. At each feature space update, IDGCA upgrades
the previous partition. It takes as inputs the points to add Xadd,
the points to remove Xrem and the points to update Xup from
the previous partition. At each feature space update, IGDCA
upgrades the previous partition in five steps:

1) for each point x
up

2 Xup, IDGCA identifies its new
unit u

new

and its previous unit u
old

(the unit to which
it belonged at the last update). If u

new

is different from
u
old

, IGDCA removes the point x from u
old

and adds
it to u

new

. It then removes every point x
rem

2 Xrem

from its unit and place every point x
add

2 Xadd into its
unit.

2) it then computes two lists: the lists of new and old dense
units listNewDenseUnits and listOldDenseUnits.
The first list contains the units which are now dense
and were not dense in the previous partition. The second

list contains the units which were dense in the previous
partition, and wich are not dense any longer.

3) every unit u in listOldDenseUnits is then processed
and a list of units to re-partition listUnitToRep is
built. For each unit u 2 listOldDenseUnits IGDCA
removes u from the cluster C to which it belongs. If
the unit u has two neighboring units which belong to
the cluster C, then all the units of the cluster which are
still dense are put in listUnitToRep and the cluster is
removed. Indeed, if the unit has two neighbors belonging
to the cluster, its removal from the cluster may lead to a
division of the cluster into two little clusters. Therefore
all the units of the cluster which are still dense need to be
re-partitioned. Once every unit in listOldDenseUnits
has been processed, the dense units in listUnitToRep
are grouped to form clusters. Set of connected units
forms a cluster.

4) every unit u in listNewDenseUnits is processed. Each
unit can either (1) form a new cluster (2) be absorbed
by an existing cluster (3) or merge multiple clusters in
one. If the unit u has no neighboring dense unit, IGDCA
creates a new empty cluster to which it adds u. If the
unit u has at least one dense neighboring unit and all
its dense neighboring unit(s) belong to the same cluster,
IGDCA adds u to this cluster. If the unit u has two
or more neighboring dense units belonging to different
clusters, IGDCA merges these clusters in one and adds
u to this new cluster.

5) it returns the clusters whose number of points is superior
to minClusPts. Points which do not belong to any of
these clusters are considered as outliers.

V. EVALUATION

A. Evaluation methodology
To validate our solution, we use SynthONTS, a new public

and evolving ground truth that is made available on demand
for the network community1. This ground truth has been
built using real traffic traces collected on the access network
of a large Spanish Cloud Service Provider (CSP), which
synthetic anomalies have been injected in. This work has
been performed in the context of the European ONTIC project
(Online Network TraffIc Characterization) and takes advantage
of the ONTS traffic dataset collected during the last two
years. These synthetic traces contain two kinds of network
anomalies:

• Anomalies already existing in the real-life dataset (ONTS
dataset)

• Anomalies artificially injected
The real anomalies already existing in the dataset have

been found by manual inspection and using ORUNADA . The
anomalies found are network scans, port scans, large ICMP
echo, a large multipoint to point flooding attack and RST

1Interested readers can request an access to the SynthONTS ground truth
by following the link: http://ict-ontic.eu (Data page). This link points to a
request form together with an Acceptable Use Agreement (according to the
Spanish privacy law). After filling the request and signing the agreement, an
access to the requested dataset will be granted.

attacks. The synthetic attacks injected in the traces are various
network scans, ports scans, large ICMP echo attacks, RST
attacks, smurf and fraggle attacks, various flooding attacks of
various intensities, and brute force attacks. More information
about this SynthONTS dataset can be found in [5]. The ONTS
traces that have been gathered contain a significantly large
amount of traffic: 300,000 packets/s and 1.2 Gbit/s on average.

The following evaluations have been performed on a single
machine with 16 GB of RAM and an Intel Core 5-4310U
CPU 2.00GHz. The window size �t is set at 15 seconds, as
recommended in [10].

