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Abstract 
 

Applications that require digital signal processing 
(DSP) functions are typically mapped onto general 
purpose DSP processors. With the introduction of 
advanced FPGA architectures with built-in DSP support, 
a new hardware alternative is available for DSP 
designers. By exploiting its inherent parallelism, it is 
expected that FPGAs can outperform DSP processors. 
However, the migration of assembly code to hardware is 
typically a very arduous process. This paper describes the 
process and considerations for automatically translating 
software assembly and binary codes targeted for general 
DSP processors into Register Transfer Level (RTL) VHDL 
or Verilog code to be mapped onto commercial FPGAs. 
The Texas Instruments C6000 DSP processor architecture 
has been used as the DSP processor platform, and the 
Xilinx Virtex II as the target FPGA. Various optimizations 
are discussed, including loop unrolling, induction 
variable analysis, memory and register optimizations, 
scheduling and resource binding. Experimental results on 
resource usage and performance are shown for ten 
software binary benchmarks in the signal processing and 
image processing domains. Results show performance 
gains of 3-20x in terms of reductions in execution cycles 
and 1.3-5x in terms of reductions in execution times for 
the FPGA designs over that of the DSP processors in 
terms of reductions of execution cycles. 

 
 

1. Introduction 
 

Recent advances in embedded communications and 
control systems for personal and vehicular environments 
are driving efficient hardware and software 
implementations of complete systems-on-chip (SOC). 
Two way radios, digital cellular phones, wireless Internet, 
3G and 4G wireless receivers, MPEG 4 video, voice over 
IP, and video over IP are examples of applications which 
require digital signal processing (DSP) functions that are 
typically mapped onto general purpose DSP processors, 
such as the Texas Instruments TMS320C6000 [4], the 
Analog Devices SHARC, and the Motorola STARCORE 
processors. However, it is widely believed that such 

processors will be unable to support the computational 
requirements of future DSP applications [24]. 

The conventional way to address the computational 
bottleneck has been to replace the DSP processor with an 
application specific integrated circuit (ASIC), which 
allows the designers to optimize for power consumption 
and functional parallelism. However, the design time and 
cost of such an implementation is very high. With the 
introduction of advanced Field Programmable Gate Array 
(FPGA) architectures that provide built-in DSP support, 
such as the Xilinx Virtex II [19] and the Altera Stratix 
[32], a new hardware alternative is now available for DSP 
designers. FPGAs combine the programming advantage of 
a general purpose DSP processor with the performance 
advantage of an ASIC. By exploiting its inherent 
parallelism, it is expected that FPGAs can provide more 
flexible and optimal solutions for DSP applications in a 
hardware/software co-design system.  

Generally, the path from DSP algorithms to FPGA 
implementations is a complex and arduous task. Hardware 
design teams take the specifications created by the DSP 
engineers (in the form of a fixed point C, C++, or 
MATLAB,) and create a register transfer level (RTL) 
model in a hardware description language (HDL) such as 
VHDL and Verilog. The RTL HDL is synthesized by a 
logic synthesis tool, and placed and routed onto an FPGA 
using backend tools. Recently, there have been some 
behavioral synthesis tools that can automatically generate 
RTL descriptions from high-level descriptions in C 
[28,29,30] and MATLAB [31].  

This paper describes the process and considerations for 
automatically translating software binaries that are 
targeted for general DSP processors into Register Transfer 
Level (RTL) VHDL or Verilog code to be mapped onto 
commercial FPGAs. The motivations for developing a 
translator from assembly code or binary to hardware are 
as follows: 
1.  As more DSP applications begin to require further 

computational power than what DSP processors can 
provide, there will be a need to migrate applications 
to hardware in the form of FPGAs.  

2.  There is a large established code base of DSP 
algorithms optimized for specific processor families. 



Some of it is hand-coded for better performance or 
for reduced memory requirements. 

3.  Tools are available to implement C/C++, MATLAB 
and SIMULINK designs on DSP processors. Hence, 
the binary or assembly language can be used as an 
intermediate language from all high-level languages. 

4.  One may choose to migrate sections of code in a DSP 
processor application to hardware in order to obtain 
better performance results using a co-design system. 

 
There has been previous work on binary translation 

from one processor’s instruction set to another. There has 
also been work on decompilation, i.e. translating software 
binaries into high level programming languages such as C. 
Finally, there has been recent work in behavioral synthesis 
that takes a design written in a high-level language such as 
C and automatically generates hardware.  Our paper is the 
first complete system that directly translates software 
binaries to hardware systems using FPGAs.  

