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Intelligent Embedded Systems Group, University of Kassel (Germany)
email: {stephan.deist, mbieshaar, jens.schreiber, gensler, bsick}@uni-kassel.de

Abstract—In this article, we propose the Coopetititve Soft
Gating Ensemble or CSGE for general machine learning tasks
and interwoven systems. The goal of machine learning is to
create models that generalize well for unknown datasets. Often,
however, the problems are too complex to be solved with a
single model, so several models are combined. Similar, Autonomic
Computing requires the integration of different systems. Here,
especially, the local, temporal online evaluation and the resulting
(re-)weighting scheme of the CSGE makes the approach highly
applicable for self-improving system integrations. To achieve the
best potential performance the CSGE can be optimized according
to arbitrary loss functions making it accessible for a broader
range of problems. We introduce a novel training procedure
including a hyper-parameter initialisation at its heart. We show
that the CSGE approach reaches state-of-the-art performance for
both classification and regression tasks. Further on, the CSGE
provides a human-readable quantification on the influence of all
base estimators employing the three weighting aspects. Moreover,
we provide a scikit-learn compatible implementation.

I. INTRODUCTION

The primary goal of machine learning (ML) is to create
models from training data, which have a high generalization
capability for unseen data. Often the problems are so complex
that one single estimator cannot handle the whole scope. These
problems can, e.g., be tackled with a combination of multiple
estimators instead of an individual estimator. This attempt of
combining multiple estimators is called ensemble. In many
fields, ensembles can achieve state-of-the-art performance.
Popular ensemble methods are Boosting [1], Bagging, [2] or
Stacking [3]. [4] shows that ensembles often lead to better
results than using a single estimator. When considering the
Biasvariance tradeoff [5], ensembles can reduce both variance
and bias and therefore result in stronger models.

The combination of different models in an ensemble can
be compared with the integration of different systems. Due to
the common weighting of different models, the prediction is
decisively determined by the mutual influence of individual
models, as with interwoven systems [6]. In addition to this
similarity, models are usually heterogeneous, e.g., linear and
non-linear models. Ultimately, similar to interwoven system
predictions are linked to uncertainty [6]. Recently, an ensem-
ble method called Coopetitive Soft Gating Ensemble or CSGE
was proposed for wind power forecasts. However, CSGE
also offers a basic technology to make the functionality of
self-improving system integration (SISSY) more robust against
interference and to better avoid uncertainty by its weighting
and optimization scheme [7].

In [8], [9], and [10] it is statistically shown that the CSGE
can achieve state-of-the-art performance in the area of power
forecasting. In this article, we aim to extend the original

approach to general ML problems to show its potential for
a wide range of problems including SISSY applications. The
idea of the CSGE is to gradually weight individual ensemble
members according to their historically observed performance
of different aspects. In particular, there are three aspects which
take influence on the weight: First, the overall performance of
the estimator. Second, the local performance of the estimator
in similar historical situations. Third, time-dependent effects
modeling the autocorrelation in the estimator’s outcome. As-
pect two and three are optimized w.r.t (current) online data,
and the first aspect is determined based on the training data
beforehand.

Hence, the ability to assess the individual performance of
each base estimator for those three aspects can be interpreted,
regarding Organic Computing (OC) [11] and Autonomic
Computing (AC) [12], as self-awareness and self-improving
capabilities for SISSY.

II. MAIN CONTRIBUTION

The main contribution of this article is an extended coopet-
itive soft gating ensemble approach. It generalizes the original
CSGE method proposed in [8], [9] for wind power forecasting
to other ML tasks including regression, classification, and time
series forecasting. The main contributions of this article are:
• The loss function of the CSGE can be chosen by the

user with only minimal constraints allowing optimization
of arbitrary loss functions to make it available for SISSY
and ML applications.

• A novel heuristic to choose the hyper-parameters of the
CSGE training algorithm is reducing the required number
of adjustable parameters.

• An extensive evaluation of our approach on common
real-world reference datasets, in which we show that
our CSGE approach reaches state-of-the-art performance
compared to other ensembles methods. Additionally, the
CSGE allows quantifying the influence of all base esti-
mators utilizing the three weighting aspects in a human-
readable way.

