

Overview of the FREEDOM Compiler for Mapping DSP Software to FPGAs

David Zaretsky, Gaurav Mittal, Xiaoyong Tang and Prith Banerjee

Electrical and Computer Engineering
 Northwestern University

2145 Sheridan Road, Evanston, IL-60208
{dcz, mittal, tang, banerjee}@ece.northwestern.edu

Abstract

Applications that require digital signal processing
(DSP) functions are typically mapped onto general
purpose DSP processors. With the introduction of
advanced FPGA architectures with built-in DSP support,
a new hardware alternative is available for DSP
designers. By exploiting its inherent parallelism, it is
expected that FPGAs can outperform DSP processors.
However, the migration of assembly code to hardware is
typically a very arduous process. This paper describes the
process and considerations for automatically translating
software assembly and binary codes targeted for general
DSP processors into Register Transfer Level (RTL) VHDL
or Verilog code to be mapped onto commercial FPGAs.
The Texas Instruments C6000 DSP processor architecture
has been used as the DSP processor platform, and the
Xilinx Virtex II as the target FPGA. Various optimizations
are discussed, including loop unrolling, induction
variable analysis, memory and register optimizations,
scheduling and resource binding. Experimental results on
resource usage and performance are shown for ten
software binary benchmarks in the signal processing and
image processing domains. Results show performance
gains of 3-20x in terms of reductions in execution cycles
and 1.3-5x in terms of reductions in execution times for
the FPGA designs over that of the DSP processors in
terms of reductions of execution cycles.

1. Introduction

Recent advances in embedded communications and
control systems for personal and vehicular environments
are driving efficient hardware and software
implementations of complete systems-on-chip (SOC).
Two way radios, digital cellular phones, wireless Internet,
3G and 4G wireless receivers, MPEG 4 video, voice over
IP, and video over IP are examples of applications which
require digital signal processing (DSP) functions that are
typically mapped onto general purpose DSP processors,
such as the Texas Instruments TMS320C6000 [4], the
Analog Devices SHARC, and the Motorola STARCORE
processors. However, it is widely believed that such

processors will be unable to support the computational
requirements of future DSP applications [24].

The conventional way to address the computational
bottleneck has been to replace the DSP processor with an
application specific integrated circuit (ASIC), which
allows the designers to optimize for power consumption
and functional parallelism. However, the design time and
cost of such an implementation is very high. With the
introduction of advanced Field Programmable Gate Array
(FPGA) architectures that provide built-in DSP support,
such as the Xilinx Virtex II [19] and the Altera Stratix
[32], a new hardware alternative is now available for DSP
designers. FPGAs combine the programming advantage of
a general purpose DSP processor with the performance
advantage of an ASIC. By exploiting its inherent
parallelism, it is expected that FPGAs can provide more
flexible and optimal solutions for DSP applications in a
hardware/software co-design system.

Generally, the path from DSP algorithms to FPGA
implementations is a complex and arduous task. Hardware
design teams take the specifications created by the DSP
engineers (in the form of a fixed point C, C++, or
MATLAB,) and create a register transfer level (RTL)
model in a hardware description language (HDL) such as
VHDL and Verilog. The RTL HDL is synthesized by a
logic synthesis tool, and placed and routed onto an FPGA
using backend tools. Recently, there have been some
behavioral synthesis tools that can automatically generate
RTL descriptions from high-level descriptions in C
[28,29,30] and MATLAB [31].

This paper describes the process and considerations for
automatically translating software binaries that are
targeted for general DSP processors into Register Transfer
Level (RTL) VHDL or Verilog code to be mapped onto
commercial FPGAs. The motivations for developing a
translator from assembly code or binary to hardware are
as follows:
1. As more DSP applications begin to require further

computational power than what DSP processors can
provide, there will be a need to migrate applications
to hardware in the form of FPGAs.

2. There is a large established code base of DSP
algorithms optimized for specific processor families.

Some of it is hand-coded for better performance or
for reduced memory requirements.

3. Tools are available to implement C/C++, MATLAB
and SIMULINK designs on DSP processors. Hence,
the binary or assembly language can be used as an
intermediate language from all high-level languages.

4. One may choose to migrate sections of code in a DSP
processor application to hardware in order to obtain
better performance results using a co-design system.

There has been previous work on binary translation

from one processor’s instruction set to another. There has
also been work on decompilation, i.e. translating software
binaries into high level programming languages such as C.
Finally, there has been recent work in behavioral synthesis
that takes a design written in a high-level language such as
C and automatically generates hardware. Our paper is the
first complete system that directly translates software
binaries to hardware systems using FPGAs.

A simple approach to translating software binaries and
assembly to RTL VHDL would be to map each assembly
instruction onto one RTL operation per state in a finite
state machine. Clearly, there will be no performance
benefit when mapping such a design to hardware. The real
benefit of migrating applications from a DSP processor
onto an FPGA is in exploiting the on-chip parallelism.
The question is whether or not it is possible to
automatically infer the high-level control structure of a
given application, perform all the necessary data flow and
parallelism analysis at the assembly level, and manage to
obtain a performance in a hardware implementation that is
at least an order of magnitude faster than a software
implementation. The true test in this approach is in
experimentally evaluating the quality of the synthesized
hardware results in terms of area and performance. The
key contribution of this paper is in answering this
fundamental question.

