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In nationwide mammography screening, thousands of mammography examinations must be processed. Each consists of two
standard views of each breast, and each mammogram must be visually examined by an experienced radiologist to assess it for any
anomalies. The ability to detect an anomaly in mammographic texture is important to successful outcomes in mammography
screening and, in this study, a large number of mammograms were digitized with a highly accurate scanner; and textural
features were derived from the mammograms as input data to a SONNET selforganizing neural network. The paper discusses
how SONNET was used to produce a taxonomic organization of the mammography archive in an unsupervised manner. This
process is subject to certain choices of SONNET parameters, in these numerical experiments using the craniocaudal view, and
typically produced O(10), for example, 39 mammogram classes, by analysis of features from O(103) mammogram images. The
mammogram taxonomy captured typical subtleties to discriminate mammograms, and it is submitted that this may be exploited
to aid the detection of mammographic anomalies, for example, by acting as a preprocessing stage to simplify the task for a
computational detection scheme, or by ordering mammography examinations by mammogram taxonomic class prior to screening
in order to encourage more successful visual examination during screening. The resulting taxonomy may help train screening
radiologists and conceivably help to settle legal cases concerning a mammography screening examination because the taxonomy
can reveal the frequency of mammographic patterns in a population.

Copyright © 2008 Daniel Howard et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Nationwide mammography screening (NMS) is the most
successful method for the early detection of breast cancer
[1]. There exist differing opinions concerning the details of
an ideal NMS programme, with a body of opinion arguing
that it should involve women over the age of 40 attending
an annual mammography examination that obtains X-
ray of each breast (for the two standard views), with
technicians ensuring that the subject is imaged consistently
each year to allow a comparison of the images over time,
which is essential to mammography screening. Longitudinal
comparisons of mammograms are quite revealing. Consider
Figure 1, which pertains to a woman who assisted frequent
screening for over 20 years. This longitudinal comparison
llustrates the involution of the parenchyma with age of the

subject as it is replaced by adipose tissue. Exceptions relate
to extensive fibrosis or adenosis for which this involution
to all intent and purposes cannot be observed [2]. Also,
mammograms of subjects starting hormone replacement
therapy appeared to us to restore an earlier appearance. By
comparing images longitudinally, it may be possible to detect
a lesion as an abnormality that grows in time in contrast to
the gradual but perceivable retraction of the parenchyma.

An NMS programme also requires an integrated clinical
team involving a pathologist, radiologist, oncologist and
surgeon. Ideally, when a patient undergoes an invasive
procedure then the radiologist should obtain X-ray images
of sections of the biopsy specimen to visually compare these
with the original mammogram so as to improve his or her
abilities at detecting lesions.
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Figure 1: Longitudinal study showing the process of involution
of the parenchyma with age of subject (digitized from L. Tabár
archive). The CC view is shown from examinations in 1980, 1989,
1997, and 2002 (left to right).

Figure 2: Left to right: longitudinal progression of a distortion
(digitized from L. Tabár archive).

If the NMS programme were to encourage the same
radiologist to screen the same women for a number of years,
it is possible that fewer women would be recalled without
good reason. When fewer women are recalled without
good reason, higher levels of compliance and participation
of women usually follow, and if so, then the benefits
of screening: early detection and arguably lower cancer
mortality rates should follow.

To date, computer-aided detection (CAD) of cancer does
not appear to have achieved significant penetration in NMS
services. A challenge of CAD is to help with difficult-to-
perceive and subtle lesions also known as distortions, which
are strong indications of breast cancer. Calcifications are not
as significant because up to 80% of calcification occurrences
in screening are benign [3].

Architectural distortions are variable in shape and size
and difficult to pick-up in early detection even by an
experienced radiologist. Figures 2, 3, and 4 illustrate this
typical progression for consecutive examinations over time,
the X-ray images can be seen to differ most significantly with
an impression of a “pulling” effect at the site of the distortion.
These examples are very obvious but it is necessary to detect
very subtle distortions early on. By observing the foremost
radiologists at work it became apparent that anomalies in
image texture (angles in the orientation of textural patterns)
accounted for their intuitions about the presence of a
lesion. Radiologists have used emotive terms to explain

Figure 3: Left to right: longitudinal progression of a distortion
(digitized from L. Tabár archive).