• A scikit-learn compatible implementation of the CSGE1.
The remainder of this article is structured as follows. In

Section III, we review the related work in the field of ensemble
method for ML. Afterward, in Section IV, we introduce our
CSGE approach. In Section V, we present the evaluation of our
CSGE on three synthetic datasets, four reference classification,
and real-world regression datasets. Therefore, showing its ap-
plicability to a wide range of problems. Finally, in Section VI,
the conclusion and open issues for future work are discussed.

1https://git.ies.uni-kassel.de/csge/csge
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III. RELATED WORK

The following section limits the discussion of related work
to ensemble methods; this allows better comparability of
the CSGE compared to self-improving systems. In ML the
term ensemble describes the combination of multiple models.
The ensemble comprises a finite set of estimators, whose
predictions are aggregated forming the ensemble prediction.
The theoretical justification of why ensembles can increase the
overall predictive performance is given by the bias-variance
decomposition [5]. The key to ensemble methods is model
diversification, i.e., how to create sufficiently different models
from sample data. A comprehensive review of ensembles
is given in [13]. The most important design principles for
ensembles are: Data, parameter, and structural diversity. Data
diversity comprises ensembles trained on different subsets
of the data. Well known representatives of this type are
bagging [2], boosting [1], and random forest [14]. The idea
of parameter diversity is to induce diversity into the ensemble
by varying the parameters of the ensemble members.

A representative of this type is the multiple kernel learning
algorithm [15] in which multiple kernels are combined. Lastly,
structural diversity comprises the combination of different
models, e.g., obtained by applying different learning algo-
rithms or variable model types. These ensembles are also
referred to as heterogeneous ensembles [16]. A well-known
representative of this type is the stacking algorithm [3].
Another ensemble technique is Bayesian model averaging
(BMA) [17] accounts for this model uncertainty when deriving
parameter estimates. Hence, the ensemble estimate comprises
the weighted estimate of the various model hypothesis. An-
other method not to be confused with BMA is Bayesian
model combination [18]. It overcomes the shortcoming of
BMA to converge to a single model. Recently, a mixture
of expert models, which comprise a gating model weighting
the outputs of different submodels, gained much attention,
as they determine state-of-the-art performance in language
modelling [19] and multi-source machine translation [20].
These approaches are based on deep neural networks. Hence,
they require many training samples and their weightings be
barely interpretable.

In [8], [9], the CSGE was presented in the context of renew-
able energy power forecasting. It comprises a hierarchical two-
stage ensemble prediction system and weights the ensemble
member’s predictions based on three aspects, namely global,
local, and time-dependent performance. In [10], the system
was extended to handle probabilistic forecasts. The approach
presented in this article is a generalization of the approach to
other ML tasks.

IV. METHOD

In this section the novel Coopetitive Soft Gating Ensemble
method or short CSGE, as proposed in [10], is introduced.
After a brief general overview, we detail the different charac-
teristics of the ensemble method namely soft gating, global-,
local- and time-dependent-weighting. In the final sections, we
give details on the (self-) optimization process and recommen-
dations for training.

Fig. 1. The architecture of the CSGE. The predictions p̂(j)t of the input x are
passed to the CSGE module. Weights are calculated regarding global-, local-
and time-dependent weighting. In the next step, the predictions are weighted
and aggregated.

A. Coopetitive Soft Gating Ensemble

The architecture of the CSGE, as depicted in Fig. 1, high-
lights the three weighting aspects: global-, local- and time-
dependent-weighting. For each of the weighting methods the
novel coopetetive soft gating principle is applied. Coopetetive
soft gating is a conglomerate of cooperation and compete-
tion. The ensemble combines two well known principles in
ensemble methods, weighting and gating. Weighting combines
all ensemble members in a linear combination, while gating
selects only one of all ensemble members. The idea of the
CSGE is to have the possibility to have a mixture of both
weighting and gating and let the ensemble optimize which
concept to use for the combination of different predictions.