Our goal in this paper is not to compete with the best
manual hardware implementation of a DSP algorithm on
an FPGA [24], nor are we suggesting this approach as a
better alternative to high-level synthesis. Rather, we wish
to show that it is possible to migrate legacy assembly
code for a state-of-the-art DSP processor seamlessly to
hardware and still obtain an order of magnitude
improvement in performance.

 The rest of the paper is organized as follows.

Section 2 reviews related work in the area. An overview
of the compiler is presented in Section 3. Section 4
describes various optimizations used in the compiler.
Section 5 described the experimental framework used to
evaluate our compiler and experimental results on ten
benchmark applications. Finally, conclusions and future
work are described in Section 6

2. Related Work

The problem of translating a high-level or behavioral
language description into a register transfer level
representation is called high-level synthesis [1]. In
contrast to traditional behavioral synthesis tools that take
a behavioral description of an application in a language
such as C/C++ or MATLAB and generate a RTL HDL
implementation automatically, our compiler maps
software binaries and assembly language codes into RTL
VHDL for mapping onto FPGAs.

 There has been some related work in the field of
binary translation for converting assembly or binary codes
written for one processor to another processor’s ISA.
Cifuentes et al [7,8] have done a lot of fundamental work
in binary translation and decompilation. The Transmeta
Crusoe processor performs dynamic code translation on
the fly using a technique called CodeMorphing by
translating code from an Intel x86 ISA and targeting the
Crusoe processor, a VLIW machine [9]. Bala et al [16]
have developed the Dynamo system for dynamic binary
optimization for the HP architecture. Gschwind [17] has
developed a similar system called BOA for the PowerPC
architecture. Cooper et al [20] have reported methods to
construct Control and Data Flow Graphs from scheduled
assembly code. Baily and Davidson [21] introduced a
formal model to specify procedure-calling conventions.
Cifuentes and Simon [23] have described a Procedure
Abstraction Language that can be used to specify the
calling conventions for different architectures. Van
Emmerik described the use of patterns to identify library
functions in executables [23].

The above-mentioned work deals mainly in translating
binary codes from one fixed ISA to another. However, our
compiler differs in that it automatically translates binary
codes from one ISA into hardware in the form of RTL
VHDL and Verilog.

There has been related work in the area of hardware-
software co-designs. Stitt and Vahid [11] have reported
work on hardware-software partitioning of binary codes.
They took kernels from frequently executed loops at the
binary level for a MIPS processor and investigated their
hardware implementations on a Xilinx Virtex FPGA; this
study was done manually. Stitt et al [12] have recently
reported work on dynamic partitioning of
hardware/software of software binaries for a MIPS
processor. They have developed an approach to take
kernel functions consisting of simple loops and
automatically map them onto reconfigurable hardware.
The hardware used is significantly simpler than
commercial FPGA architectures. The automatic
generation of RTL code is limited to only combinational
logic. Hence the loops that must be implemented on the
hardware are implemented in a single cycle. This

approach only works for sequential memory addresses and
fixed size loops. The focus of their work is on fast
dynamic hardware software partitioning, whereas the
focus of our work is on the actual automated synthesis of
software binaries onto hardware.

Levine and Schmidt [13] have proposed a hybrid
architecture called HASTE, which consists of an
embedded processor and a reconfigurable computational
fabric (RCF) inside a chip. Instructions from the processor
are dynamically compiled onto the RCF using a hardware
compilation unit (HCU). Ye et al [14] have developed a
compiler for the CHIMAERA architecture with a similar
architecture of a general-purpose processor connected to a
reconfigurable functional unit (RFU).

CriticalBlue, an Electronic Design Automation
(EDA) start-up [15], has recently announced the launch of
its Cascade Tool Suite. Cascade synthesizes a hardware
co-processor specifically designed to accelerate software
tasks selected by the user. However, there is no
description of the technology or any published
benchmarking results that would enable us to compare this
compiler to their approach.

3. Overview of the Compiler

We now provide an overview of the FREEDOM
compiler’s infrastructure, which is illustrated in Figure 1.
The compiler was designed to have a common entry point
for all assembly languages. To this effort, the front-end
requires a description of the processor ISA in order to
configure the assembly language parser. It uses ISA
specifications written in SLED from the New Jersey
Machine-Code toolkit [5,6], coupled with a new semantic
description language designed for this project. The parser
generates a virtual assembly representation called the
Machine Language Abstract Syntax Tree (MST).

The MST representation is similar to the MIPS
processor ISA in syntax, and is generic enough to
encapsulate most ISAs, including but not limited to ARM,
MIPS, Intel IA-32 and IA-64, and Texas Instruments TI
320TMSC6000 processors. It supports both predicated
and parallel instruction sets. All MST instructions are
three-operand, predicated instructions, in which one or
more of the operands may be null. An MST Instruction is
defined as:

Assembly Syntax
and Semantics File

DSP Assembly Code

Parser
SLR
Table

MST

MST Optimizations

Procedure Extraction

CDFG Generation

CDFG

CDFG Optimizations

Array Separation

Loop Unrolling
Compilation Phase

Intermediate
Representation

Data Flow
Control Flow

Input/Output File

Scheduling & Binding

Register Allocation

HDL Generation

HDL

Customizations

Memory Instantiation

Backend Translation

RTL VHDL RTL Verilog Testbench

ADL
File

CDFG Optimizations

Assembly Syntax
and Semantics File

DSP Assembly Code

Parser
SLR
Table

MST

MST Optimizations

Procedure Extraction

CDFG Generation

CDFG

CDFG Optimizations

Array Separation

Loop Unrolling

Assembly Syntax
and Semantics File
Assembly Syntax

and Semantics File
DSP Assembly CodeDSP Assembly Code

Parser
SLR
Table
SLR
Table

MSTMST

MST Optimizations

Procedure Extraction

CDFG Generation

CDFGCDFG

CDFG Optimizations

Array Separation

Loop Unrolling
Compilation Phase

Intermediate
Representation

Data Flow
Control Flow

Input/Output File

Compilation Phase

Intermediate
Representation

Data Flow
Control Flow

Input/Output File

Scheduling & Binding

Register Allocation

HDL Generation

HDL

Customizations

Memory Instantiation

Backend Translation

RTL VHDL RTL Verilog Testbench

ADL
File

CDFG Optimizations

Scheduling & Binding

Register Allocation

HDL Generation

HDLHDL

Customizations

Memory Instantiation

Backend Translation

RTL VHDLRTL VHDL RTL VerilogRTL Verilog TestbenchTestbench

ADL
File
ADL
File

CDFG Optimizations

Figure 1. Overview of the FREEDOM compiler.

Label: if (pred OR (pred== null)) then do
 dst ← op (src1, src2)

 Operand types include: memory addresses, registers,

immediate values, and labels. Operator types include, but
are not limited to: logical operators (AND, NAND, NEG,
NOR, NOT, OR, SLL, SRA, SRL, XNOR, XOR),
arithmetic operator (ADD, DIV, MULT, SUB), branch
operator (BEQ, BGEQ, BGT, BLEQ, BLT, BNEQ,
GOTO, JMP, CALL), comparison operators (CMPEQ,
CMPNEQ, CMPLT, CMPLE, CMPGT, CMPGE),
assignment operator (LD, ST, MOVE, UNION), and
general operators (NOP).

 The Control and Data Flow Graph (CDFG) is
generated from the MST, and represent the data
dependencies and the flow of control. Static-single
variable assignment (SSA) is used to break the register
name dependencies.

 Several traditional optimizations are performed on
the CDFG [2]. Scheduling and resource binding are also
preformed on the CDFG, where computations in each
basic block are mapped onto various resources (adders,
multipliers, etc) in different states within a finite state
machine. Figure 2 shows an example assembly code and
the corresponding CDFG representation of a dot-product
application.

DOTPROD: MVK .S1 500, A1
 ZERO .L1 A7
 MVK .S1 2000, A3
LOOP: LDW .D1 *A4++,A2
 LDW .D1 *A3++,A5
 NOP 4
 MPY .M1 A2,A5,A6
 SUB .S1 A1,1,A1
 ADD .L1 A6,A7,A7
 [A1] B .S2 LOOP
 NOP 5
 STW .D1 A7,*A3

(a) TI C6000 Assembly code

(b) CDFG representation

Figure 2. Assembly code and CDFG for dot-product.

The optimized CDFG is translated into another
intermediate abstract syntax tree, analogous to a high-
level Hardware Description Language (HDL). The HDL
models processes, concurrency, and finite state machines.
Additional optimizations and customizations are
performed on the HDL to enhance the efficiency of the
output and to correctly support the target device’s
architecture. Architecture-specific information is acquired
via the Architecture Description Language (ADL) files.
This includes data pertaining to resource availability,
signal names, etc. Memory models are generated in the
HDL as required by backend synthesis tools, such as
Synplify Pro [3], to automatically infer both synchronous
and asynchronous RAMs. Memory pipelining is used to
improve the throughput performance.

 The complete HDL is translated directly to RTL
VHDL and Verilog to be mapped onto FPGAs, while
automatically generating a testbench to verify the
correctness of the output. The testbenches are used to
guarantee bit-true behavior in the synthesized hardware,
compared to that of the original TI assembly code
versions.

4. Compiler Optimizations

It is obvious that without optimizations, the
performance of an FPGA would be much worse than that
of a DSP processor. The uniqueness of our compiler is in
the methodologies and the various compiler optimizations
that we have developed in order to exploit the inherent
parallelism of the FPGA. A key step in applying some of
these optimizations is the recognition of high-level
language constructs such as loops, and arrays. We now
discuss these optimizations in detail.

4.1. Analyzing Data Dependencies in Scheduled

Software Binaries

The fixed number of physical registers on processors

necessitates the use of advanced register reuse algorithms
by compilers. This introduces false dependencies based on
the register names, and results in difficulties when
determining correct data dependencies, specifically when
dealing with scheduled or pipelined binaries and parallel
instruction sets. As a solution, each MST instruction is
assigned a timestamp, specifying a linear instruction flow.
Each cycle begins with an integer base stamp ‘T’ . Parallel
instructions are assigned the timestamps ‘Tn = T + 0.01 x
n’ in succession. Assembly instructions that expand to
more than one MST instruction are assigned timestamp
values ‘Tn = T + 0.0001 x n’. Each MST instruction is
also assigned an operation delay, equivalent to the number
of execution cycles. The write-back time for the

instruction, or the cycle in which the destination register is
valid, is defined as wb = timestamp + delay.

Figure 3 illustrates how the timestamp and delay are
used to determine data dependencies. In the first
instruction, the MPY operation has one delay slot and
therefore requires two cycles to complete. The new value
of register A4 is not written until the end of cycle 1, and
may only be used at the beginning of cycle 2.
Consequently, the first three instructions are dependant on
the same source register A4. Similarly, the ADD
instruction at cycle 2.00 is dependant on registers A4 in
cycle 0.00 and A2 in cycle 1.00, but not on register A2 of
the LD instruction at cycle 1.01.