Detail
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Figure 4: Left to right: longitudinal progression of a distortion
(digitized from L. Tabár archive).

how they pick-up on subtle anomalies and the detection of
mammographic lesions has been described as “visual art”
[3]. This together with the variability and elusiveness of
architectural distortions motivated us to develop machine
vision algorithms to construct a taxonomy of mammography
textural patterns rather than to produce a more standard
CAD tool. It was observed that unusual angular orientations
of texture alerted the experienced radiologist to a subtle dis-
tortion. This observation, however, is an oversimplification
for the purpose of this discussion, as clinical knowledge is
essential for the detection of the lesion.

2. A COMPUTATIONAL TOOL FOR
MAMMOGRAM CLASSIFICATION

How to best assist an NMS programme using a computa-
tional tool for image analysis? This is the research question
that we set out to answer. In cancer screening, the number
of normal cases far exceeds the number of suspected lesions
(perhaps to a ratio of 50 to 1). This can lead to fatigue in
human-facilitated screening and a lack of lesion examples
with which radiologists are trained. Furthermore, the high
variability of normal cases has led it to be said that a
mammogram can equate to a fingerprint in its subject
identification ability.

Our aim was to apply artificial intelligence (AI) and
image analysis techniques to answer the aforementioned
research question. In order to study the problem quantita-
tively, we deployed an accurate Lumysis scanner to digitize
a large number of pristine film mammograms from a long-
established archive that contains arguably the greatest density
of high-quality mammograms in the world [4]. Leading
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radiologists of the breast such as Wolf and Tabár consid-
ered “parenchymal types” [3, 5] to establish a subjective
classification of mammograms into a few categories. This
paper addresses the automation of this classification process
by using an unsupervised, selforganizing method of AI
known as SONNET (described in Section 3). The automated
classification scheme is based on image textural analysis
because, as previously mentioned, we surmised that textural
patterns and orientations (the angles that can be perceived
in this texture) are the important criteria of visual inspection
for radiologists; they constitute a type of visual “algedonic
alert” [6] to the presence of a subtle distortion in the
mammogram.

A categorized organization of a mammogram archive
by texture could have many potential uses. Learning and
training are obvious but for example with the objective
of higher accuracy in screening, the mammograms could
be sorted by taxonomic pattern to enable the organized
viewing that gives time for radiologists to become accus-
tomed to the background texture. This normal texture
could then more easily be compared against the anomalous
texture of architectural distortions and lesions. Also, patients
could be tracked longitudinally based on their progression
through the taxonomy of parenchymal types [4, 5, 7]. This
could provide additional information for a mammographic
examination by allowing comparison to other patients who
experienced a similar progression. The aberrations of normal
breast development may be studied with this taxonomy. They
could offer clues to reasons for a higher incidence of breast
cancer in a population, for instance, according to lifestyle or
genetic profile. Conceivably, a taxonomy could help to settle
a legal case as it quantifies how common is the parenchymal
pattern, to help settle a dispute concerning an early breast
cancer warning that was missed.

3. THE SONNET CLASSIFIER

The artificial neural network known as SONNET [8] consists
of an array of classifiers connected to an input field as shown
in Figure 5. Input patterns are presented in turn to the input
field and typical patterns are gradually encoded as follows.
The constituent classifiers compete to encode each pattern
such that the classifier with the best match to the current
input tends to adapt itself more than the other classifiers.
This winning classifier adapts itself by partially encoding the
current input pattern on weighted excitatory connections
from the input field. Furthermore, the classifier adapts
weighted inhibitory connections to the other competing
classifiers, thus allowing the winning classifier to suppress
its competitors. The classifiers consequently diverge so that
each responds only to input patterns which are similar to the
pattern encoded on its excitatory connections.

SONNET is a selforganizing neural network based on
adaptive resonance theory [2] that encodes classifications
using unsupervised learning. The SONNET architecture is
shown in Figure 5 where a field of input neurons is connected
to a field of classification neurons via weighted connections.
An input pattern is a pattern of relative neural activity in the
input field at any given moment, and a set of input patterns
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Figure 5: SONNET architecture.

is presented to SONNET by setting the activity of the input
neurons to each pattern in turn for a fixed duration.