Each of the three weighting aspects is calculate by the
the predictions from J-ensemble members. Each ensemble
member provides estimations p̂(j)t for the input x. t denotes
the timestamp t, also called leadtime, when operating on
timeseries for the j-th ensemble member. For each prediction
and estimator the CSGE calculates the local, global and
time-dependent weighting and aggregates their results. After
normalization of ω(j) each prediction p̂

(j)
t is weighted to

obtain the final prediction as follows:

¯̂pt =

J∑
j=1

ω(j) · p̂(j)t (1)

To ensure that the prediction is not distorted weights have
the following constraint:

J∑
j=1

ω(j) = 1 (2)

The optimal weights w(j) with j ∈ {1, . . . , J} are obtained
by the CSGE w.r.t. an arbitrary loss function, e.g. mean
squared error, cross-entropy etc. Each weighting aspect has
different characteristics related to the loss function summarised
as follows
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• Global weights are determined by observed training
performance for each ensemble member and is a fixed
weighting after training. Thereby, overall strong models
have more influence than weaker models.

• Local weighting considers the fact that different ensem-
ble members have various prediction quality over the
complete feature space. As an example, when consid-
ering the problem of renewable energy prediction, an
ensemble member could perform well on rainy weather
inputs but has worse quality when using sunny weather
inputs. Therefore, the local weighting rewards ensemble
members with a higher weighting, which performed well
on similar input data. These weights are adjusted online
for each prediction during runtime.

• The time-dependent weight aspect is used when per-
forming predictions on time series. Ensemble members
may perform differently for different lead times. E.g.,
one method might achieve superior results on short time
horizons, while losing quality for larger lead times. Other
methods may perform worse on short time horizons, but
have greater stability on larger lead times. Again, these
weights are calculated online for each prediction during
runtime.

To combine these three weighting aspects for an individual
ensemble member we use the the following equation:

ω(j) = ω(j)
g · ω

(j)
l · ω

(j)
k (3)

where ω(j)
g is the global weighting, ω(j)

l is the local weight-
ing and ω(j)

k is the time-dependent weighting. To calculate the
final weighting the values are normalized for the j-th ensemble
member ω(j) as follows:

ω(j) =
ω(j)∑J
j̃=1 ω

(j̃)
. (4)

This equation ensures that constraint of Eq. 2 is fulfilled.

B. Soft Gating Principle

The primary goal of the CSGE is to increase the quality
of the prediction by weighting robust predictors greater than
predictors with worse quality results. Traditionally in ensemble
methods, one of the two paradigms weighting or gating are
used to combine individual ensemble members. The soft
gating approach of the CSGE introduces a novel method,
which allows the mixture of both weighting and gating and a
(self-) optimization process to select the optimal combination
of different predictions. Moreover, the soft gating approach
applies to all three weighting aspects.

To evaluate the quality of an individual ensemble member,
we need to relate the error of the prediction to its respective
weighting. This mapping is achieved by the function ς

′

η(Ω, ρ)
to determine the weights of the estimator j as follows:

ς
′

η(Ω, ρ) =

∑J
j=1 Ωj

ρη + ε
, η ∈ R+

0 . (5)

Ω contains reference errors of all J estimators, while ρ is the
individual error of the estimator j; the user chooses parameter

Fig. 2. The error (RMSE) of a predictor is drawn on the x-axis, while the
y-axis contains the corresponding weights computed by ς

′
η . For greater η a

higher error gets more regulated with less weighting, than for smaller η.

η. It controls the linearity of the weighting. For greater η the
CSGE tends to work as gating, while smaller η results in a
weighting approach.

In Fig. 2 we observe the following characteristics of ς
′

η:

• ς
′

η is falling monotonously.
• ς

′

η returns smaller weightings for an ensemble with larger
errors ρ.

• For η = 0 every ensemble members are weighted with
1
J , due to the later explained normalization. Respectively,
disrespecting the individual errors.

• ε is a small constant to prevent a division by zero.
To ensure that

∑J
j=1 ω

(j) = 1, ς
′

η(Ω, ρ) is adjusted in the
following way

ςη(Ω, ρ) =
ς
′

η(Ω, ρ)∑J
j=1 ς

′
η(Ω, ρj)

(6)

Besides the advantage on having only one parameter (η)
to tune, the soft gating offers a direct relation between the
weighting and the errors of the ensemble members providing
a strong correlation to the actual data.