0.00 MPY (2) $A4, 2, $A4
1.00 ADD (1) $A4, 4, $A2
1.01 LD (5) *($A4), $A2
2.00 ADD (1) $A4, $A2, $A3

Figure 3. Timestamps and delays for MST
instructions.

Scheduled or pipelined software binaries present many
difficulties when attempting to analyze data dependencies.
In the Vectorsum example in Figure 4, each branch
instruction is executed in consecutive iterations of the
loop. Furthermore, the dependencies of the ADD
instruction in the loop body changes with each iteration of
the loop. In order to correctly determine data
dependencies in scheduled or pipelined assembly codes,
one must linearize the assembly code, which can be
accomplished in three steps. The first step is to build a
correct control flow graph representation, using the
algorithm developed by Cooper et al [20].

The second step is to linearize pipelined branch
operations by moving a copy of the branch instruction to
all possible write-back times in the CFG, and then setting
its delay to zero. The source and predicate operands of the
branch instruction are stored in temporary virtual
registers. If a branch operation is not predicated, but its
execution time falls outside its current block in the CFG, a
predicate is added to the instruction. An example is shown
in cycle 3 of Figure 5. If the normal control flow passes
through the branch instruction’s original position in cycle
3, the virtual predicate operand P0 is set. When the
control flow reaches the branch instruction’s intended
execution stage at the end of cycle 8, P0 is reset in parallel
with the branch execution, thus preventing the branch
instruction from further execution outside the normal
control flow.

The third step is to levelize pipelined operations. This
is accomplished by breaking up a multi-cycle instruction
whose write-back time occurs in another block into
multiple single-cycle instructions. Virtual registers are
introduced at each state of the levelization process. For an

instruction with n delay slots, the original instruction is
written to a temporary virtual register Rn and the delay on
the instructions is changed to one cycle. In each
successive cycle, we move virtual registers Rn-1�Rn, Rn-

2�Rn-1, … R0�R1, where R0 is the original register name.
This approach assumes that no two instructions are ever
scheduled to write back to the same register in the same
cycle. When the end of a block is reached, the
assignments are propagated to the target and fall-through
blocks. We may eliminate redundant virtual register
assignments by keeping track of the cycles to which they
have been written.

VSUM: MVK .S1 500, A1
 ZERO .L1 A7
 ZERO .L1 A4
 B .S2 LOOP
 LDW .D1 *A4++, A6
|| B .S2 LOOP
 LDW .D1 *A4++, A6
|| B .S2 LOOP
 LDW .D1 *A4++, A6
|| B .S2 LOOP
 LDW .D1 *A4++, A6
|| B .S2 LOOP
LOOP: ADD .L1 A6, A7, A7
|| [A1] LDW .D1 *A4++, A6
|| [A1] SUB .S1 A1, 1, A1
|| [A1] B .S2 LOOP
 MVK .L1 2000, A5
 STW .D1 A7, *A5

Figure 4. TI C6000 Assembly code for Vectorsum

3.00 MOVE (1) 1, $P0
 : :
4.00 LD (1) *($A4), $A6_4
 : :
5.00 MOVE (1) $A6_4, $A6_3
5.01 LD (1) *($A4), $A6_4
 : :
6.00 MOVE (1) $A6_3, $A6_2
6.01 MOVE (1) $A6_4, $A6_3
6.02 LD (1) *($A4), $A6_4
 : :
7.00 MOVE (1) $A6_2, $A6_1
7.01 MOVE (1) $A6_3, $A6_2
7.02 MOVE (1) $A6_4, $A6_3
7.03 LD (1) *($A4), $A6_4
 : :
8.00 LOOP: MOVE (1) $A6_1, $A6
8.01 MOVE (1) $A6_2, $A6_1
8.02 MOVE (1) $A6_3, $A6_2
8.03 MOVE (1) $A6_4, $A6_3
8.04 ADD (1) $A6, $A7, $A7
8.05 [$A1] LD (1) *($A4), $A6_4
8.06 MOVE (1) 0, $P0
8.07 [$P0] GOTO (0) LOOP
 : :

Figure 5. Selected MST Instructions for Vectorsum

Figure 5 shows selected MST instructions for the

Vectorsum of Figure 4. We determine that the LD
instruction in cycle 4 with four delay slots has its write-
back stage in the fall-through block (LOOP). The LD

instruction is now written to virtual register A6_4 and the
instruction delay is changed from five cycles to one cycle.
In cycle 5, A6_4 is written to A6_3; in cycle 6, A6_3 is
written to A6_2; in cycle 7, A6_2 is written to A6_1. The
path continues to the fall-through block, where A6_1 is
written to the original register A6 in cycle 8. Similarly, we
determine the write-back stage of the LD instruction in
cycle 5 occurs at the end of the second iteration of the
LOOP block, and perform the same procedure as above.
Although this LD instruction writes to register A6_4 in
parallel with the assignment of A6_4 to A6_3,
nevertheless, the one cycle delay on the former forces the
latter to be correctly dependant on the previous value of
A6_4 in cycle 4. The final two virtual register assignments
for this instruction both occur in cycle 8 of the LOOP
block.