Each input neuron is connected to each classification
neuron by an excitatory weighted connection, and the weight
on each connection is continually adapted via a learning rule
(this is similar to Hebbian learning [9, 10] which postulates
that memory is stored in the synaptic weights and learning
is the process that changes those weights) such that the
connection becomes stronger when the two corresponding
neurons are simultaneously active. Furthermore, higher
activity on the two neurons causes the connection to become
stronger more rapidly. The maximum rate at which the
weights can change governs the network’s learning speed and
this is regulated by controlling parameters that are set prior
to a SONNET run.

The relative pattern of excitatory weights on connections
to a single-classification neuron represents the so-called
prototype for that classifier. The excitatory input to a
classification neuron is based on two measures. The first
measure is based on the size of the excitatory weights so
that a large excitatory input can be achieved when strong
weights gate high-input activations. The second measure
quantifies how well the prototype matches the current input
pattern such that a large excitatory input can be achieved
for a good match even when the prototype is represented
by small excitatory weights. A large excitatory input to
a classification neuron allows the neuron to gain a high
activation in response to the current input pattern. This
activation represents the confidence with which the neuron
classifies the input pattern. The learning speed can be set
to allow the prototype to form gradually from repeated
exposure to input patterns, such that the prototype encodes
a generalization for multiple similar input patterns. The
classification neuron can then obtain a high activation when
any one of these input patterns occurs and thus it classifies
these patterns together.

The classifiers compete to encode each input pattern such
that the classifier with the best match to the current input
tends to adapt itself more than the other classifiers, thus
further improving its competitive advantage. Each classifier
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Figure 6: Mammogram regions.

is connected to all other classifiers by an inhibitory weighted
connection that is again adapted via a learning rule such
that a connection becomes stronger (i.e., more inhibitory)
when the corresponding neurons are simultaneously active.
Classifiers that have partially encoded similar patterns thus
compete strongly against each other, causing one classifier
to eventually suppress its competitors. The classifiers con-
sequently diverge to encode different input patterns so that
only one classification neuron achieves a high activation
in response to each input pattern. When the input pattern
changes, the activation of a previously excited classifier can
decrease due to both passive decay and inhibition from
competing classifiers that better represent the new input
pattern.

SONNET performs real-time learning by continually
adapting its weights in the selforganizing manner described
above. The learning algorithm is unsupervised and there is
no reinforcement of any kind from an external source to
judge the emergent classifications against expected classifica-
tions. The network is initialized with random small weights
and the classifiers compete such that the most common input
patterns are encoded first and the less common patterns are
encoded more gradually.

The selforganizing behaviour causes SONNET to be
susceptible to the so-called stability-plasticity dilemma [2],
which states that a network should always remain adaptive
to learn new patterns (i.e., have plasticity) without degrading
well-formed encodings for previously learned patterns (i.e.,
have stability). SONNET achieves plasticity due to the
aforementioned learning algorithm but it also achieves
stability by reducing the learning speed at a single classifier
when the size of the classifier’s excitatory weights become
large. A classifier can only gain large excitatory weights after
it has encoded a good representation for one or more input
patterns, and a stable classifier is said to be committed with
excitatory weights that constitute a long-term memory of the
encoding.

For the current application, each input pattern repre-
sented features extracted from a mammogram. A set of
mammograms was selected with which to train SONNET,
and each presentation of the full mammogram set is known
as an epoch. SONNET typically learned by adapting itself
over many epochs until a stable set of classifiers could classify
each mammogram with a significant degree of confidence.
The order of mammogram presentation was randomized
on each epoch. This reduced the likelihood of an unstable

classifier from oscillating between similar yet significantly
different potential classes.