C. Global Weighting

The global weighting is calculated during ensemble training
and then remains constant. Ensemble members that perform
well on the training data get larger weights compared to those
who showed a worse performance. Therefore, the difference
between estimation and ground truth is calculated with

e(j)n = θ(ŷ(j)n , yn) (7)

ŷ
(j)
n is the prediction of the j-th ensemble member, while yn

is the corresponding ground-truth. θ is an a arbitrary scoring
function, which could for example be the root mean-squared
error (RMSE) for regression or the accuracy score (ACC) for
classification. The only condition is that the loss needs to be
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falling monotonously with increasing errors to work correctly
with the soft gating principle, see Eq. 6. The error score R(j)

of the j-th ensemble member is calculated by:

R(j) =
1

N
·
N∑
n=1

(e(j)n ) (8)

R = (R(1), . . . , R(j), . . . , R(J)) (9)

By applying the soft gating principle to the vector R of all
error scores of the J ensemble members we obtain the final
global weighting with

w(j)
g = ςη(R,R(j)) (10)

D. Local Weighting

The local weighting considers the quality difference be-
tween the predictors for distinct situations over the whole
feature space. Therefore, the local weighting rewards ensemble
members with a higher weighting, which performed well on
similar input data. In contrast to the global weighting the
local weighting is calculated online for each estimation during
runtime.

For similar situations, we consider the distances in the
input feature space. Therefore, we assume situations with low
distance have more in common compared to situations with
a more significant distance. XH contains all data that is used
during ensemble training. Often the features of XH vary in
their ranges and information value. Since we use the distances
of features to determine situations which are similar, it can be
useful to apply a principal component analysis (PCA) on the
training data XH .

XHPCA
= PCA(XH , Ndim) (11)

XHPCA
is the transformed training dataset, which has a

dimension of Ndim. The parameter is chosen by the user and is
in the range of 1, . . . , Nf , where Nf is the number of features
of XH . To calculate the local weight of a new prediction, we
have to transform the input data x into the transformed feature
space x̂ by applying the PCA:

x̂ = applyPCA(x) (12)

By using, e.g., k-nearest neighbor we determine c similar
situations in the input data.

α = knn(x̂, XHPCA
, c) (13)

The vector α of similar situation in the input data is used
to derive the errors for each situation a with eja = θ(ŷ

(j)
a , yn)

to obtain the average local error with:

q(j) =
1

c
·
∑
a∈α
|e(j)a | (14)

This equation is applied to each ensemble member to obtain
all local error scores Q for all J ensemble members.

Q = (q(1), . . . , q(j), . . . , q(J)) (15)

Finally, the local weight ω(j)
l is calculated by using the soft

gating principle to derive the best possible local weighting:

ω
(j)
l = ςη(Q, q(j)) (16)

E. Time-Dependent Weighting

The time-dependent weighting considers the fact that the
quality of an ensemble member varies over leadtime. Similar
to local weighting, time-dependent weighting is calculated for
each estimation. Ŷ (T,j) contains all predictions of estimator j
starting at time t = 0 to time t = T .

Ŷ (T,j) = (ŷ
(j)
0 , ŷ

(j)
1 , . . . , ŷ

(j)
T ) (17)

The error for a specific time t ∈ {0, 1, . . . , T} is calculated
by the average error over all training samples with:

R
(j)
t =

1

N
·
N∑
n=1

e(t,j)n and (18)

e(t,j)n = θ(ŷ(t,j)n , y(t)n ) (19)

With ŷ(t,j)n ∈ Ŷ (T,j) and y(t)n as ground truth for time t = t.
To estimate the error score for time t of estimator j, we use
the following equation:

r
(j)
t =

R
(j)
t

1
t+1 ·

∑T
t∗=0R

(j)
t∗

(20)

r
(j)
t is a measure that compares the error of the predic-

tion with t = t to the average error in the time intervall
t ∈ {0, 1, . . . , T}. The weight ω(j)

k is calculated analogous
to global- and local weighting using the soft gating principle
with

Pt = (r
(1)
t , . . . , r

(j)
t , . . . , r

(J)
t ), (21)

ω
(j)
k = ςη(Pt, r

(j)
t ), (22)

to derive the potentially best time-dependent weighting.