4.2. Traditional Optimizations

Several traditional optimizations have been
implemented at the CDFG level of the compiler [2] as
shown in Figure 6. Many of the optimizations utilize
reaching definitions to determine definition-use
dependencies [2]. Prior to running the optimizations, input
and output ports are identified using reaching definitions.
An input port is defined as a node that is used, but has no
prior definition; an output port is defined as a node that
has a definition but no subsequent uses; an inout port is a
variable that has been defined as both an input and output
port. The CDFG is then converted into Static single
variable assignment (SSA) form, which is essential in
removing dependencies among registers and decreasing
the lifetime of variables. The effects of SSA are apparent
in register allocation, dead code elimination and resource
binding.

The goal of the CDFG optimizations is to reduce the
code size and resource usage, and increase the frequency
of the design. The compiler runs the following
optimizations repeatedly until the design converges.

Undefined variable elimination assigns a value of zero
to a node that is used prior to having been defined, which
would otherwise produce erroneous results in hardware.

Common sub-expression elimination uses hash-defined
strings in determining redundant operations that
frequently arise after loop unrolling is performed.
Similarly, redundant memory access elimination uses
hash-defined strings to represent memory addresses for
determining redundant memory operations that often
occur after unrolling a loop or due to memory spilling
optimziations. A memory operation is said to be
redundant if: two consecutive memory read operations
access the same address, the second memory read
operation is eliminated and the result of the first memory
read operation is forwarded; two consecutive memory

write operations access the same address, the first memory
write operation is eliminated; a memory read operation
immediately follows a memory write operation in which
both access the same address, the memory read operation
is eliminated and the value written to memory is
forwarded.

Identify
Input/Output Ports

Single Static
Variable Assignment

Constant Folding

Constant Propagation

Strength Reduction

Merge Block Sets

Undefined Variable
Elimination

Common Sub-
expression Elimination

Constant Predicate
Elimination

Dead Code Elimination

Change in
CDFG?

Copy Propagation

CDFG

Yes

No

Redundant Memory
Access Elimination

Predicate Reduction

Identify
Input/Output Ports

Single Static
Variable Assignment

Constant Folding

Constant Propagation

Strength Reduction

Merge Block Sets

Undefined Variable
Elimination

Common Sub-
expression Elimination

Constant Predicate
Elimination

Dead Code Elimination

Change in
CDFG?

Change in
CDFG?

Copy Propagation

CDFGCDFG

Yes

No

Redundant Memory
Access Elimination

Predicate Reduction

Figure 6. Compiler Optimizations at the CDFG level.

Copy propagation is a transformation that given an

assignment of variables x�y, replaces later uses of x with
y, as long as the intervening instructions have not changed
the value of either x or y [2]. Constant propagation is
similar to copy propagation, in that given an assignment
x�c for a variable x and a constant c, the optimization
replaces later uses of x with c, as long as the intervening
instructions have not changed the value of x [2]. Constant
folding solves for operations on constants at compile time.

Strength reduction and algebraic simplification are
performed simultaneously to replace assembly operations
that may produce costly hardware structures in RTL HDL
with simplified operations. For instance, a multiplication
or division by a constant value that is a power of two is
replaced by a shift operation to save cycle delays and
resource utilization.

Constant predicate elimination solves for predicated
instruction in which the predicate condition is constant
and may be solved at compile time. These conditions

often arise after constant propagation is performed.
Predicate reduction is an optimization that reduces
multiple sequences of conditional set operations, generally
used as predicates for other operations. The result of this
optimization leads to a reduction in the number of
multiplexers implemented in a hardware design, saving
the cost of area and critical path.

Merging block sets is an optimization that merges the
nodes in a set of consecutive blocks, where the first block
is the only predecessor to the second block, and the
second block is the only successor to the first block. The
result produces more efficient scheduling techniques,
allowing for more parallelism in a design.

Finally, dead code elimination removes operations in
which there are no subsequent uses of the resulting value.

4.3. Procedure Extraction

Procedures are extracted from the linked assembly using
an idiomatic approach. Three passes are used to identify
function bodies within the binary. They use the procedure
calling convention [21] to recognize caller prologues and
callee epilogues. Details of the procedure extraction
algorithms are described in a related paper [26].

4.4. Exploiting Fine-Grain Parallelism through

Scheduling

As was mentioned in the introduction, the real benefit
of migrating applications from a DSP processor onto an
FPGA is in exploiting the on-chip parallelism. For
example, the Xilinx Virtex II Pro [19] XC2Vp125 has 556
embedded multipliers that can potentially exploit 556-way
parallelism in each clock cycle. Hence, one needs to
explore the fine grain parallelism that is inherent in the
CDFG through data scheduling.

The scheduling and binding pass performs behavioral
synthesis on the CDFG representation by scheduling the
computations of nodes in each basic block in the data flow
graph onto various resources (adders, multipliers, etc).
The delay and resource availability is used to schedule as
many operations in parallel as possible. The type and
quantity of each of these architectural resources are
described using the Architecture Description Language
(ADL) of the target FPGA. The high-level synthesis
algorithms handle multi-cycle operators during
scheduling, as well as multi-cycle memory read and write
operations.

Two simple scheduling algorithms have been
implemented, namely, As Soon As Possible (ASAP) and
As Late As Possible (ALAP) scheduling [27]. Using
ALU operation chaining, one is able to schedule many
more simple operations per state, mainly those that do not

affect the frequency of the design. Complex structures,
such as multiplication, are generally not chained, as they
tend to increase the critical path of the design [27].