SONNET is a highly dynamic system which is controlled
by many parameters as discussed in other recent research
presentations in [11–13]. It is a fully unsupervised system
which encodes classes via selforganization in response to the
input patterns. However, the manual specification of SON-
NET’s controlling parameters allows a degree of supervision.
For example, a number of parameters govern SONNET’s
learning speed which in turn influences the number of
classes encoded. The greatest learning speed produces one-
shot learning where SONNET simply memorizes each input
pattern. Slower learning produces broader classes, where a
single classifier can represent multiple similar patterns by
forming encodings that generalize the characteristic features
of the class.

Multiple SONNET runs were conducted using different
randomized initial weights on the connections within the
network. This allowed different encodings to form on each
run. SONNET’s controlling parameters were also varied on
different runs to change the learning speed. SONNET com-
prised at most 80 classifiers though the actual number was set
in accordance with the learning speed. Each run terminated
after 100 epochs but the final epoch did not necessarily
represent the optimum SONNET state. Section 4.5 explains
how the optimum SONNET runs and epochs were identified.

4. DEVELOPING A MAMMOGRAM TAXONOMY USING
UNSUPERVISED CLASSIFICATION

The development of an unsupervised classification scheme to
produce a mammogram taxonomy had to address the follow-
ing issues: input feature extraction; input feature selection to
produce a minimal set of features which best characterize the
input cases; input feature preprocessing prior to presentation
to the classification system; classifier development; and the
definition of classification performance measures in order
to compare the classifiers resulting from different SONNET
runs. These issues are discussed in the following subsections.

4.1. Mammogram feature extraction

450 mammograms were chosen for the current study. These
mammograms represented the CC left and right views for
225 different patients. The mammograms were X-rayed
between 1990 and 2002; and they were of a highly consistent
top quality. Most mammograms displayed normal breast
tissue but 49 of the patients had been diagnosed as having
breast cancer. Subtle cancerous lesions were evident in the
mammograms corresponding to these patients.

The breast tissue in a mammogram must be segmented
from the background before mammogram features can be
extracted. This was achieved by locating maximal brightness
gradients to produce multiple hypotheses for the actual
breast margin. The best hypothesis was identified by opti-
mizing contour shape and smoothness. The location of the
nipple was also estimated to ascertain three different regions
within the breast as shown in Figure 6. These regions are
the retroareolar region (behind the nipple), an axillar region
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Figure 7: Average and maximum correlations between mammo-
gram features against the number of features omitted.

(outer) and a medial region (inner). The identification of
the breast margin allowed equivalent regions to be defined
on different mammograms by specifying positions relative to
the nipple location.

Standard image processing techniques were used to
extract the following information from each of the three
regions: brightness distribution, contrast distribution, and
textural measures. Brightness was calculated in a 10 mm
square (as depicted in Figure 6) which was swept over each
region to give the brightness distribution as represented
by minimum, maximum, average, and standard deviation
values. The same procedure was used to calculate the contrast
distribution.

Textural measures were calculated by accumulating co-
occurrence matrices over each region. The following 9 textu-
ral features were calculated from each matrix: angular second
moment, inverse difference moment, contrast, entropy, sum
entropy, difference entropy, and three correlation measures.
Furthermore, co-occurrence matrices were generated for
each of four orientations: 0, 45, 90, and 135 degrees. Hence
12 matrices were generated; four orientations for the three
regions.

The above processing resulted in 132 image features for
each mammogram. Note that the mammogram for the left
breast was flipped horizontally before processing to map the
axillar and medial regions onto those for the right breast, and
to give the appropriate orientations for the textural features.

4.2. Mammogram feature preprocessing

The extracted image features constitute an input feature
vector that can be presented to SONNET’s input field.
However, each dimension of the input feature vector must
be normalized so that each feature varies over the same
range. This prevents individual dimensions from dominating
the input feature space. For example, suppose dimension
X ranged from 0 to 255 and dimension Y ranged from
0 to 1, then without normalization X would dominate
Y in the input vector so that Y would effectively be
negligible. Furthermore, the normalization improves the

discrimination between input cases. In the above example,
without normalization each input case would typically be
represented by a vector where X is two orders of magnitude
greater than Y. Consequently, the input cases would appear
more similar to each other than if each input dimension was
normalized.

