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Abstract

We investigate the performance of different classification
models and their ability to recognize prostate cancer in an
early state. We build ensembles of classification models in
order to increase the classification performance. We mea-
sure the performance of our models in an extensive cross-
validation procedure. The data sets come from clinical ex-
aminations and some of the classification models are al-
ready in use to support the urologists in their clinical work.

1. Introduction

Prostate cancer is one of the most common types of can-
cer among male patients in the western world. The number
of expected new cases in the USA for the year 2006 was
235,000 with 27,000 expected deaths [17]. Early detec-
tion of prostate cancer improves the chances of a curative
treatment and a lot of progress has been made in this field
during the last decade. The early detection is considerably
enhanced by the measurement of prostate-specific antigen
(PSA) in conjunction with other clinically available data
like age, digital rectal examination (DRE) and transrectal
ultrasonography (TRUS) variables like prostate volume.

We compared several classification models and analyzed
their performance on the clinical data set with an extended
cross-validation procedure. The models were Linear Dis-
criminant Analysis (LDA), Penalized Discriminant Anal-
ysis (PDA) [14], Logistic Regression [1], Classification
and Regression Trees (CART) [6], Multi Layer Percep-
tron (MLP) [3], Support Vector Machines (SVM) [30, 4]
and Nearest Neighbour Classifiers [21]. All these models
are implemented in an OpenSource Matlab-toolbox that is
available on the internet [32].
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2. Data

We had access to the clinically available data of 506 pa-
tients with 313 cases of Prostate Cancer (PCa) and 193 non-
PCa. The data entry for each patient included age, prostate-
specific antigen (PSA), the ratio of free to total prostate-
specific antigen (PSA-Ratio), the estimated prostate volume
(TRUS) and the diagnostic finding from the digital rectal ex-
amination (DRE) which was a binary variable (suspicious or
non-suspicious). The scatter plot of the variable is shown in
Figure 1.
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Figure 1. A scatterplot matrix of the PCa data.
Each box shows a pair of variables and the
cases are color coded, a red cross marks PCa
and a blue circle non-PCa. The DRE is a bi-

nary variable (suspicious or non-suspicious).



3. Ensembles

Ensemble building is a common way to improve the per-

formance of the resulting model for classification and re-
gression tasks. An ensemble of individual models performs
in general better than a single model in the average. This
was first introduced in the neural networks community since
it was discovered, that a combination of several Neural Net-
works can reduce the variance of the average regression
model [12, 10, 24]. The extension to classification prob-
lems was straightforward after the formulation of a bias-
variance decomposition for zero-one loss functions [18, 9].
The key feature of the ensemble approach is the introduc-
tion of model diversity [20, 23, 19] that helps to reduce the
variance of the resulting ensemble model. There are several
ways to achieve diverse models like the well known boot-
strap aggregating or bagging (see Breiman [5]) where the
models are trained on different subsets of the training data
or heterogeneous ensembles, that consist of several differ-
ent model classes like Neural Networks, nearest-neighbor
models, decision trees, etc [27, 29].
If we consider a supervised learning problem with n train-
ing examples of the form {(x1, 41), (X2, ¥2), - -+, (Xn, Yn)}
from an unknown function y = f(x). The x values are
usually d-dimensional vectors that are called input-features
while the y values are continuous in the case of regres-
sion and discrete class labels in the case of classification.
If y € {—1,1} we call it a binary classification problem.
A classifier is a hypothesis about the unknown function
y = f(x) in the sense, that given some new values x* it
predicts the corresponding class labels y*. The average out-
put of several different models f;(x) marks the ensemble
model
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where we assume that the model weights w; sum to one
ZiK:1 w; = 1. There are several suggestions concerning
the choice of the model weights (see Perrone et al. [24] or
Hashem et al. [13]). We decided to use uniform weights
with w; = 1/K for the sake of simplicity and not to run
into over-fitting problems as reported by Krogh et al. [19].
The central feature of the ensemble approach is the general-
ization ability of the resulting model. It is related to finding
the right balance between model complexity and general-
ization in order to avoid overfitting as depicted in Figure
2. Our ensemble approach is based on the observation that
the generalization error of an ensemble model could be im-
proved if the models on which averaging is done disagree
and if their fluctuations are uncorrelated, see Naftaly et al.
[23] and the references therein for a detailed discussion.
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Figure 2. The balance between model com-
plexity and generalization ability of the final
classification model.

4. Cross-Validation and Model Selection

Our model selection scheme is a mixture of bagging
[5] and cross-validation. Bagging or Bootstrap aggregating
was proposed by Breiman [5] in order to improve the classi-
fication by combining classifiers trained on randomly gen-
erated subsets of the entire training sets. We extended this
approach by applying a cross-validation scheme for model
selection on each subset.

In K-fold cross-validation, the data set is partitioned into
K subsets. Of these K subsets, a single subset is retained
as the validation data for testing the model, and the remain-
ing K - 1 subsets are used for model training. The cross-
validation process is then repeated K times with each of the
K subsets used only once as the validation data. The K re-
sults from the folds then can be averaged to produce a single
estimation.