F. Model Fusion and Ensemble Training

To find the optimal set of parameters for the predictions
(including all weighting aspects) we aim to optimize the pre-
diction of Eq. 1. Since there are three aspects, global-, local-
and time-dependent weighting, it follows that there are also
three η = (η0, η1, η2) to be chosen. As mentioned previously
the parameter η is chosen by the user and controls the non-
linearity of the system. Therefore, the following minimization
problem solves the task to adjust η with:

N∑
n=1

[yn − fCSGE(xn, η)]2 + c ·
3∑
s=1

ηs, (23)

where fCSGE(xn, η) = ¯̂pt is the prediction from Eq. 1
given its current weights.

∑N
n=1[yn− fCSGE(xn, η)]2 are the

summed errors of the training data, while c ·
∑3
s=1 ηs is a

regularisation term to control overfitting.
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Fig. 3. The two training sets must be distinct in order to get information
about the quality of each ensemble member.

However, to optimize Eq. 23, adjust η = (η0, η1, η2) and
calculate the global weighting, we need training data ET .
In general, the ensemble members are trained on a training
dataset and validated on a validation dataset. By using the
same training dataset to train the CSGE it will often become
overfitted and not generalize well. Therefore, we need training
data for the CSGE that is not used to train the J ensemble
members. A simple Method is shown in Fig. 3. The training
data gets split into two sets of data. One to train the ensemble
members and one to train the CSGE itself. Even though the
setup is straightforward, it has a disadvantage. The training
data is wasted because the training data for the ensemble
members and the one for the CSGE need to be distinct.

A more advanced approach shown in Fig. 4, allows using
the training data more efficiently. Since the CSGE uses the
output data of the predictors we need those data for training.
Therefore, a cross validation with K-folds is used to generate
this data. The training data in the k-th step of this k-fold is
split in a set E(k)

T for training and a set E(k)
P for prediction.

Then a copy of the j-th ensemble member is trained by using
the set E(k)

T . This temporary predictor is denoted with f
(k)
j ,

where k is the k-th step and j the indices for the j-th ensemble
member. The temporary predictor f (k)j is used to predict E(k)

Pj
,

to concatenate all predictions in k-iterations.
Afterward, all J ensemble members are trained on the whole

training set. The training data now consists of the output data
EPj

of the estimators; this requires us to adjust the calculation
of the CSGE. Therefore, we have to store the predictions in
an N × J dimensional matrix, where N is the number of
samples and J the number of estimators. t is the timestamp
when operating on time series.

Ct =


C

(0)
(t,0) . . . C

(J)
(t,0)

...
. . .

...
C

(0)
(t,N) . . . C

(J)
(t,N)

 (24)

Now, we have to adjust the Eq. 7, in which the difference
between prediction and ground truth is calculated. We can use
t = 0 since global- and local weighting do not consider the
time aspect.

e(j)n = θ(C
(j)
(0,n), yn) (25)

Eq. 17, where the set Ŷ (t,j)
n is defined, which contains all

predictions of the training point n of the ensemble member j
over the timerange 0 to t.

Ŷ (T,j)
n = (C

(j)
(0,n), C

(j)
(1,n), . . . , C

(j)
(T,n)) (26)

G. Regularisation Heuristic

The ensemble learning tends to choose high η for one
single aspect and therefore η = 0 for other aspects. As an

Fig. 4. In the k-th step we divide the the training data in a distinct set E(k)
T

and E
(k)
P . E(k)

T is used to train a copy of the ensemble members, while
E

(k)
P is used to make predictions. After the k-th iteration every element of

our training data is predicted and we can use these predictions for ensemble
training.