The mammogram features were linearly scaled to range
from 0 to 1 by analyzing the mammogram set for each input
dimension independently. For a single input dimension, the
minimum and maximum values across the mammogram set
were discovered and these were used to normalize each input
case.

4.3. Mammogram feature selection

The 132 features extracted from each of the 450 mammo-
grams were analyzed to produce a minimal set of features
which best characterized the mammograms. The procedure
for this was as follows:

(i) calculate the correlation between each pair of features
across the set of mammograms,

(ii) identify the most correlated pair of features; features
X and Y,

(iii) omit feature X if it has the least deviation across the
set of mammograms, else omit feature Y,

(iv) repeat from step 2 whilst the highest correlation is
above a prescribed threshold.

This procedure produced the correlations shown in
Figure 7. It can be seen from the maximum correlations
that many of the features were highly correlated. These
correlations corresponded to the same type of textural
features taken from the same mammogram regions, but
where the features pertained to different textural orienta-
tions. For example, the entropies in the retroareolar region
at 45 degrees and 135 degrees were highly correlated. The
maximum correlation between nontextural features was
0.87.

The figure shows that the omission of highly correlated
features tended to reduce the average correlation between
features after an initial increase in this average. The dis-
crimination between mammograms improves as the average
correlation between the features is minimized. However,
as the average correlation tends to continually decrease
a correlation threshold must be set to terminate feature
omission. This threshold was set by considering the distance
between mammograms in feature space.

Section 4.1 explained that each feature was scaled to
range from 0 to 1, hence the maximum distance between
two mammograms in feature space was the square root of
the number of features used. For example, the maximum
distance for the original 132 features was 11.5. Therefore,
for a given number of features, the distance between
mammograms can be calculated and then normalized by the
maximum potential distance.

Figure 8 displays the variation in the average normalized
distance between mammograms as highly correlated features
were omitted. Similarly, Figure 9 displays the variation in
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Figure 8: Average normalized distance between mammograms
against the number of features omitted.
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Figure 9: Maximum normalized distance between mammograms
against the number of features omitted.

the maximum normalized distance between mammograms.
The normalized distance between mammograms should be
maximized to improve the discrimination between mam-
mograms. The figures show that the normalized distances
increase slightly as more features were omitted. However,
excessively omitting features would restrict the information
captured from the mammograms. Consequently, a correla-
tion threshold of 0.98 was set to terminate feature omission.
This caused 79 features to be omitted which approximately
corresponds to local maxima in Figures 8 and 9.

In summary, mammogram features were omitted from
the input vector in order to minimize the correlation
between the remaining features, whilst maximizing the
normalized distance between the mammograms in feature
space. A correlation threshold of 0.98 was set to limit
the highest correlation between mammogram features. This
caused 79 features to be omitted and thus retained 53
features. SONNET’s input field therefore consisted of 53
input neurons where each neuron represented a specific type
of mammogram feature.

4.4. Classification performance measures

This section defines performance measures to compare
different mammogram classifications. The measures in the
first subsection are general to any classification task whereas
those in the second subsection are specific to mammogram
classification.

4.4.1. Distance in input feature space

A set of input cases can be conceived as a set of points in
input feature space. Thus the performance of a classification
scheme can be quantified by considering the distances
between input cases in input feature space. These distances
give rise to the following rule. Input cases which receive
the same classification should be proximate in feature space,
whereas cases which are classified differently should be distant
from each other. Hence, the classification task becomes a
multiobjective optimization problem which is required to
minimize the average within-class distance between case-
pairs, whilst maximizing the average between-class distance.

Performance measures can be formulated for the current
task by considering two mammograms i and j which are a
distance di j apart in input feature space. Suppose that these
mammograms are classified as being of type χi and χj respec-
tively, and that the corresponding classification confidences
are ci and cj . It is more important for mammograms which
are classified with a high confidence to be consistent with the
above rule, than it is for mammograms classified with a lower
confidence. Hence, the distance di j should be weighted by the
confidences ci and cj .