B. Detection performance
H-ORUNADA detection performance is compared with

two detectors representing the two most famous families of
detectors encountered in the literature, and for which tools
are available (and that we were able to install and to run): a
PCA-based [9] and a DBSCAN-based [15] detector. Figures 3
displays the ROC curves obtained with the different detectors.
To generate these curves, we vary the minimum number of
points required to form a cluster (for the DBSCAN-based
detector and H-ORUNADA) and the number of principal
component directions of the abnormal subspace (for the PCA-
based detector). These curves show that H-ORUNADA has
a high detection rate with a low number of false positives
and outperforms the other detectors. Its performance can be
explained by the fact that it does not make any assumption
on the data distribution unlike detection methods based on
PCA and does not suffer from the curse of dimensionality
like the DBSCAN-based detector. Indeed, the DBSCAN-based
detector is sensitive to high dimensions because it processes
the whole feature space directly and does not divide it into
subspaces.

Figure 3. ROC curves for detection performance evaluation

The validation result however shows that H-ORUNADA
configured with the seven aggregation levels as described
in Table I does not detect all anomalies contained in the
SynthONTS dataset (the point (0;1) is not part of the ROC
curve). A brute force attack using a variety of port numbers
was no detected. We then added port numbers in the list of

Figure 4. H-ORUNADA execution time according to the micro-slot length

features to be looked at when detecting anomalies, then adding
port based aggregations. Considering port numbers, the new
version of H-ORUNADA is now able to detect all anomalies
of the SynthONTS dataset. Note however that no aggregation
level can detect every network anomaly. This validation shows
that:

• It is very important to use multiple aggregation levels to
get different views of the data.

• Computing only statistics on the entire network (aggrega-
tion level 7), what is often done in algorithms encountered
in the literature, to gain time are only able to detect huge
anomalies. Indeed, these statistics only give a coarse view
of the network.

C. Detection time
The following evaluation aims at measuring the detection

time for H-ORUNADA depending on its configuration. It
is especially foreseen whether H-ORUNADA can be run
online and in real-time. Given the algorithm designed for H-
ORUNADA, the micro-slot size is of essential importance. The
smaller the micro-slot size, the faster H-ORUNADA identifies
the anomalies and the network administrator takes counter-
measures. Thus, we have evaluated H-ORUNADA execution
time with different micro-slot sizes. The results are displayed
in Figure 4. It can be noticed that a reduction of the micro-slot
size improves H-ORUNADA average runtime. H-ORUNADA
can process the incoming traffic faster than it arrives as long
as the micro-slot size is superior or equal to 0.3 seconds. This
evaluation proves that H-ORUNADA can detect online with a
low delay network anomalies (less than half a second elapses
between an anomaly occurrence and its detection).

VI. DISTRIBUTION OF H-ORUNADA USING SPARK
STREAMING AND EVALUATION ON THE GOOGLE CLOUD

PLATFORM

In the context of the ONTS traffic, H-ORUNADA proved is
efficiency both in terms of detection and speed. It is especially
shown that it can run in real time on network links up to several
GBit/s. However, given the increase in the amount of traffic

to be transmitted, we wanted to test whether H-ORUNADA
could work with several hundreds of Gbit/s of traffic. For
that purpose, we implemented H-ORUNADA on the Spark
Streaming big data platform, and test it on the Google Cloud
Platform.

A. Distribution of H-ORUNADA using Spark Streaming
H-ORUNADA is by design a parallel program and is

implemented in a distributed way. Computations on every
aggregation level and every subspace in every aggregation
level can be performed in parallel. Therefore, to speed up
the execution time, H-ORUNADA is implemented to be dis-
tributed on a cluster of servers using Spark and more precisely
Spark Streaming. We use Spark Streaming as H-ORUNADA
computes a continuous stream of network traffic.

Many applications benefit from acting on data as soon
as it arrives. Spark Streaming is the Spark’s module for
processing streaming of incoming data. Much like Spark, it is
built on the concept of RDDs (Resilient Distributed Datasets),
Spark Streaming provides an abstraction called DStreams,
or discretized streams. A DStream is a sequence of data
arriving over time. Internally, each DStream is represented as a
sequence of RDDs arriving at each time step (hence the name
"discretized"). DStreams can be created from various input
sources, such as Flume, Kafka, or HDFS (Hadoop Distributed
File System - in our case we use HDFS as input source).
Once built, they offer two types of operations: transformations,
which yield a new DStream, and output operations, which
write data to an external system. DStreams provide many of
the same operations available on RDDs, plus new operations
related to time, such as sliding windows. More information
on the implementation of H-ORUNADA on Spark Streaming
is provided in [5], especially for the ORUNADA time sliding
window (kept in H-ORUNADA).