If we lack relevant problem-specific knowledge, cross-
validation methods could be used to select a classification
method empirically [28]. This is a common approach be-
cause it seems to be obvious that no classification method
is uniformly superior, see for example Quinlan [25] for
a detailed study. It is also a common approach to select
the model parameters with cross-validation [11]. The idea
to combine the models from the K cross-validation folds
(stacking) was described by Wolpert [34].

We suggest to train several models on each CV-fold, to
select the best performing model on the validation set and
to combine the selected models from the K-folds. If we
train models of one type but with different initial conditions
(for example Neural Networks with different numbers of
hidden neurons) then we find proper values for the free pa-
rameters of the model. We could extend that be combining
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Figure 3. For every partition of the cross-
validation, the data is divided in a training
and a test set.

models from different classes in order to increase the model
diversity. We call this a heterogeneous ensemble or mixed
ensemble and applied this method effectively to regression
problems [33] and classification tasks [27].

Our model selection scheme works as follows: For the

K-fold CV the data is divided K-times into a training set
and a fest set, both sets containing randomly drawn subsets
of the data without replications. The size of each test set
was 25% of the entire data set. In every CV-fold we train
several different models with a variety of model parameters
(see Section 5 for an overview of the models and the re-
lated model parameters). In each fold we select only one
model to become a member of the final ensemble (namely
the best model with respect to the test set). This means, that
all models have to compete with each other in a fair tour-
nament because they are trained and validated on the same
data set. The models with the lowest classification error in
each CV-fold are taken out and added to the final ensemble,
receiving the weight w; = % (see Equation 1). All other
models in this CV-fold are deleted.
We can use this model selection scheme in two ways. If
we have no idea or prior knowledge, which classification or
regression method should be used to cope with a specific
problem we could use this scheme in order to look for an
empirical answer and to compare the performance of the
different model classes. The other way is the estimation of
model parameters for the different model classes described
in Section 5.

5. Classification Models

In this section we give a short overview of the model
classes that we used for ensemble building. All models be-
long to the canonical collection of machine learning algo-
rithms for classification and regression tasks so details can
be found in the textbooks like for instance Hastie et al. [14].
The implementation of these models' in an open source
toolbox together with a more detailed description can be
found in [32].

!'The toolbox is an open source MATLAB Toolbox which allows the
integration of existing implementations of classification algorithms and it
contains more then the few model classes described in the text.

5.1 Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) is a simple
but useful classifier. If we assume that the two classes
k = {0,1} have a Gaussian distribution with mean y, and
they share the same covariance matrix Y, then the linear
discriminant function 0(x), k = {0, 1} is given by

1
F(x) = xSy — 5#%27”% + log (),

where 75 denotes the frequency of occurrence of the class
labels. The predicted class labels are given by

f(x) = argmaxy_ g 1) {or(x)} .

We also implemented two modifications: The Quadratic
Discriminant Analysis (QDA) and the Penalized Discrim-
inant Analysis (PDA) as described in detail in Hastie et al.
[14]. Linear method are usually conceptually simple, robust
and fast and in particular in high dimensional problems they
could be very powerfull.

5.2 Logistic Regression Model

Logistic Regression (Log.Reg.) is a model for binomial
distributed dependent variables and is used extensively in
the medical and social sciences. Hastie et al. [14] pointed
out, that the Logistic Regression model has the same form
as the LDA, the only difference lies in the way, the linear
coefficients are estimated. See Hosmer et al. for a detailed
introduction [15]. We used a second order method to esti-
mate the model coefficients which is a critical issue in high
dimensional problems, because these calculations are time
and memory consuming.

5.3 Nearest Neighbor Classifier

A k-Nearest-Neighbor Classifier takes a weighted aver-
age over the labels z; of those observations z; in the training
set that are closest to the query point x. This denotes as

1
> w;
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where Ny (x) denotes the k-element neighborhood of x, de-
fined in a given metric and w; is the related distance. Com-
mon choices are the L, Lo and the L., metrics. The pa-
rameters of the model are the number of neighbors and the
choice of the metric. Nearest Neighbor Classifiers offer a
very intuitive approach to classification problems because
they are based on the concept of similarity. This works fine
in lower dimensions but leads to some trouble in higher di-
mensional probelms, known as the curse of dimensionality

[2].



5.4 Trees

Trees are conceptually simple but powerful tools for
classification and regression. For our purpose we use the
classification and regression trees (CART) as described in
Breiman et al. [6]. The main feature of the CART algo-
rithm is the binary decision role that is introduced at each
tree node with respect to the information content of the split.
In this way the most discriminating binary splits are near
the tree root building an hierarchical decision scheme. It is
known, that trees have a high variance, so they benefit from
the ensemble approach [5]. These trees ensembles are also
know as random forests. The parameters of the tree models
are related to splitting the tree nodes (the impurity measure
and the split criterion, see [14] for a detailed description).