The average distance over a set of mammograms can now
be calculated. The average within-class distance, Dw, would
be calculated over the set of mammograms which received
the same classification (i.e., χi = χj), whereas the average
between-class distance, Db, would be calculated over the set
of mammograms which received different classifications (i.e.,
χi /=χj). These average distances are calculated as follows:

Dw =
∑

χi=χj cic jdi j
∑

χi=χj cic j
, (1)

Db =
∑

χi /=χj cic jdi j
∑

χi /=χj cic j
. (2)

4.4.2. Patient-wise mammogram comparison

A patient should receive the same classification for their left
and right CC mammograms, and this notion was confirmed
by casual subjective observation. This notion can be tested
by analyzing the distances between pairs of mammograms
in feature space. Figure 10 shows the distances between
mammogram-pairs in the reduced feature space of 53 feature
types. Comparison between the left and right mammograms
for the same patient produced the lower line, where each
point corresponded to a single patient and the points were
ranked according to increasing distance.

Each “diff D1” point was produced by comparing the
right views between two different patients, and this com-
parison was repeated for all combinations of patient-pairs.
Similarly, the “diff S1” points were produced by comparing
pairs of left views of different patients. The points were
again ranked according to increasing distance. There was no
significance in comparing the left or right views individually
and so the corresponding points overlap to appear as the
upper line in Figure 10.
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Figure 10: Comparing the distances between mammograms using
53 features: (a) same, the left and right views within patients, (b) diff
D1, the right views between patients, and (c) diff S1, the left views
between patients.

The figure shows that within-patient distances were
typically less than between-patient distances. Approximately
70% of the within-patient comparisons gave distances less
than 1, and all these comparisons gave distances less than
2. Conversely, only 5% and 50% of the between-patient
comparisons gave distances less than 1 and 2 respectively.

The results in this section justify the use of patient-
wise performance measures for the mammogram classifiers.
However, because the two mammograms for a particular
patient can differ significantly, patient-wise performance
measures should be used only as secondary measures. For
example, patient-wise performance measures could be used
to compare classifiers which are indistinguishable when
using the measures based on distances in mammogram
feature space. Note that patient-wise performance measures
did not actively drive SONNET’s development, but instead
the measures were used to assess classification performance
after development.

4.5. Discovering optimum classifications

Section 3 stated that multiple SONNET runs were conducted
for 100 epochs. Any of these epochs could represent the
optimum SONNET state, where many stable classifiers
separate the mammogram set into clearly distinguishable
classes. Every epoch was assessed according to various
performance measures and this posed a multiobjective
optimization problem. The number of candidate optimum
SONNET epochs was reduced by discovering the Pareto
front across the performance measures. Consequently, none
of these candidate epochs could be dominated by another
epoch on every performance measure. The Pareto front was
discovered across the following dimensions:

(i) average within-class distance Dw (1),

(ii) average between-class distance Db (2),

(iii) the number of classes encoded,

(iv) the classification confidences,
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Figure 11: The number of classes formed on the best SONNET
epochs. nClass is the total number of classes formed and nStable
is the number of stable classes. The epochs are ranked according to
descending nClass and then descending nStable.

(v) the fraction of patients which received the same
classification for their two mammograms.

Dw was minimized whereas all of the other performance
measures were maximized.

5. MAMMOGRAM CLASSIFICATION PERFORMANCE

This section discusses the performance of SONNET in
establishing a mammogram taxonomy. The optimum clas-
sifications from multiple SONNET runs were judged using
the performance measures described in Section 4.5.

5.1. Number of mammogram classes

Casual observation of the mammogram set can roughly
indicate the number of taxonomic classes involved but
it is difficult to precisely specify the number of required
classes. However, the current study focused on develop-
ing a maximal number of classes to discover the typical
subtleties which discriminate mammogram classes. Various
SONNET parameters control the number of classes encoded.
These parameters were varied to analyze the number of
classes which most commonly formed, and this number
was deemed to correspond to the most natural taxonomic
decomposition of the mammograms.

Figure 11 displays the number of classes formed on the
best SONNET epochs. These epochs relate to many different
SONNET runs but a single run could also produce multiple
best epochs. The epochs were ranked according to the
number of classes formed and the number of these which
were stable. The resulting rank numbers are used to identify
the best epochs in the subsequent discussion.