A simple approach to translating software binaries and 
assembly to RTL VHDL would be to map each assembly 
instruction onto one RTL operation per state in a finite 
state machine. Clearly, there will be no performance 
benefit when mapping such a design to hardware. The real 
benefit of migrating applications from a DSP processor 
onto an FPGA is in exploiting the on-chip parallelism.  
The question is whether or not it is possible to 
automatically infer the high-level control structure of a 
given application, perform all the necessary data flow and 
parallelism analysis at the assembly level, and manage to 
obtain a performance in a hardware implementation that is 
at least an order of magnitude faster than a software 
implementation. The true test in this approach is in 
experimentally evaluating the quality of the synthesized 
hardware results in terms of area and performance. The 
key contribution of this paper is in answering this 
fundamental question.   

Our goal in this paper is not to compete with the best 
manual hardware implementation of a DSP algorithm on 
an FPGA [24], nor are we suggesting this approach as a 
better alternative to high-level synthesis. Rather, we wish 
to show that it is possible to migrate legacy assembly 
code for a state-of-the-art DSP processor seamlessly to 
hardware and still obtain an order of magnitude 
improvement in performance. 

 
 The rest of the paper is organized as follows.  

Section 2 reviews related work in the area.  An overview 
of the compiler is presented in Section 3. Section 4 
describes various optimizations used in the compiler.  
Section 5 described the experimental framework used to 
evaluate our compiler and experimental results on ten 
benchmark applications.  Finally, conclusions and future 
work are described in Section 6  

2. Related Work 
 

The problem of translating a high-level or behavioral 
language description into a register transfer level 
representation is called high-level synthesis [1].  In 
contrast to traditional behavioral synthesis tools that take 
a behavioral description of an application in a language 
such as C/C++ or MATLAB and generate a RTL HDL 
implementation automatically, our compiler maps 
software binaries and assembly language codes into RTL 
VHDL for mapping onto FPGAs. 

 There has been some related work in the field of 
binary translation for converting assembly or binary codes 
written for one processor to another processor’s ISA. 
Cifuentes et al [7,8] have done a lot of fundamental work 
in binary translation and decompilation. The Transmeta 
Crusoe processor performs dynamic code translation on 
the fly using a technique called CodeMorphing by 
translating code from an Intel x86 ISA and targeting the 
Crusoe processor, a VLIW machine [9]. Bala et al [16] 
have developed the Dynamo system for dynamic binary 
optimization for the HP architecture.  Gschwind [17] has 
developed a similar system called BOA for the PowerPC 
architecture. Cooper et al [20] have reported methods to 
construct Control and Data Flow Graphs from scheduled 
assembly code. Baily and Davidson [21] introduced a 
formal model to specify procedure-calling conventions. 
Cifuentes and Simon [23] have described a Procedure 
Abstraction Language that can be used to specify the 
calling conventions for different architectures. Van 
Emmerik described the use of patterns to identify library 
functions in executables [23].  

The above-mentioned work deals mainly in translating 
binary codes from one fixed ISA to another. However, our 
compiler differs in that it automatically translates binary 
codes from one ISA into hardware in the form of RTL 
VHDL and Verilog. 

There has been related work in the area of hardware-
software co-designs. Stitt and Vahid [11] have reported 
work on hardware-software partitioning of binary codes. 
They took kernels from frequently executed loops at the 
binary level for a MIPS processor and investigated their 
hardware implementations on a Xilinx Virtex FPGA; this 
study was done manually. Stitt et al [12] have recently 
reported work on dynamic partitioning of 
hardware/software of software binaries for a MIPS 
processor. They have developed an approach to take 
kernel functions consisting of simple loops and 
automatically map them onto reconfigurable hardware. 
The hardware used is significantly simpler than 
commercial FPGA architectures. The automatic 
generation of RTL code is limited to only combinational 
logic. Hence the loops that must be implemented on the 
hardware are implemented in a single cycle. This 



approach only works for sequential memory addresses and 
fixed size loops. The focus of their work is on fast 
dynamic hardware software partitioning, whereas the 
focus of our work is on the actual automated synthesis of 
software binaries onto hardware. 

Levine and Schmidt [13] have proposed a hybrid 
architecture called HASTE, which consists of an 
embedded processor and a reconfigurable computational 
fabric (RCF) inside a chip. Instructions from the processor 
are dynamically compiled onto the RCF using a hardware 
compilation unit (HCU). Ye et al [14] have developed a 
compiler for the CHIMAERA architecture with a similar 
architecture of a general-purpose processor connected to a 
reconfigurable functional unit (RFU).  

CriticalBlue, an Electronic Design Automation 
(EDA) start-up [15], has recently announced the launch of 
its Cascade Tool Suite. Cascade synthesizes a hardware 
co-processor specifically designed to accelerate software 
tasks selected by the user. However, there is no 
description of the technology or any published 
benchmarking results that would enable us to compare this 
compiler to their approach. 