5.5 Artificial Neural Networks

We train a multilayer feed-forward Neural Network
(MLP: Multi Layer Perceptron) with the a sigmoid acti-
vation function. The weights are initialized with Gaussian
distributed random numbers having zero mean and scaled
variances. The weights are trained with a gradient descend
based on the Rprop Algorithm [26] with the improvements
given in [16]. The MLP works with a common weight de-
cay with the penalty term

2
P(@) = A I
p 1+ w;

where W denotes the /N-dimensional weight vector of the
MLP and a small regularization parameter A. The number
of hidden layers, the number of neurons and the regular-
ization parameter are adjusted during the CV-training. We
further applied the concept of an e-insensitive error loss that
we introduced in the context of CNN-learning [22].

5.6 Support Vector Machines

Over the last decade Support Vector Machines (SVMs)
have become very powerful tools in machine learning. A
SVM creates a hyperplane in a feature space that sepa-
rates the data into two classes with the maximum-margin.
The feature space can be a mapping of the original fea-
tures (x, x’) into a higher dimensional space using a positive
semi-definite function

(x,x') — k(x,x').

The function k(-, -) is called the kernel function and the so
called kernel trick uses Mercer’s condition, which states that
any positive semi-definite kernel k(x,x’) can be expressed
as a dot product in a high-dimensional space (see [8] for a
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Figure 4. The confusion matrix for a binary
classification problem. The notation: tp =
true positive; tn = true negative; fp = false
positive; fn = false negative.

detailed introduction). The theoretical foundations of this
approach were given by Vapnik’s Statistical Learning The-
ory [31, 30] and later extended to the nonlinear case [4]. We
use an implementation of SVMs that is based on the libsvm
provided by Chih-Jen Lin [7] with the standard kernels:

k(x,x') = (x-x) linear
= (x-x' +1)¢

= exp(—iﬂxz‘/”) rbf

polynomial

The parameters of the model are with respect to the kernel-
type the polynomial degree d , the width of the rbf o2 and
the value concerning the cost of constrain violation during
the SVM training.

6. Application to the clinical prostate data

We compared the model classes described above in a
unified framework under fair conditions. Thus we trained
an ensemble of each model class consisting of 11 ensem-
bles members (11 CV-folds in the training scheme described
in Section 4). The performance of each ensemble model
was assessed on the 20% of data (validation set), which
was initially removed and never included in model training.
This procedure was independently repeated 20 times. This
means that all model-building processes, that is, the random
removal of 20% of the data, the construction of a classifica-
tion model ensemble on the remaining 80% of the data as
outlined in Section 4, and the final test on the unseen valida-
tion data were performed each time. Finally the mean aver-
age prediction values with respect to the validation set were
calculated and are listed in Table 1. We used three differ-
ent performance measures in order to compare the different
classification models. Therefore we have to define the four
possible outcomes of a classification that can be formulated



[ Accuracy | F-score | AUC |
LDA/PDA || 0.776 0.823 0.863
Log.Regr. 0.778 0.823 0.868
MLP 0.791 0.823 0.863
SVM 0.795 0.833 0.825
CART 0.757 0.809 0.843
KNN 0.756 0.813 0.809
Mixed 0.783 0.828 0.860

Table 1. The average performance of several
classifier ensembles with respect to the val-
idation set which was initially removed and
never included in model training. We show
the mean values from 20 independent valida-
tion runs.

in a 2 x 2 confusion matrix, as shown in Figure 4. The

tp+tn
tp+tn+ fp+ fn

Accuracy =

seems to be the canonical error measure for almost all clas-
sification problems if the data set is balanced. Other impor-
tant measures are the specificity that quantifies how well a
binary classification model correctly identifies the negative

cases
tn

tn+ fp

and the sensitivity, which is the proportion of true positives
of all diseased cases in the population

Specificity =

tp

Sensitivity = ————.
tp+ fn

A high sensitivity is required when early diagnosis and
treatment is beneficial, which is the case in PCa.

The precision or positive predictive value (PPV) is given
by
__

tp+ fp
and is the proportion of patients with positive test results
who are correctly diagnosed. The F-Score is the harmonic
mean of precision and sensitivity

PPV

Sensitivity - PPV

F-Score = 2 - —
Sensitivity + PPV

and it is usefull if the classes in the classification problem
are not equally distributed. Another important measure is
the area under curve (AUC) wherein the curve is the ROC-
curve (Receiver Operating Characteristic). The ROC-curve
is the graphical plot of the sensitivity versus the (1 - speci-
ficity) for a binary classifier as its discrimination threshold
is varied.

If we compare the outcome of the statistical analysis of the
model performance as listed in Table 1 we can state, that the
differences between the different classifiers are marginal.
Even the more sophisticated classification models (SVMs
or Mixed Ensembles) could not outperform the robust linear
candidates (LDA/PDA). The current version of the software
package ProstataClass®, which was developed at Charité
uses an Artificial Neural Network as classification engine.
One of the reasons for that is the growing use and accep-
tance of Artificial Neural Networks as tools for diagnostic
support in the medical community.

7. Conclusions

We compared several classification models with respect
to their ability to recognize prostate cancer in an early state.
This was done in an ensemble framework in order to esti-
mate proper model parameters and to increase classification
performance. It turned out, that all models under investi-
gation are performing very well with only marginal differ-
ences.
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