Classes became stable in SONNET after their encoding
had been refined by sufficient past experience. Unstable
classes were always present however, to enable SONNET to
adapt to changes in the input patterns. Therefore, the pro-
portion of SONNET’s classes which were stable represents
the maturity of the overall network and the quality of the
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encodings. Hence, the best results in Figure 11 are those with
the maximum number of stable classes.

Figure 11 shows that it was difficult for more than 40
stable classes to form. SONNET parameters were investigated
to produce more classes but this resulted in SONNET mem-
orizing individual mammograms instead of clustering them
with other mammograms. SONNET commonly produced
between 20 and 30 classes suggesting that this represents the
most natural taxonomic breakdown. SONNET parameters
could be set to form fewer, broader classes but these
classifications obscure the subtleties which discriminate
mammogram classes.

5.2. Class tightness

Figure 12 shows the average distance in input feature space
for mammograms classified differently (between-class, Db

given by (2)) and for mammograms classified the same
(within-class, Dw given by (1)). These distances were plotted
for each of the best SONNET epochs which were ranked in
Figure 11.

The SONNET epochs with low-rank numbers produced
many narrow classes and thus yielded

(i) a low average within-class distance because mammo-
grams had to be highly proximate in feature space to
be clustered together,

(ii) a low average between-class distance because the
class tightness allowed similar mammograms to be
classified differently.

Conversely, SONNET epochs with high-rank numbers
formed fewer, broader classes, and thus yielded higher
within-class and between-class distances.

Reference distances were calculated to create a context
within which to consider the between-class and within-class

distances. The average distance between all the mammo-
grams, Dav, was 2.00 and the maximum distance, Dmax, was
4.66. (These reference distances can be seen in Figure 10.)
Figure 12 shows that the between-class distances for low-
rank numbers approximately equalled Dav and that the
maximum between-class distance was approximately half
Dmax.

A further reference distance can be calculated by con-
sidering a classification where each patient is distinct, such
that their two mammograms are classified the same with a
confidence of 1. This would yield Dw = 0.90 and Db ≈ Dav.
Figure 12 shows that the within-class distances for low-rank
numbers were slightly greater than 0.9, which was expected
as each class clustered approximately 10 mammograms
together.

The best classifications minimized the within-class dis-
tance yet maximized the between-class distance, therefore
the ratio of between-class distance over within-class distance
should be maximized. Figure 12 includes this ratio for each
ranked epoch, and shows that the best epochs produced a
ratio of almost 2 by developing relatively tight classes (Dw ≈
1), whilst retaining typical between-class distances (Db ≈
Dav).

5.3. Patient-wise performance measures

Section 4.4.2 justified the use of patient-wise performance
measures to quantify the extent to which the two mammo-
grams for each patient received the same classification. This
patient-wise performance measure was used as a secondary
measure to discriminate classifiers which were similar when
judged using other performance measures.

Figure 13 displays the fraction of patients whose mam-
mograms were classified the same for the best SONNET
epochs. This fraction was approximately 40% for the epochs
with narrow classes (low-rank numbers), as these encodings
captured the subtleties which differentiate the mammograms
for a single patient. Conversely, the epochs with broad classes
(high-rank numbers) classified approximately 75% of the
patients as being the same for their two mammograms.

5.4. Mammogram taxonomy

The best result was deemed to be the SONNET epoch
with rank number 6 in the previous discussion. This result
produced 39 stable classes, where the first was formed on the
2nd epoch of the run and the last was formed on the 84th
epoch.

This result produced relatively narrow classes with an
average within-class distance of 1.01 whilst retaining a
typical average between-class distance of 2.00. Consequently,
this result yielded a relatively high ratio in Figure 12 of
1.98. Approximately 37% of the patients had their two
mammograms classified the same.

The chief features that discriminated class encodings
were two textural features, namely angular second moment
and contrast. Figures 14 to 19 are examples of the mammo-
gram classes that were encoded by SONNET.
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Figure 13: The fraction of patients whose two mammograms
received the same classification for the best SONNET epochs. The
epoch ranking corresponds to Figure 11.

Figure 14: Example of a taxonomic class.