4.5. Register Allocation

Register allocation is an optimization that is performed
after scheduling to reduce the number of registers, which
generally leads to smaller design size. Unlike DSP
processor architectures, FPGAs are not limited to a small,
fixed number of registers. Since they are capable of
handling significantly more registers, one does not need to
be concerned with issues such as memory spilling.
However, one must realize that the scheduling of
operations affect the number of possible register reuses.

Register allocation was implemented on the
FREEDOM compiler using the Linear-Scan (left-edge)
algorithm [33]. We assume the nodes in the CDFG are in
SSA form, in which data dependencies are broken. We
also assume an unbound number of register resources in
the target FPGA, and our task is to assign the variable
lifetimes to the smallest subset of registers. Prior to
running the Linear-Scan algorithm, one must determine
the liveness of each variable, or the time from the
variable’s first definition until its last use. This
information is obtained from the nodes in the CDFG after
scheduling [27].

4.6. Loop Unrolling

The unrolling optimization helps exploit on chip
parallelism. It takes a loop body and generates an unrolled
form by attaching successive copies of all the instructions
inside. For example, the CDFG shown in the basic block
of Figure 2(b) can be unrolled four times to get four times
as many operators to schedule in a given time step. A key
step in applying optimizations in the compiler is to
recognize high-level language constructs such as loops,
and array subscripts. Loop unrolling is performed through
recognizing loop constructs using interval analysis on the
flow graph. Loop variables are adjusted for unrolling by
using induction analysis within the loop body.

4.7. Memory and Register Optimizations

General-purpose DSP processors have a limited
number of memory ports (typically 2) for supporting
memory loads and stores, and a small number of
functional units (2-4) that can operate in parallel. The
advantage of mapping applications to FPGAs is that one
can exploit the parallelism in a design by implementing a
large number of computations in parallel. However, in
doing so, one also requires a greater storage area. One can

Table 1. Results of FREEDOM compiler translating TI C6000 DSP assembly programs
to Xilinx Virtex II FPGAs.

 TI C6000 processor Xilinx Virtex II FPGA

Benchmark Cycles Freq (MHz) Cycles Area (LUT) Freq (MHz)
Speedup
(cycles)

Speedup
(exec time)

dot_prod 12516 300 1555 1063 83.9 8.0 2.3

iir 22987 300 2105 2170 87.4 10.9 3.2

fir16tap 113285 300 16400 1301 84.3 6.9 1.9

fir_cmplx 72856 300 9637 3690 84.3 7.6 2.1

matmul 1799064 300 138602 1672 87.9 13.0 3.8

laplace 74673 300 5174 2655 120.9 14.4 5.8

sobel 127495 300 11744 4213 106.4 10.9 3.9

gcd 268 300 78 862 152.1 3.4 1.7

ellip 335 300 105 1402 122 3.2 1.3

diffeq 2318 300 119 1831 88.3 19.5 5.7

store the data for an FPGA design in registers, or
embedded RAMs.

If we map all variables to registers, we can access all
the data in parallel, however, the results of these registers
have to be distributed through large multiplexers to
various functional units. This can increase the amount of
area required by a design. However, if one maps all these
variables onto embedded RAMs, one can reduce the cost
of the multiplexers on the FPGAs, but at the cost of
reduced memory bandwidth. We use a simple heuristic in
that all scalar variables are mapped to registers, and all
array variables that are greater than 128 bytes are mapped
to embedded memories. By using the embedded block
RAMs on the FPGA it is therefore possible to support
larger data bandwidths through parallel memory access.

Towards this effort, the FREEDOM compiler generates
RTL VHDL and Verilog codes that allow backend
synthesis tools, such as Synplify Pro [9], to automatically
infer both synchronous and asynchronous RAMs. Memory
pipelining is used to improve the throughput performance.
Through alias analysis, we are able to automatically
partition data into different memories, thus increasing the
number of memory access per state and the parallelism in
the design.

4.8. Memory and Data Partitioning through

Alias Analysis

When compiling high-level language programs onto a
DSP processor, global variables are generally mapped
onto the data memory and local variables are placed on
the stack. The limited size of the register file often
requires that variables be spilled to the memory, thus
generating numerous memory accesses. When such codes
are translated into RTL VHDL or Verilog, it severely
limits the performance on the FPGA since the FPGA is
capable of supporting an extensive number of registers far

beyond the scope of a DSP processor. Furthermore, when
this code is unrolled, successive iterations of a loop must
wait for the preceding memory writes to complete before
performing their operations. Other limitations are apparent
when loop indices are placed on the stack. These
problems can be resolved through alias analysis and
partitioning data across different memories.

A simple aliasing technique has been devised for the
stack and memory. It requires that any memory access
have addresses of the type *B[x*R+y], where B is the
base address, R is a register, and x and y are numeric
constants. Two address expressions refer to the same
location if x, y and R are identical. The simplicity of the
technique relies on the fact that memory addresses are
usually modified by immediate values only. Within a loop,
the array base would remain the same while the offset
would change based on the loop index, represented by R.
It is aided by induction analysis, by removing some of the
register name dependence.

In a simple 2D-array, stored in the row-major form
A[I,J], the address expression would be “x*I+J+y” .
Here, x would be the row length and y the base. The
arrays are distinguished by the difference in their bases. In
our experiments, data on array sizes and offsets has been
used when convenient. User input of minimum array sizes
has also been used effectively in some cases. The
occurrence of address expressions within loops and the
presence of loop iterators within the expressions are
indicators to the presence of arrays.