 

3. Overview of the Compiler 
 

We now provide an overview of the FREEDOM 
compiler’s infrastructure, which is illustrated in Figure 1. 
The compiler was designed to have a common entry point 
for all assembly languages. To this effort, the front-end 
requires a description of the processor ISA in order to 
configure the assembly language parser. It uses ISA 
specifications written in SLED from the New Jersey 
Machine-Code toolkit [5,6], coupled with a new semantic 
description language designed for this project. The parser 
generates a virtual assembly representation called the 
Machine Language Abstract Syntax Tree (MST).  

The MST representation is similar to the MIPS 
processor ISA in syntax, and is generic enough to 
encapsulate most ISAs, including but not limited to ARM, 
MIPS, Intel IA-32 and IA-64, and Texas Instruments TI 
320TMSC6000 processors.  It supports both predicated 
and parallel instruction sets. All MST instructions are 
three-operand, predicated instructions, in which one or 
more of the operands may be null. An MST Instruction is 
defined as:  
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Figure 1. Overview of the FREEDOM compiler.  



Label: if (pred OR (pred== null) ) then do 
 dst ←  op (src1, src2) 

 
 Operand types include: memory addresses, registers, 

immediate values, and labels. Operator types include, but 
are not limited to: logical operators (AND, NAND, NEG, 
NOR, NOT, OR, SLL, SRA, SRL, XNOR, XOR), 
arithmetic operator (ADD, DIV, MULT, SUB), branch 
operator (BEQ, BGEQ, BGT, BLEQ, BLT, BNEQ, 
GOTO, JMP, CALL), comparison operators (CMPEQ, 
CMPNEQ, CMPLT, CMPLE, CMPGT, CMPGE), 
assignment operator (LD, ST, MOVE, UNION), and 
general operators (NOP).  

 The Control and Data Flow Graph (CDFG) is 
generated from the MST, and represent the data 
dependencies and the flow of control. Static-single 
variable assignment (SSA) is used to break the register 
name dependencies.  

 Several traditional optimizations are performed on 
the CDFG [2]. Scheduling and resource binding are also 
preformed on the CDFG, where computations in each 
basic block are mapped onto various resources (adders, 
multipliers, etc) in different states within a finite state 
machine. Figure 2 shows an example assembly code and 
the corresponding CDFG representation of a dot-product 
application. 

 
 

DOTPROD:  MVK  .S1  500, A1    
 ZERO .L1  A7 
  MVK  .S1  2000, A3 
LOOP:   LDW   .D1  *A4++,A2   
 LDW  .D1  *A3++,A5   
  NOP  4          
  MPY .M1   A2,A5,A6   
  SUB .S1   A1,1,A1    
  ADD .L1   A6,A7,A7  
  [A1]   B  .S2  LOOP       
  NOP   5 
  STW .D1  A7,*A3 

(a) TI C6000 Assembly code 
 
 

 
(b) CDFG representation 

 
Figure 2. Assembly code and CDFG for dot-product. 

The optimized CDFG is translated into another 
intermediate abstract syntax tree, analogous to a high-
level Hardware Description Language (HDL). The HDL 
models processes, concurrency, and finite state machines. 
Additional optimizations and customizations are 
performed on the HDL to enhance the efficiency of the 
output and to correctly support the target device’s 
architecture. Architecture-specific information is acquired 
via the Architecture Description Language (ADL) files. 
This includes data pertaining to resource availability, 
signal names, etc. Memory models are generated in the 
HDL as required by backend synthesis tools, such as 
Synplify Pro [3], to automatically infer both synchronous 
and asynchronous RAMs. Memory pipelining is used to 
improve the throughput performance. 

 The complete HDL is translated directly to RTL 
VHDL and Verilog to be mapped onto FPGAs, while 
automatically generating a testbench to verify the 
correctness of the output. The testbenches are used to 
guarantee bit-true behavior in the synthesized hardware, 
compared to that of the original TI assembly code 
versions.  

 

4. Compiler Optimizations 
 

It is obvious that without optimizations, the 
performance of an FPGA would be much worse than that 
of a DSP processor.  The uniqueness of our compiler is in 
the methodologies and the various compiler optimizations 
that we have developed in order to exploit the inherent 
parallelism of the FPGA. A key step in applying some of 
these optimizations is the recognition of high-level 
language constructs such as loops, and arrays. We now 
discuss these optimizations in detail. 