Fig. 5. a(x) weights the chosen η’s to avoid choosing too high or too low
values for η.

example, the η for local weighting often are chosen very
high. This example means that the local aspect of the CSGE
works as a selecting ensemble, which chooses one of the
J ensemble members. In order to minimise the regularisa-
tion term c ·

∑S
s=1 ηs, the η of global- and time-dependent

weighting is chosen very low. This regularization leads to an
averaging ensemble for the global and time-dependent aspect,
that weights all j ensemble member equally with 1

j , which
disables these two aspects. Even though it can be necessary to
disable some aspects, it is often better to distribute the values
for the η’s more evenly, to get a more generalized ensemble
model. We propose the function a(x) to prevent this problem.
a(x) weights the η and penalises when choosing η = 0 or
η too high. Typically the parameter η lies in the range of
1.0 ≤ η ≤ 6.0 [8].

a(x) =
1

1 + e−
1
2 ·(x−10)

+
1

2 · (1 + ex
1
2 )

(27)

The minimization Eq. 23 must be adjusted in the following
way

N∑
n=1

[yn − fCSGE(xn, η)]2 + c ·
3∑
s=1

a(ηs) (28)

V. EXPERIMENTAL EVALUATION

In this Section, we present the evaluation of the CSGE. We
split the evaluation into two steps. First, we show the proper
functionality of each of the three different weighting aspects
with a distinct synthetic dataset to show its interpretability
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Fig. 6. gt is the orange function, f1 is the green function and f2 is drawn in
red. The predicted values by the CSGE are drawn blue dotted (partly showing
the function f1, f2 and gt below), which exactly match the yellow gt.

aspects. Second, we evaluate the CSGE on four real-world
reference datasets for both regression and classification. The
evaluation includes a comparison with other state-of-the-art
ensemble methods for a wide range of problems and shows
the potential as a basic technique for SISSY systems.

A. Synthetic Datasets

We created synthetic datasets in order to evaluate each
aspect of the CSGE, i.e., global-, local- and time dependent
weighting, separately. For each synthetic dataset, we created
a data generating function gt. Since we are interested in the
general interpretation and functionality, we do not consider
any additional noise. Furthermore, we defined mathematical
estimators fj which have to be combined by the CSGE
properly to match the function gt.

1) Global Weighting: For evaluation of the global Weight-
ing, we created gt in the following way:

gt(x) = sin(x) + 4 (29)

We use two estimators as ensemble members who are
defined as follows:

f1(x) = sin(x) and f2(x) = sin(x) + 10

The result after training the CSGE is depicted in Fig. 6.
Since there are neither local nor time-dependent aspects, the
learning procedure chooses ηtime = 0 and ηlocal = 0. When
interpreting the chosen ω1 and ω2 from a mathematical point
of view we observe that the chosen weights are correct, i.e.,
0.6 ·sin(x)+0.4 ·(sin(x)+10). The CSGE perfectly matches
gt(x).

2) Local Weighting: For evaluation of the Local Weighting
we created gt in the following way:

gt(x) =


sin(x) x < 10

sin(x) + 10 10 ≤ x ≤ 15

sin(x) x > 15

(30)

We use two estimators as ensemble members who are
defined as follows:

f1(x) = sin(x) and f2(x) = sin(x) + 10

Fig. 7. gt is the red function, f1 is the orange function and f2 is drawn
in green. The predicted values by the CSGE are drawn blue dotted (partly
showing the function f1, f2 and gt below), which exactly match the red gt.

Fig. 8. gt is drawn with blue points and the predictions using the CSGE are
drawn with red crosses which exactly match the gt.

This experiment has no global and time dependent aspect,
therefore the learning algorithm chooses ηglobal = 0 and
ηtime = 0. Since gt can only be approximated by picking
either f1 or f2 depending on the feature space, the chosen
ηlocal should be larger than zero. In Fig. 7, we see the results of
the experiment. We observe, that the CSGE is able to perfectly
reconstruct the reference model gt (x).