5. Experimental Results

The FREEDOM compiler was tested using the Texas
Instruments C6000 DSP processor architecture [4] and
assembly language as the DSP processor platform, and
Xilinx Virtex II [19] as the target FPGA platform.

The TI C6000 processor (model C64x) has 64 general-

purpose 32-bit registers, 2 multipliers, and 6 ALUs. It can
execute up to 8 simultaneous instructions. It supports
8/16/32-bit data, and can additionally support 40/64 bit
arithmetic operations. It has two sets of 32 general-
purpose registers, each 32 bits wide. Two multipliers are
available that can perform two 16x16 or four 8x8
multiplies each cycle. It has special support for non-
aligned 32/64-bit memory access. The C64x has support
for bit level algorithms and for rotate and bit count
hardware.

We now report on the results on ten benchmark
examples that were originally available in C. We used the
TI Code Composer Studio to generate the TI software
assembly version for those codes. The RTL HDL codes
generated by the compiler were synthesized using the
Synplify Pro 7.2 logic synthesis tool [3] from Synplicity
and mapped onto Xilinx Virtex II XC2V250 devices [19].
These synthesis results were used to obtain estimated
frequencies and area utilization for each benchmark. The
areas of the synthesized designs were measured in terms
of Look Up Tables (LUTs) for the Xilinx FPGAs. The
RTL HDL codes were also simulated using the ModelSim
5.6 tool from Mentor Graphics. In each case the bit-
accuracy of the results was confirmed. The execution
times on the FPGAs were measured by counting the
number of clock cycles needed to simulate the designs on
the FPGAs using ModelSim. The execution time for the
software implementation on the embedded processor was
measured using the TI C6000 simulator.

 Table 1 shows the results of the implementations of
the 10 benchmarks on a DSP processor and on a Xilinx
Virtex II XCV2V250 FPGA. The first column lists the
benchmarks. The second column shows the execution time
of the benchmark in clock cycles on a TI C6000 DSP
processor using the TI Code Composer Studio instruction
level simulator. The third column shows the maximum
frequency of operation of the TI C6000 processor. The
fourth, fifth, and sixth columns show the results of our
FREEDOM compiler mapping DSP assembly programs
onto FPGAs in terms of execution time in cycles on a
Xilinx FPGA (measured by ModelSim), area of the FPGA
implementation (measured in Look Up Tables by Synplify
Pro 7.2), and frequency of the design (measured in MHz
estimated by Synplify Pro). We can see that using our
automated compilation techniques, it is possible to obtain
performance gains of about 3-20x with an FPGA over the
DSP processor with respect to clock cycles. In terms of
actual execution times, including the impact of the clock
frequencies, the performance gains are about 1.3-5x with
an FPGA over an embedded processor. The impact of
various optimizations on the area, frequency and
performance are described in a related publication [25].

One may speculate that decompiling software binaries
into a high-level language, such as C, and using a

behavioral synthesis tool to generate hardware would
produce better results. In order to test this hypothesis we
took all ten example benchmarks in C, and used the PACT
compiler [10] to generate a hardware implementation on
an FPGA. Both the FREEDOM and PACT compilers use
very similar optimizations and are therefore comparable.
Table 2 shows a comparison of the PACT compiler results
with our FREEDOM compiler in terms of area, frequency
and cycles. It is clear that the results of the two
approaches are comparable. This validates our claim that
one does not need to decompile software binaries or
assembly code to a high-level language in order to obtain
quality results. Rather, assembly and binary codes may be
used as an intermediate language from any high-level
language to generate efficient hardware implementations.

Table 2. Performance Comparison between PACT and
FREEDOM compilers.

PACT

(C to FPGA)
 FREEDOM

(Assembly to FPGA)

Benchmark Cycles Area Freq Cycles Area Freq

dot_prod 3357 2447 69.2 1555 1063 83.9

iir 3010 5873 98.4 2105 2170 87.4

fir16tap 115209 547 69.7 16400 1301 84.3

fir_cmplx 8499 6083 57.9 9637 3690 84.3

matmul 277703 2155 70.2 138602 1672 87.9

laplace 8467 10000 78.2 5174 2655 120.9

sobel 81418 7873 57.6 11744 4213 106.4

gcd 48 322 158.2 78 862 152.1

ellip 43 1222 180.0 105 1402 122.0

diffeq 79 1396 69.4 119 1831 88.3

6. Conclusions

 This paper described the process and considerations
for designing a compiler that translates DSP algorithms
written in the assembly language or binary code of a DSP
processor into Register Transfer Level (RTL) VHDL or
Verilog code for FPGAs. Experimental results were
shown on ten assembly language benchmarks from signal
processing and image processing domains. Results
showed performance gains between 3-20x in terms of
reductions of execution cycles and 1.3-5x in terms of
reductions of execution times for the FPGA designs over
that of the DSP processor.

The preliminary results are very encouraging. Future
work includes a look at more complex benchmarks (e.g.
MPEG4, JPEG2000, MP3 decoders, Viterbi, Turbo
decoders, 3G and 4G wireless applications), other
optimizations for area, delay and power reduction.
Finally, we will investigate the issues of
hardware/software co-design and function partitioning.