 
4.1.  Analyzing Data Dependencies in Scheduled 

Software Binaries 
 
The fixed number of physical registers on processors 

necessitates the use of advanced register reuse algorithms 
by compilers. This introduces false dependencies based on 
the register names, and results in difficulties when 
determining correct data dependencies, specifically when 
dealing with scheduled or pipelined binaries and parallel 
instruction sets. As a solution, each MST instruction is 
assigned a timestamp, specifying a linear instruction flow. 
Each cycle begins with an integer base stamp ‘T’ . Parallel 
instructions are assigned the timestamps ‘Tn = T + 0.01 x 
n’ in succession. Assembly instructions that expand to 
more than one MST instruction are assigned timestamp 
values ‘Tn = T + 0.0001 x n’. Each MST instruction is 
also assigned an operation delay, equivalent to the number 
of execution cycles. The write-back time for the 



instruction, or the cycle in which the destination register is 
valid, is defined as wb = timestamp + delay.  

Figure 3 illustrates how the timestamp and delay are 
used to determine data dependencies. In the first 
instruction, the MPY operation has one delay slot and 
therefore requires two cycles to complete. The new value 
of register A4 is not written until the end of cycle 1, and 
may only be used at the beginning of cycle 2. 
Consequently, the first three instructions are dependant on 
the same source register A4. Similarly, the ADD 
instruction at cycle 2.00 is dependant on registers A4 in 
cycle 0.00 and A2 in cycle 1.00, but not on register A2 of 
the LD instruction at cycle 1.01. 

 
 

0.00   MPY (2) $A4, 2, $A4 
1.00   ADD (1) $A4, 4, $A2 
1.01   LD  (5) *($A4), $A2 
2.00   ADD (1) $A4, $A2, $A3 

Figure 3. Timestamps and delays for MST 
instructions. 

 
 

Scheduled or pipelined software binaries present many 
difficulties when attempting to analyze data dependencies. 
In the Vectorsum example in Figure 4, each branch 
instruction is executed in consecutive iterations of the 
loop. Furthermore, the dependencies of the ADD 
instruction in the loop body changes with each iteration of 
the loop. In order to correctly determine data 
dependencies in scheduled or pipelined assembly codes, 
one must linearize the assembly code, which can be 
accomplished in three steps.  The first step is to build a 
correct control flow graph representation, using the 
algorithm developed by Cooper et al [20].  

The second step is to linearize pipelined branch 
operations by moving a copy of the branch instruction to 
all possible write-back times in the CFG, and then setting 
its delay to zero. The source and predicate operands of the 
branch instruction are stored in temporary virtual 
registers. If a branch operation is not predicated, but its 
execution time falls outside its current block in the CFG, a 
predicate is added to the instruction. An example is shown 
in cycle 3 of Figure 5. If the normal control flow passes 
through the branch instruction’s original position in cycle 
3, the virtual predicate operand P0 is set. When the 
control flow reaches the branch instruction’s intended 
execution stage at the end of cycle 8, P0 is reset in parallel 
with the branch execution, thus preventing the branch 
instruction from further execution outside the normal 
control flow. 

The third step is to levelize pipelined operations. This 
is accomplished by breaking up a multi-cycle instruction 
whose write-back time occurs in another block into 
multiple single-cycle instructions. Virtual registers are 
introduced at each state of the levelization process. For an 

instruction with n delay slots, the original instruction is 
written to a temporary virtual register Rn and the delay on 
the instructions is changed to one cycle. In each 
successive cycle, we move virtual registers Rn-1�Rn, Rn-

2�Rn-1, … R0�R1, where R0 is the original register name. 
This approach assumes that no two instructions are ever 
scheduled to write back to the same register in the same 
cycle. When the end of a block is reached, the 
assignments are propagated to the target and fall-through 
blocks. We may eliminate redundant virtual register 
assignments by keeping track of the cycles to which they 
have been written. 

 
 

VSUM:    MVK   .S1   500, A1    
         ZERO  .L1   A7 
         ZERO  .L1   A4 
         B     .S2   LOOP     
         LDW   .D1   *A4++, A6   
||       B     .S2   LOOP      
         LDW   .D1   *A4++, A6   
||       B     .S2   LOOP       
         LDW   .D1   *A4++, A6   
||       B     .S2   LOOP       
         LDW   .D1   *A4++, A6   
||       B     .S2   LOOP  
LOOP:    ADD   .L1   A6, A7, A7   
||  [A1] LDW   .D1   *A4++, A6   
||  [A1] SUB   .S1   A1, 1, A1    
||  [A1] B     .S2   LOOP   
         MVK   .L1   2000, A5     
         STW   .D1   A7, *A5 

Figure 4. TI C6000 Assembly code for Vectorsum 
 
 