3) Time-dependent Weighting: For evaluation of the time-
dependent Weighting we created gt in the following way:

gt(x, t) =

{
sin(x) t < 3

sin(x) + 10 t ≥ 3
t ∈ N (31)

We use two estimators as ensemble members who are
defined as follows:

f1(x, t) = sin(x) and f2(x, t) = sin(x) + 10

Fig. 8 shows the results of the experiment. Since there
is no global and local aspect, the learning algorithm picks
ηglobal = 0 and ηlocal = 0, ηtime > 0. We observe that
after training, CSGE perfectly matches the reference function.
These evaluations on synthetic data show that the CSGE works
properly.
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TABLE I
RMSE ON BOSTON HOUSING DATASET

Ensemble Members

Linear Regression SVM Decision Tree
Mean 24.6673 82.3656 21.7313
Standard Deviation 5.8063 14.7024 9.9349
Minimum 17.2139 66.0964 13.6710
Maximum 33.9569 107.5636 46.7434

Ensemble Methods

CSGE Linear Stacking ANN Stacking Averaging
Mean 18.9079 15.9885 18.1849 23.2753
Standard Deviation 8.7271 5.5606 5.6026 8.3834
Minimum 9.8018 10.9614 13.7156 15.7049
Maximum 34.9028 27.6670 32.0342 39.4708

B. Real-world Regression Datasets

In order to evaluate the CSGE on regression problems, we
chose Boston Housing2 and Diabetes datasets2. As ensemble
members we used a Support Vector Regression (SVR) with ra-
dial basis function (RBF) kernel, a Neural Network Regressor
and a Decision Tree Regressor. As composition proceeding
to the CSGE we chose Stacking and Voting (i.e., Averaging).
For Stacking we used a Neural Network (i.e., referred to as
ANN Stacking) and a Linear Regression (i.e., referred to as
Linear Stacking) as meta learner. We chose the RMSE loss to
optimize the CSGE. For each dataset, we performed ten-fold
cross-validation with ten different random seeds.

We used default model parameters for the ensemble mem-
bers as supplied by the scikit-learn library, the parameters
for the ensemble methods are optimized for each experiment.
To adjust the regularisation parameter C and the number of
neighbors k of the CSGE, we used a grid search. Since the
layer size of the ANN Stacking also needs to be optimized, we
applied a grid search, too. The Linear Regression Model has
no hyper-parameters to be optimized. As reference to CSGE
and Stacking, we used a simple Averaging approach.

1) Boston Housing: The overall result, i.e., RMSE, can be
seen in Tbl. I. We observe, that both CSGE and Stacking
achieve better results than each ensemble member. The Stack-
ing approach with a Linear Regression meta learner achieves
best results. Even though the CSGE has sligthly worse results
compared to Linear Stacking, it has similar performance to
ANN Stacking.

2) Diabetes: The overall result can be seen in Tbl. II. We
can see, that every ensemble method achieved worse results
compared to the best ensemble member (Linear Regression).
The Linear Stacking accomplished the best results of all
ensemble methods. Nevertheless, the CSGE performed better
than Averaging and ANN Stacking.

C. Real-world Classification Datasets

For each dataset, we performed ten-fold cross-validation
with ten different random seeds.

In order to evaluate the CSGE on classification tasks, we
chose Iris3 and Wine3 datasets. As ensemble members we used
a Support Vector Classification (SVC) with linear and RBF

2http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load
[boston|diabetes].html (last accessed: 2018/06/25)

3http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load [iris|
wine].html (last accessed: 2018/06/25)

TABLE II
RMSE ON DIABETES DATASET

Ensemble Members

Linear Regression SVM Decision Tree
Mean 3083.1198 6356.0135 6518.2421
Standard Deviation 322.2800 405.2114 728.0636
Minimum 2641.9339 5620.8063 5487.6391
Maximum 3419.9466 6837.5063 7819.4436

Ensemble Methods

CSGE Linear Stacking ANN Stacking Averaging
Mean 3333.9250 3099.9531 3465.7875 3916.1540
Standard Deviation 453.4425 323.7526 553.6934 364.5056
Minimum 2738.1390 2664.3987 2795.0731 3380.1302
Maximum 4273.5943 3459.9381 4878.9214 4392.5727