B. Experimentation on the Google Cloud Platform
The Google Dataproc allows running powerful and cost-

effective Apache Spark and Apache Hadoop clusters easily on
the Google Platform. Using a simple interface, clusters can be
easily and quickly created. They can be resized at any time:
from three to hundreds of nodes and run Spark or Hadoop
applications. The Google DataProc also provides the Spark
and Hadoop ecosystem tools, libraries, and documentation
and offers frequently updated and native versions of these
tools. It provides the latest version of Spark (Spark 2.0.2) and
Hadoop (Hadoop 2.7). For its ease and flexibility of utilization,
its high-quality documentation and its up-to-date Spark and
Hadoop versions, we decide to run our solution on the Google
Dataproc.

Our cluster is made up of only one type of machine with
8 vCPU* and 30GB of memory. According to the Google
Cloud Platform documentation, a vCPU is a virtual CPU, it
is implemented as a single hardware hyper-thread on whether
a 2.6 GHz Intel Xeon E5 (Sandy Bridge), or a 2.5 GHz Intel
Xeon E5 v2 (Ivy Bridge), or a 2.3 GHz Intel Xeon E5 v3
(Haswell), or a 2.2 GHz Intel Xeon E5 v4 (Broadwell). For
every experiment, we specify the number of machines used

Figure 5. Spark streaming H-ORUNADA execution time according to the
number of partitions (for slots of 2 minutes)

in the cluster. We could take advantage of more powerful
machines with more vCPU or more memory. However, using
machines with 8 vCPU* and 30GB of memory is a good
compromise between quality/price.

The way the Google dataproc can be configured is detailed
in [5]. It especially explains how to configures the level of
parallelism (i.e. the number of partitions), how to serialize
computings, and how to configure the size of the cluster (i.e.
the number of cores involved in th experiment).

We performed two kinds of experiments on ONTS traces
collected on February 9th, 2017, and representing 384 GB
of network data. The first experiment aims at evaluating the
impact of the level of parallelism of our application run time
execution. When Spark Streaming runs tasks, Spark can only
run 1 concurrent task for every partition of an RDD. To modify
the level of parallelism, it is possible to play on the number
of partitions of the data. As our application partitions each
subspace independently and in parallel (the clustering is not
distributed), the maximum level of parallelism equals to the
total number of subspaces. We do not distribute the clustering
step as it is an increment grid clustering algorithm with a low
complexity. However, it could be possible to distribute it if
needed, i.e. if a subspace has many points, the subspace could
be split in multiple slices, and each slice could be partitioned
independently. By computing the number of features and the
number of subspaces per aggregation level, we found out that
the maximum number of partitions that should be used equals
to 1288. The results of the experiment are depicted on Figure
5. We can notice that the rune time execution of our solution
decreases till reaching a limit. Beyond a certain number of
partitions the run time execution of our solution, increases
slightly. These results can be explained by the fact that beyond
a certain number of partitions Spark overhead (serializing,
repartitioning which leads to shuffling) is more important than
the gain of creating a new partition.

The second experiment aims at evaluating the impact of
the size of the cluster on the speed of H-ORUNADA. Once
again, the performance of our application should not improve
once there is more than one core per subspace, i.e. 1288
cores. For this experiment, we also use different level of

Figure 6. Spark streaming H-ORUNADA execution time according to the
number of partitions (for slots of 2 minutes)

parallelisms (i.e. different number of partitions). For each size
of cluster, we display the best results obtained with the optimal
number of partitions. The results are depicted on Figure 6.
Once again we can notice that the rune time execution of H-
ORUNADA decreases till reaching a limit. Beyond a certain
number of cores the run time execution of H-ORUNADA,
increases slightly. These results can be explained by the
fact that beyond a certain number of core, Spark overhead
(serializing, repartitioning, shuffling) is more important than
the gain of adding new cores.

The results obtained with spark streaming appear not to be
real-time (whereas with a normal parallel implementation in
C it is), it takes more than 2 minutes to process a slot of two
minutes of traffic. These results can be partially explained as
follows:

1) the small-files problem. HDFS deals with blocks of
64MB and our incoming text files are in average of 20
MB. Therefore, our inputs are not well suited to HDFS.

2) Spark Streaming’s performance can be improved by
using larger batches, but larger batches moves further
away from real-time processing towards stored batch
mode, and exacerbates the stream processing and real-
time, time-based analytics issues.