3.00        MOVE (1)  1, $P0 
  :          : 
4.00        LD   (1)  *($A4), $A6_4 
  :          : 
5.00        MOVE (1)  $A6_4, $A6_3 
5.01        LD   (1)  *($A4), $A6_4 
  :          : 
6.00        MOVE (1)  $A6_3, $A6_2 
6.01        MOVE (1)  $A6_4, $A6_3 
6.02        LD   (1)  *($A4), $A6_4 
  :          : 
7.00        MOVE (1)  $A6_2, $A6_1 
7.01        MOVE (1)  $A6_3, $A6_2 
7.02        MOVE (1)  $A6_4, $A6_3 
7.03        LD   (1)  *($A4), $A6_4 
  :          : 
8.00  LOOP: MOVE (1)  $A6_1, $A6 
8.01        MOVE (1)  $A6_2, $A6_1 
8.02        MOVE (1)  $A6_3, $A6_2 
8.03        MOVE (1)  $A6_4, $A6_3 
8.04        ADD  (1)  $A6, $A7, $A7 
8.05  [$A1] LD   (1)  *($A4), $A6_4 
8.06        MOVE (1)  0, $P0 
8.07  [$P0] GOTO (0)  LOOP 
  :          : 

Figure 5. Selected MST Instructions for Vectorsum 
 
Figure 5 shows selected MST instructions for the 

Vectorsum of Figure 4. We determine that the LD 
instruction in cycle 4 with four delay slots has its write-
back stage in the fall-through block (LOOP). The LD 



instruction is now written to virtual register A6_4 and the 
instruction delay is changed from five cycles to one cycle. 
In cycle 5, A6_4 is written to A6_3; in cycle 6, A6_3 is 
written to A6_2; in cycle 7, A6_2 is written to A6_1. The 
path continues to the fall-through block, where A6_1 is 
written to the original register A6 in cycle 8. Similarly, we 
determine the write-back stage of the LD instruction in 
cycle 5 occurs at the end of the second iteration of the 
LOOP block, and perform the same procedure as above. 
Although this LD instruction writes to register A6_4 in 
parallel with the assignment of A6_4 to A6_3, 
nevertheless, the one cycle delay on the former forces the 
latter to be correctly dependant on the previous value of 
A6_4 in cycle 4. The final two virtual register assignments 
for this instruction both occur in cycle 8 of the LOOP 
block. 

 
4.2. Traditional Optimizations 
 

Several traditional optimizations have been 
implemented at the CDFG level of the compiler [2] as 
shown in Figure 6. Many of the optimizations utilize 
reaching definitions to determine definition-use 
dependencies [2]. Prior to running the optimizations, input 
and output ports are identified using reaching definitions. 
An input port is defined as a node that is used, but has no 
prior definition; an output port is defined as a node that 
has a definition but no subsequent uses; an inout port is a 
variable that has been defined as both an input and output 
port. The CDFG is then converted into Static single 
variable assignment (SSA) form, which is essential in 
removing dependencies among registers and decreasing 
the lifetime of variables. The effects of SSA are apparent 
in register allocation, dead code elimination and resource 
binding. 

The goal of the CDFG optimizations is to reduce the 
code size and resource usage, and increase the frequency 
of the design. The compiler runs the following 
optimizations repeatedly until the design converges. 

Undefined variable elimination assigns a value of zero 
to a node that is used prior to having been defined, which 
would otherwise produce erroneous results in hardware.  

Common sub-expression elimination uses hash-defined 
strings in determining redundant operations that 
frequently arise after loop unrolling is performed. 
Similarly, redundant memory access elimination uses 
hash-defined strings to represent memory addresses for 
determining redundant memory operations that often 
occur after unrolling a loop or due to memory spilling 
optimziations. A memory operation is said to be 
redundant if: two consecutive memory read operations 
access the same address, the second memory read 
operation is eliminated and the result of the first memory 
read operation is forwarded; two consecutive memory 

write operations access the same address, the first memory 
write operation is eliminated; a memory read operation 
immediately follows a memory write operation in which 
both access the same address, the memory read operation 
is eliminated and the value written to memory is 
forwarded.  
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Figure 6. Compiler Optimizations at the CDFG level. 
 
 
Copy propagation is a transformation that given an 

assignment of variables x�y, replaces later uses of x with 
y, as long as the intervening instructions have not changed 
the value of either x or y [2]. Constant propagation is 
similar to copy propagation, in that given an assignment 
x�c for a variable x and a constant c, the optimization 
replaces later uses of x with c, as long as the intervening 
instructions have not changed the value of x [2]. Constant 
folding solves for operations on constants at compile time. 

Strength reduction and algebraic simplification are 
performed simultaneously to replace assembly operations 
that may produce costly hardware structures in RTL HDL 
with simplified operations. For instance, a multiplication 
or division by a constant value that is a power of two is 
replaced by a shift operation to save cycle delays and 
resource utilization.  