TABLE III
ACCURACY ON IRIS DATASET

Ensemble Members

Linear Classifier SVM Decision Tree
Mean 0.6000 0.9711 0.9333
Standard Deviation 0.2071 0.0183 0.0181
Minimum 0.2889 0.9333 0.9111
Maximum 0.9778 1.0000 0.9556

Ensemble Methods

CSGE Linear Stacking ANN Stacking Voting
Mean 0.9578 0.6756 0.9378 0.9511
Standard Deviation 0.0221 0.1582 0.0888 0.0204
Minimum 0.9333 0.4000 0.6889 0.9333
Maximum 0.9778 0.9333 0.9778 0.9778

kernel and a Decision Tree Classifier. The SVC with linear
kernel is referred to as Linear Classifier, while the SVC with
RBF is referred to as SVC. As composition proceeding to the
CSGE we chose Stacking and majority Voting. For Stacking,
we used a Neuronal Network (i.e., referred to as ANN Stacking)
and SVC with linear kernel (i.e., referred to as Linear Stacking)
as meta learner. We chose the accuracy loss to optimize the
CSGE.

As before with the regression, we used default model
parameters for the ensemble members and only optimized the
ensemble’s parameters using a grid search. As a reference to
CSGE and Stacking, we used the majority Voting ensemble.

D. Iris

The overall results, i.e., classification accuracies, are de-
picted in Tbl. III. We observe that the CSGE is superior to
both Stacking ensembles and Voting. All ensemble methods
results are worse than the single ensemble member, i.e., SVM.

Fig. 9 shows the ROC curve of the iris dataset, we can see
that the CSGE achieves the best results compared to Stacking
and Voting.

E. Wine

The resulting accuracies are depicted in Tbl. IV. We can
see, that both CSGE achieved the best results compared to
Stacking and Voting. Since the Decision Tree is by far best
ensemble member, the CSGE worked as a gating ensemble by
selecting the predictions of the Decision Tree, only.

Fig. 10 shows the ROC curve of the classifiers on the wine
dataset. We observe that the CSGE achieves the best results
compared to Stacking and Voting.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_[boston|diabetes].html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_[boston|diabetes].html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_[iris|wine].html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_[iris|wine].html
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Fig. 9. ROC Curve of the different ensemble approaches and their ensemble
members on the iris dataset. The Linear classifier not visible since it is below
the clipping.

TABLE IV
ACCURACY ON WINE DATASET

Ensemble Members

Linear Classifier SVM Decision Tree
Mean 0.4944 0.4204 0.9148
Standard Deviation 0.1197 0.0800 0.0265
Minimum 0.3704 0.3148 0.8704
Maximum 0.6852 0.5185 0.9444

Ensemble Methods

CSGE Linear Stacking ANN Stacking Voting
Mean 0.9148 0.6907 0.8759 0.6704
Standard Deviation 0.0265 0.1615 0.0509 0.1776
Minimum 0.8704 0.4444 0.7593 0.3704
Maximum 0.9444 0.9444 0.9444 0.9259

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed the CSGE for general ma-
chine learning tasks and interwoven systems. The CSGE is
an ensemble method which comprises human-understandable
weightings based on the three basic aspects as there are
global-, local- and time-dependent weights.

The CSGE can be optimized according to arbitrary loss
functions making it accessible for a broader range of problems
and provides a self-improving scheme based on previously
seen data. This self-improving scheme can be applied to
the self-integration problem and consequently constitutes a
possible basic technique for SISSY systems as outlined in [6].
Moreover, we introduced a novel hyper-parameter initializa-
tion heuristics, enhancing the training process. We showed

Fig. 10. ROC Curve of the different ensemble approaches and their ensemble
members on the wine dataset. The Linear classifier is not visible since it is
below the clipping.

the applicability and easy interpretability of the approach for
synthetic datasets as well as real-world data sets. For the real-
world datasets, we showed that our CSGE approach reaches
state-of-the-art performance compared to other ensembles
methods for both classification and regression tasks.

For future work, we intend to apply the approach to more
real-world problems in various domains, such as trajectory
forecasting of vulnerable road users, and further investigate
its applicability in other domains of AC.
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