6. REFINING THE MAMMOGRAM TAXONOMY

6.1. Input feature selection

The main weakness with the current classification scheme
is considered to be the manual specification of the image
features which were extracted from the mammograms.
The feature types and the regions from which they were
extracted were designed to capture a priori knowledge about
mammography, for instance, the importance of the retroare-
olar region. However, this manual specification necessarily
requires arbitrary decisions, for instance, the quantitative
position of the retroareolar region.

The image features and their corresponding region
boundaries could be automatically evolved to produce an
optimal input feature space. Two aspects of this are

(i) capturing a priori mammographic knowledge, for
example, characteristic positions of lobular units, and

(ii) producing a high-quality feature space, for example,
a minimal set of features with maximal orthogonality.

Figure 15: Example of a taxonomic class.

Figure 16: Example of a taxonomic class.

Other mammogram views could be used to extract
input features in addition to the craniocaudal projection, for
example, the mediolateral oblique view could be used.

6.2. Using control mammograms

Control mammograms could be exploited to refine the
mammogram taxonomy. Control mammograms should be
selected to represent clearly distinguishable mammogram
classes. The classification scheme should initially be devel-
oped on these cases alone to shape classifier encodings. More
ambiguous mammograms could then be introduced for
subsequent classifier development. In order to achieve this,
the classification scheme must be capable of increhymental
learning and it must also address the so-called stability-
plasticity dilemma [2]. SONNET satisfies these requirements.

6.3. Alternative classification schemes

A supervised classification scheme could be used to
allow performance measures to actively drive classifier
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Figure 17: Example of a taxonomic class.

Figure 18: Example of a taxonomic class.

development in a manner consistent with the passive dis-
covery of optimal SONNET classifications, as outlined in
Section 4.5.

An evolutionary computing (EC) technique could form an
alternative classification scheme. EC is a flexible and adapt-
able technique and consequently it could combine a number
of the processing stages detailed in the above protocol for
producing a mammogram taxonomy. For example, EC could
optimize its own subset of input feature types by processing
raw image features directly.

Figure 19: Example of a taxonomic class.

7. CONCLUSIONS

This study has developed a mammogram taxonomy by using
an unsupervised classification scheme called SONNET. The
encoded mammogram classes captured typical subtleties
which discriminate mammograms. SONNET’s controlling
parameters were varied to govern the coarseness of the tax-
onomies. The developed classification scheme is considered
to be a successful prototype but the scheme’s efficacy is yet to
be established.

The study shows promise for researching automated
computational tools to assist with the detection of mam-
mographic abnormalities. A mammogram taxonomy can
be exploited to aid the detection of cancerous lesions
via asymmetry identification [14], that is, by identifying
anomalies between a patient’s left and right mammograms.
The evidence for cancerous lesions within the complex breast
tissue can be very subtle, so mammogram features must
capture localized information in a contextual manner, that
is, multiscale features are required.

The authors have developed an evolutionary computa-
tion approach to discover multiscale features in imagery for a
target detection application [15, 16]. This scheme used a data
crawler which was evolved to gather evidence to discriminate
target objects from nontarget objects. The crawler focused
on low-level features in its immediate vicinity and processed
these in the context of higher-level features collected over the
crawler’s trail.

As the data crawler has been developed for target
detection in imagery, it is highly transferable to the problem
of lesion detection in mammograms. The crawler could
scrutinize mammogram areas which possess the greatest
asymmetry and thus focus on candidate lesions. The
evolutionary approach allows the crawler to discover its own
multiscale features which best locate lesions.



Daniel Howard et al. 11

The search for multiscale features over a diverse set of
mammograms represents a very challenging problem, due
to the high dimensionality of the potential search space.
Hence, it is desirable to segregate the problem into multiple
subproblems with less diversity. This can be achieved by
exploiting the mammogram taxonomy as a preprocessing
stage. This stage would classify a patient’s mammograms, and
thus would allow a data crawler to be evolved to specialize in
only these taxonomic classes. Multiple crawlers could then
be evolved, each of which specializes on its own subset of
classes. Hence, the taxonomy would greatly constrain the
search space in order to optimize asymmetry identification,
and consequently, lesion detection.
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