Constant predicate elimination solves for predicated 
instruction in which the predicate condition is constant 
and may be solved at compile time. These conditions 



often arise after constant propagation is performed. 
Predicate reduction is an optimization that reduces 
multiple sequences of conditional set operations, generally 
used as predicates for other operations. The result of this 
optimization leads to a reduction in the number of 
multiplexers implemented in a hardware design, saving 
the cost of area and critical path.  

Merging block sets is an optimization that merges the 
nodes in a set of consecutive blocks, where the first block 
is the only predecessor to the second block, and the 
second block is the only successor to the first block. The 
result produces more efficient scheduling techniques, 
allowing for more parallelism in a design.  

Finally, dead code elimination removes operations in 
which there are no subsequent uses of the resulting value.  

 
4.3. Procedure Extraction 
 
Procedures are extracted from the linked assembly using 
an idiomatic approach. Three passes are used to identify 
function bodies within the binary. They use the procedure 
calling convention [21] to recognize caller prologues and 
callee epilogues. Details of the procedure extraction 
algorithms are described in a related paper [26]. 
 
4.4. Exploiting Fine-Grain Parallelism through 

Scheduling  
 

As was mentioned in the introduction, the real benefit 
of migrating applications from a DSP processor onto an 
FPGA is in exploiting the on-chip parallelism.  For 
example, the Xilinx Virtex II Pro [19] XC2Vp125 has 556 
embedded multipliers that can potentially exploit 556-way 
parallelism in each clock cycle. Hence, one needs to 
explore the fine grain parallelism that is inherent in the 
CDFG through data scheduling.  

The scheduling and binding pass performs behavioral 
synthesis on the CDFG representation by scheduling the 
computations of nodes in each basic block in the data flow 
graph onto various resources (adders, multipliers, etc). 
The delay and resource availability is used to schedule as 
many operations in parallel as possible. The type and 
quantity of each of these architectural resources are 
described using the Architecture Description Language 
(ADL) of the target FPGA. The high-level synthesis 
algorithms handle multi-cycle operators during 
scheduling, as well as multi-cycle memory read and write 
operations. 

Two simple scheduling algorithms have been 
implemented, namely, As Soon As Possible (ASAP) and 
As Late As Possible (ALAP) scheduling [27].  Using 
ALU operation chaining, one is able to schedule many 
more simple operations per state, mainly those that do not 

affect the frequency of the design. Complex structures, 
such as multiplication, are generally not chained, as they 
tend to increase the critical path of the design [27]. 

 
4.5. Register Allocation 
 

Register allocation is an optimization that is performed 
after scheduling to reduce the number of registers, which 
generally leads to smaller design size.  Unlike DSP 
processor architectures, FPGAs are not limited to a small, 
fixed number of registers. Since they are capable of 
handling significantly more registers, one does not need to 
be concerned with issues such as memory spilling. 
However, one must realize that the scheduling of 
operations affect the number of possible register reuses.   

Register allocation was implemented on the 
FREEDOM compiler using the Linear-Scan (left-edge) 
algorithm [33]. We assume the nodes in the CDFG are in 
SSA form, in which data dependencies are broken. We 
also assume an unbound number of register resources in 
the target FPGA, and our task is to assign the variable 
lifetimes to the smallest subset of registers. Prior to 
running the Linear-Scan algorithm, one must determine 
the liveness of each variable, or the time from the 
variable’s first definition until its last use. This 
information is obtained from the nodes in the CDFG after 
scheduling [27].  

 
4.6. Loop Unrolling 
 

The unrolling optimization helps exploit on chip 
parallelism. It takes a loop body and generates an unrolled 
form by attaching successive copies of all the instructions 
inside. For example, the CDFG shown in the basic block 
of Figure 2(b) can be unrolled four times to get four times 
as many operators to schedule in a given time step.  A key 
step in applying optimizations in the compiler is to 
recognize high-level language constructs such as loops, 
and array subscripts. Loop unrolling is performed through 
recognizing loop constructs using interval analysis on the 
flow graph. Loop variables are adjusted for unrolling by 
using induction analysis within the loop body.  
 
4.7. Memory and Register Optimizations 
 

General-purpose DSP processors have a limited 
number of memory ports (typically 2) for supporting 
memory loads and stores, and a small number of 
functional units (2-4) that can operate in parallel. The 
advantage of mapping applications to FPGAs is that one 
can exploit the parallelism in a design by implementing a 
large number of computations in parallel. However, in 
doing so, one also requires a greater storage area. One can 



Table 1. Results of  FREEDOM compiler translating TI C6000 DSP assembly programs  
to Xilinx Virtex II FPGAs. 