3) It consumes a lot of memory and issues around memory
consumption are not handled in a user friendly Manner.

4) Spark streaming is mostly used for web application
which only does a simple process for every batch of
data. We think that it is not well suited for our solution.
Indeed, our solution needs to perform an extensive
process at every batch of data.

Furthermore, Spark Streaming tuning and configuration
must be modified according to the size of the incoming data
and is then not well suited to our use cases. Spark should allow
a fast distribution of an application over a cluster of servers.

VII. CONCLUSION

This paper presented two main contributions: the first
one deals with an improvement of clustering techniques for
network traffic anomaly detection. It consists in considering
short term traffic history to be able to better identify clusters

corresponding to anomalous classes of traffic, then allowing
an autonomous classification of clusters and related classes
of traffic. Its detection and classification accuracy g-has been
evaluated on the new SynthONTS ground truth. Evaluation re-
sults exhibited that it is very important, for accurate detection,
to use multiple aggregation levels to get different views of
the data. This paper also exhibited that the evaluation results
are highly dependent on the ground truth used. Up to our
knowledge no existing public ground truth is satisfactory by
providing full certainty on the labeled anomalies, and being
complete. Given the effort put on the building of SynthONTS,
the confidence that we can get on the accuracy of labels is
high. It is however far from being complete. The SynthONTS
building is still a running project to provide more traces with
more various anomalies. The second contribution deals with
implementing H-ORUNADA on the Spark streaming big data
platform, and running it on the Google dataproc for evaluating
its scalability limit. Results are not satisfactory, as a simple
parallel implementation in C on a simple PC performs better.
Our feeling with this result is that Spark streaming must
provide more dynamic distribution over a cluster, and more
flexible and efficient file system and memory management to
adapt to network traffic analytics requirements.

REFERENCES

[1] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional
data. SIGMOD Rec., 30(2):37–46, May 2001.

[2] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network Anomaly
Detection: Methods, Systems and Tools. IEEE Commun. Surveys &
Tutorials, 16, 2014.

[3] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 41(September):1–58, 2009.

[4] N. Chen, A. Chen, and L. Zhou. An incremental grid density-based
clustering algorithm. Journal of Software, 13(1), Aug. 2002.

[5] J. Dromard, V. Baudin, P. Owezarski, A. Mozo-Velasco, B. Ordozgoiti,
and S. Gomez-Canaval. D4.3: Experimental evaluation of algorithms
for online network characterizations. Technical report, FP7 European
ONTIC project: Online Network Traffic Characterization, January 2017.

[6] J. Dromard, G. Roudiére, and P. Owezarski. Online and scalable
unsupervised network anomaly detection method. IEEE Transaction
on Network and System Management (TNSM), 14(1), January 2016.

[7] D. Ippoliti and X. Zhou. Online adaptive anomaly detection for
augmented network flows. In IEEE 22nd Int. Symp. on Modelling,
Analysis Simulation of Comput. and Telecommun. Syst., pages 433–442,
Sept. 2014.

[8] A. Lakhina and M. Crovella. Mining anomalies using traffic fea-
ture distributions. ACM SIGCOMM Comput. Communication Review,
35(4):217, 2005.

[9] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic
anomalies. In Conf. on Applications, Technologies, Architectures, and
Protocols for Comput. Commun., pages 219–230, New York, NY, USA,
2004. ACM.

[10] J. Mazel. Unsupervised network anomaly detection. PhD thesis, INSA
Toulouse, France, Dec. 2011.

[11] A. P. Muniyandi, R. Rajeswari, and R. Rajaram. Network anomaly de-
tection by cascading k-means clustering and c4.5 decision tree algorithm.
Procedia Engineering, 30:174 – 182, 2012.

[12] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled
data using clustering. In Proc. of ACM CSS Workshop on Data Mining
Applied to Security (DMSA), 2001.

[13] B. Schökopf, J. Platt, and T. Hofmann. In-Network PCA and Anomaly
Detection, pages 617–624. MIT Press, 2007.

[14] Robin Sommer and Vern Paxson. Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. IEEE Symp. on
Security and Privacy, 0(May):305–316, 2010.

[15] T. M. Thang and J. Kim. The anomaly detection by using dbscan cluster-
ing with multiple parameters. In Information Science and Applications
(ICISA), pages 1–5, April 2011.