7. References

[1] G. DeMicheli, Synthesis and Optimization of Digital

Circuits, McGraw Hill, 1994.
[2] Steven S. Muchnick. Advanced Compiler Design

Implementation. Morgan Kaufmann, San Francisco, CA.
[3] Synplicity. Synplify Pro Datasheet, www.synplicity.com.
[4] Texas Instruments, TMS320C6000 Architecture

Description, www.ti.com
[5] N. Ramsey, and M.F. Fernandez, “Specifying

Representations of Machine Instructions”, ACM
Transactions on Programming Languages and Systems,
May 1997.

[6] N. Ramsey, and M.F. Fernandez, “New Jersey Machine-
Code toolkit”, Proceedings of the 1995 USENIX Technical
Conference, January 1995.

[7] C. Cifuentes and K.J. Gough, “A Methodology for
Decomposition”, XIX Conferencia Latinoamericana de
Informatica, August 1993.

[8] C. Cifuentas and V. Malhotra, “Binary Translation: Static,
Dynamic, Retargetable?”, Proc. Int. Conf. On Software
Maintenance, Monterey, CA, Nov. 1996.

[9] A. Klaiber, “The Technology Behind Crusoe Processors,”
Transmeta Corp., White Paper, Jan. 2000,
www.transmeta.com

[10] A. Jones et al, "PACT HDL: A C Compiler with Power and
Performance Optimizations," Proc. CASES 2002,
Grenoble, France, October 2002.

[11] G. Stitt and F. Vahid, “Hardware/Software Partitioning of
Software Binaries,” Proc. Int. Conf. Computer Aided
Design (ICCAD), Santa Clara, CA, Nov. 2002, pp. 164-
170.

[12] G. Stitt et al, “Dynamic Hardware/Software Partitioning: A
First Approach,” Proc. Design Automation Conf.,
Anaheim, CA, Jun. 2003, pp. 250-255.

[13] B. Levine, H. Schmidt, “Efficient Application
Representation for HASTE: Hybrid Architectures with a
Single Executable”, Proc. IEEE Symp. FCCM, Apr. 2003.

[14] Z. Ye et al, "CHIMAERA: A High-Performance
Architecture with a Tightly-Coupled Reconfigurable
Functional Unit," Proc. 27th International Symposium on
Computer Architecture, Vancouver, CANADA, June 10-
14, 2000.

[15] CriticalBlue, Cascade Tool Set, www.criticalblue.com
[16] V. Bala et al, “Dynamo: A Transparent Dynamic

Optimization System,” Proc. ACM SIGPLAN Conf. On
Programming Language Design and Implementation
(PLDI), June 2000.

[17] M. Gschwind et al, “Dynamic and Transparent Binary
Translation,” IEEE Computer Magazine, Vol. 33, No. 3,
pp. 54-59, March 2000.

[18] David Callahan et al, “Constructing the procedure call
multigraph”, IEEE Trans. Software Engineering, April
1990.

[19] Xilinx VirtexII Datasheets, www.xilinx.com
[20] K. Cooper et al, “Building a Control-Flow Graph from

Scheduled Assembly Code,” Dept. of Computer Science,
Rice University.

[21] M. Bailey and J. Davidson, “A formal model and
specification language for procedure calling conventions”.

ACM Symposium on Principles of Programming
Languages, Jan. 1995.

[22] Van Emmerik M. J., "Identifying Library Functions in
Executable Files Using Patterns", Proceedings of the 1998
Australian Software Engineering Conference, Adelaide,
9th to 13th November, 1998, IEEE-CS Press, pp 90-97.

[23] C. Cifuentes and D. Simon, “Procedure Abstraction
Recovery from binary code”, Dept. of Computer Science,
University of Queensland, 1999.

[24] Xilinx Corp, “Extreme DSP: DSP Implementation
Techniques for FPGAs,” http://support.xilinx.co.jp/
support/training/abstracts/v4/dsp_final.pdf

[25] G. Mittal, D. Zaretsky, X. Tang, and P. Banerjee,
"Automatic Translation of Software Binaries onto FPGAs,"
Proc. Design Automation Conference (DAC 2004), San
Diego, Jun. 2004.

[26] G. Mittal, D. Zaretsky, P. Banerjee, “Automatic Extraction
of Function Bodies from Software Binaries,” Submitted to
Int. Conf. Computer Aided Design (ICCAD), Santa Clara,
CA, Nov. 2004,

[27] D. Zaretsky, G. Mittal, X. Tang, P. Banerjee, “Evaluation
of Scheduling and Allocation Algorithms While Mapping
Software Assembly onto FPGAs,” Proc. Great Lakes
Symp. on VLSI (GLSVLSI 2004), Apr 2004, Boston, MA,
USA.

[28] Adelante Technologies, “A|RT Builder,”
www.adelantetechnologies.com

[29] Celoxica Corp, Handle C Design Language,
www.celoxica.com

[30] Forte Design Systems, Behavioral Design Suite,
www.fortedesign.com

[31] P. Banerjee, M. Haldar, A. Nayak, V. Kim, J. Uribe,
"AccelFPGA: A DSP Design Tool for Making Area Delay
Tradeoffs While Mapping MATLAB Programs onto
FPGAs," Proc. Int. Signal Processing Conference (ISPC),
Mar. 31-Apr. 3, 2003, Dallas, TX.

[32] Altera Stratix Datasheets, www.altera.com
[33] M. Poletto and V. Sarkar, “Linear Scan Register

Allocation,” ACM Trans. on Programming Languages and
Systems, Vol. 21, No. 5, pp. 895-913, Sept. 1999.