 TI C6000 processor Xilinx Virtex II FPGA 

Benchmark Cycles Freq (MHz) Cycles Area (LUT) Freq (MHz) 
Speedup 
(cycles) 

Speedup 
(exec time) 

dot_prod 12516 300 1555 1063 83.9 8.0 2.3 

iir 22987 300 2105 2170 87.4 10.9 3.2 

fir16tap 113285 300 16400 1301 84.3 6.9 1.9 

fir_cmplx 72856 300 9637 3690 84.3 7.6 2.1 

matmul 1799064 300 138602 1672 87.9 13.0 3.8 

laplace 74673 300 5174 2655 120.9 14.4 5.8 

sobel 127495 300 11744 4213 106.4 10.9 3.9 

gcd 268 300 78 862 152.1 3.4 1.7 

ellip 335 300 105 1402 122 3.2 1.3 

diffeq 2318 300 119 1831 88.3 19.5 5.7 

store the data for an FPGA design in registers, or 
embedded RAMs.   

If we map all variables to registers, we can access all 
the data in parallel, however, the results of these registers 
have to be distributed through large multiplexers to 
various functional units.  This can increase the amount of 
area required by a design.  However, if one maps all these 
variables onto embedded RAMs, one can reduce the cost 
of the multiplexers on the FPGAs, but at the cost of 
reduced memory bandwidth. We use a simple heuristic in 
that all scalar variables are mapped to registers, and all 
array variables that are greater than 128 bytes are mapped 
to embedded memories. By using the embedded block 
RAMs on the FPGA it is therefore possible to support 
larger data bandwidths through parallel memory access. 

Towards this effort, the FREEDOM compiler generates 
RTL VHDL and Verilog codes that allow backend 
synthesis tools, such as Synplify Pro [9], to automatically 
infer both synchronous and asynchronous RAMs. Memory 
pipelining is used to improve the throughput performance. 
Through alias analysis, we are able to automatically 
partition data into different memories, thus increasing the 
number of memory access per state and the parallelism in 
the design.  

 
4.8. Memory and Data Partitioning through 

Alias Analysis 
 

When compiling high-level language programs onto a 
DSP processor, global variables are generally mapped 
onto the data memory and local variables are placed on 
the stack. The limited size of the register file often 
requires that variables be spilled to the memory, thus 
generating numerous memory accesses. When such codes 
are translated into RTL VHDL or Verilog, it severely 
limits the performance on the FPGA since the FPGA is 
capable of supporting an extensive number of registers far 

beyond the scope of a DSP processor. Furthermore, when 
this code is unrolled, successive iterations of a loop must 
wait for the preceding memory writes to complete before 
performing their operations. Other limitations are apparent 
when loop indices are placed on the stack. These 
problems can be resolved through alias analysis and 
partitioning data across different memories.  

A simple aliasing technique has been devised for the 
stack and memory. It requires that any memory access 
have addresses of the type *B[x*R+y],  where B is the 
base address, R is a register, and x and y are numeric 
constants. Two address expressions refer to the same 
location if x, y and R are identical. The simplicity of the 
technique relies on the fact that memory addresses are 
usually modified by immediate values only. Within a loop, 
the array base would remain the same while the offset 
would change based on the loop index, represented by R. 
It is aided by induction analysis, by removing some of the 
register name dependence.  

In a simple 2D-array, stored in the row-major form 
A[I,J],  the address expression would be “x*I+J+y” . 
Here, x would be the row length and y the base. The 
arrays are distinguished by the difference in their bases. In 
our experiments, data on array sizes and offsets has been 
used when convenient. User input of minimum array sizes 
has also been used effectively in some cases. The 
occurrence of address expressions within loops and the 
presence of loop iterators within the expressions are 
indicators to the presence of arrays. 

 

5. Experimental Results 
 

The FREEDOM compiler was tested using the Texas 
Instruments C6000 DSP processor architecture [4] and 
assembly language as the DSP processor platform, and 
Xilinx Virtex II [19] as the target FPGA platform.  

The TI C6000 processor (model C64x) has 64 general-



purpose 32-bit registers, 2 multipliers, and 6 ALUs. It can 
execute up to 8 simultaneous instructions. It supports 
8/16/32-bit data, and can additionally support 40/64 bit 
arithmetic operations. It has two sets of 32 general-
purpose registers, each 32 bits wide. Two multipliers are 
available that can perform two 16x16 or four 8x8 
multiplies each cycle. It has special support for non-
aligned 32/64-bit memory access. The C64x has support 
for bit level algorithms and for rotate and bit count 
hardware. 

We now report on the results on ten benchmark 
examples that were originally available in C.  We used the 
TI Code Composer Studio to generate the TI software 
assembly version for those codes.  The RTL HDL codes 
generated by the compiler were synthesized using the 
Synplify Pro 7.2 logic synthesis tool [3] from Synplicity 
and mapped onto Xilinx Virtex II XC2V250 devices [19]. 
These synthesis results were used to obtain estimated 
frequencies and area utilization for each benchmark. The 
areas of the synthesized designs were measured in terms 
of Look Up Tables (LUTs) for the Xilinx FPGAs. The 
RTL HDL codes were also simulated using the ModelSim 
5.6 tool from Mentor Graphics. In each case the bit-
accuracy of the results was confirmed. The execution 
times on the FPGAs were measured by counting the 
number of clock cycles needed to simulate the designs on 
the FPGAs using ModelSim. The execution time for the 
software implementation on the embedded processor was 
measured using the TI C6000 simulator. 

 Table 1 shows the results of the implementations of 
the 10 benchmarks on a DSP processor and on a Xilinx 
Virtex II XCV2V250 FPGA.  The first column lists the 
benchmarks. The second column shows the execution time 
of the benchmark in clock cycles on a TI C6000 DSP 
processor using the TI Code Composer Studio instruction 
level simulator.  The third column shows the maximum 
frequency of operation of the TI C6000 processor.  The 
fourth, fifth, and sixth columns show the results of our 
FREEDOM compiler mapping DSP assembly programs 
onto FPGAs in terms of execution time in cycles on a 
Xilinx FPGA (measured by ModelSim), area of the FPGA 
implementation (measured in Look Up Tables by Synplify 
Pro 7.2), and frequency of the design (measured in MHz 
estimated by Synplify Pro).  We can see that using our 
automated compilation techniques, it is possible to obtain 
performance gains of about 3-20x with an FPGA over the 
DSP processor with respect to clock cycles.  In terms of 
actual execution times, including the impact of the clock 
frequencies, the performance gains are about 1.3-5x with 
an FPGA over an embedded processor.  The impact of 
various optimizations on the area, frequency and 
performance are described in a related publication [25]. 

One may speculate that decompiling software binaries 
into a high-level language, such as C, and using a 

behavioral synthesis tool to generate hardware would 
produce better results. In order to test this hypothesis we 
took all ten example benchmarks in C, and used the PACT 
compiler [10] to generate a hardware implementation on 
an FPGA. Both the FREEDOM and PACT compilers use 
very similar optimizations and are therefore comparable. 
Table 2 shows a comparison of the PACT compiler results 
with our FREEDOM compiler in terms of area, frequency 
and cycles. It is clear that the results of the two 
approaches are comparable. This validates our claim that 
one does not need to decompile software binaries or 
assembly code to a high-level language in order to obtain 
quality results. Rather, assembly and binary codes may be 
used as an intermediate language from any high-level 
language to generate efficient hardware implementations. 

 
 

Table 2.  Performance Comparison between PACT and 
FREEDOM compilers. 

  
PACT  

(C to FPGA)  
 FREEDOM  

(Assembly to FPGA) 

Benchmark Cycles Area Freq Cycles Area Freq 

dot_prod 3357 2447 69.2 1555 1063 83.9 

iir 3010 5873 98.4 2105 2170 87.4 

fir16tap 115209 547 69.7 16400 1301 84.3 

fir_cmplx 8499 6083 57.9 9637 3690 84.3 

matmul  277703 2155 70.2 138602 1672 87.9 

laplace 8467 10000 78.2 5174 2655 120.9 

sobel 81418 7873 57.6 11744 4213 106.4 

gcd 48 322 158.2 78 862 152.1 

ellip 43 1222 180.0 105 1402 122.0 

diffeq 79 1396 69.4 119 1831 88.3 

 
 

6. Conclusions 
 

   This paper described the process and considerations 
for designing a compiler that translates DSP algorithms 
written in the assembly language or binary code of a DSP 
processor into Register Transfer Level (RTL) VHDL or 
Verilog code for FPGAs. Experimental results were 
shown on ten assembly language benchmarks from signal 
processing and image processing domains. Results 
showed performance gains between 3-20x in terms of 
reductions of execution cycles and 1.3-5x in terms of 
reductions of execution times for the FPGA designs over 
that of the DSP processor.  

The preliminary results are very encouraging. Future 
work includes a look at more complex benchmarks (e.g. 
MPEG4, JPEG2000, MP3 decoders, Viterbi, Turbo 
decoders, 3G and 4G wireless applications), other 
optimizations for area, delay and power reduction.  
Finally, we will investigate the issues of 
hardware/software co-design and function partitioning. 
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