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Abstract

Applications thatrequire digital signal processing
(DSP) functions are typically mapped onto general
purpose DSP processors. With the introduction of
advanced FPGA architectures with built-in DSP suppo
a new hardware alternative is available for DSP
designers. By exploiting its inherent parallelisih,is
expected that FPGAs can outperform DSP processors.
However, the migration of assembly code to hardwsare
typically a very arduous process. This paper déssithe
process and considerations for automatically tratisig
software assembly and binary codes targeted foeggn
DSP processors into Register Transfer Level (RTHDV
or Verilog code to be mapped onto commercial FPGAs.
The Texas Instruments C6000 DSP processor archrect
has been used as the DSP processor platform, amd th
Xilinx Virtex Il as the target FPGA. Various optirations
are discussed, including loop unrolling, induction
variable analysis, memory and register optimizagion
scheduling and resource binding. Experimental rssoih
resource usage and performance are shown for ten
software binary benchmarks in the signal processind
image processing domains. Results show performance
gains of 3-20x in terms of reductions in executigoles
and 1.3-5x in terms of reductions in execution $irfa
the FPGA designs over that of the DSP processors in
terms of reductions of execution cycles.

1. Introduction

Recent advances in embedded communications and
control systems for personal and vehicular envirems

are driving efficient hardware and software
implementations of complete systems-on-chip (SOC).
Two way radios, digital cellular phones, wirelesgelnet,

3G and 4G wireless receivers, MPEG 4 video, voiee o
IP, and video over IP are examples of applicatishikh
require digital signal processing (DSP) functiohattare
typically mapped onto general purpose DSP procsssor
such as the Texas Instruments TMS320C6000 [4], the
Analog Devices SHARC, and the Motorola STARCORE
processors. However, it is widely believed thathsuc

processors will be unable to support the compuiatio

requirements of future DSP applications [24].

The conventional way to address the computational
bottleneck has been to replace the DSP processorawi
application specific integrated circuit (ASIC), whi
allows the designers to optimize for power consummpt
and functional parallelism. However, the designetiamd
cost of such an implementation is very high. Witle t
introduction of advanced Field Programmable Gater
(FPGA) architectures that provide built-in DSP sonpp
such as the Xilinx Virtex Il [19] and the Alterar&tix
[32], a new hardware alternative is now availableDSP
designers. FPGAs combine the programming advarmtbge
a general purpose DSP processor with the perforenanc
advantage of an ASIC. By exploiting its inherent
parallelism, it is expected that FPGAs can provitare
flexible and optimal solutions for DSP applicationsa
hardware/software co-design system.

Generally, the path from DSP algorithms to FPGA
implementations is a complex and arduous task. \wzel
design teams take the specifications created byD®ie
engineers (in the form of a fixed point C, C++, or
MATLAB,) and create a register transfer level (RTL)
model in a hardware description language (HDL) sagh
VHDL and Verilog. The RTL HDL is synthesized by a
logic synthesis tool, and placed and routed ont6RGA
using backend tools. Recently, there have been some
behavioral synthesis tools that can automaticatiyegate
RTL descriptions from high-level descriptions in C
[28,29,30] and MATLAB [31].

This paper describes the process and considerdtions
automatically translating software binaries thate ar
targeted for general DSP processors into Registarster
Level (RTL) VHDL or Verilog code to be mapped onto
commercial FPGAs. The motivations for developing a
translator from assembly code or binary to hardveaee
as follows:

1. As more DSP applications begin to require frth
computational power than what DSP processors can
provide, there will be a need to migrate appliaaio
to hardware in the form of FPGAs.

There is a large established code base of DSP
algorithms optimized for specific processor fansilie



Some of it is hand-coded for better performance or
for reduced memory requirements.

3. Tools are available to implement C/C++, MATLAB
and SIMULINK designs on DSP processors. Hence,

2. Related Work

The problem of translating a high-level or behaaior
language description into a register transfer level

the binary or assembly language can be used as anrepresentation is called high-level synthesis [1In

intermediate language from all high-level languages
4. One may choose to migrate sections of codeliSR

processor application to hardware in order to obtai

better performance results using a co-design system

There has been previous work on binary translation
from one processor’s instruction set to anotheer&tas
also been work on decompilation, i.e. translatiofjvgare
binaries into high level programming languages agk.
Finally, there has been recent work in behavioatresis
that takes a design written in a high-level langusigch as
C and automatically generates hardware. Our paphbe
first complete system that directly translates vgafe
binaries to hardware systems using FPGAs.

A simple approach to translating software binaded
assembly to RTL VHDL would be to map each assembly
instruction onto one RTL operation per state inratef
state machine. Clearly, there will be no perforneanc
benefit when mapping such a design to hardware r&le
benefit of migrating applications from a DSP prewes
onto an FPGA is in exploiting the on-chip parafieii
The question is whether or not it is possible to
automatically infer the high-level control struauof a
given application, perform all the necessary dea find
parallelism analysis at the assembly level, andagario
obtain a performance in a hardware implementatiahis
at least an order of magnitude faster than a softwa
implementation. The true test in this approach ris i
experimentally evaluating the quality of the sysihed
hardware results in terms of area and performahbe.
key contribution of this paper is in answering this
fundamental question.

Our goal in this paper is not to compete with tlestb
manual hardware implementation of a DSP algorithm o
an FPGA [24], nor are we suggesting this approashaa
better alternative to high-level synthesis. Rathes, wish
to show that it is possible to migrate legacy adsgm
code for a state-of-the-art DSP processor seamjessl
hardware and still obtain an order of magnitude
improvement in performance.

The rest of the paper is organized as follows.
Section 2 reviews related work in the area. Anraesv
of the compiler is presented in Section 3. Sectbn
describes various optimizations used in the compile
Section 5 described the experimental framework used
evaluate our compiler and experimental results em t
benchmark applications. Finally, conclusions autdire
work are described in Section 6

contrast to traditional behavioral synthesis tdbkst take

a behavioral description of an application in aglaege
such as C/C++ or MATLAB and generate a RTL HDL
implementation automatically, our compiler maps
software binaries and assembly language codesRito
VHDL for mapping onto FPGAs.

There has been some related work in the field of
binary translation for converting assembly or bjnemdes
written for one processor to another processorA. IS
Cifuentes et al [7,8] have done a lot of fundamlentak
in binary translation and decompilation. The Traetm
Crusoe processor performs dynamic code translation
the fly using a technique called CodeMorphing by
translating code from an Intel x86 ISA and targgtihe
Crusoe processor, a VLIW machine [9]. Bala et &][1
have developed the Dynamo system for dynamic binary
optimization for the HP architecture. Gschwind][bas
developed a similar system called BOA for the P&@r
architecture. Cooper et al [20] have reported nastho
construct Control and Data Flow Graphs from scheatiul
assembly code. Baily and Davidson [21] introduced a
formal model to specify procedure-calling convensio
Cifuentes and Simon [23] have described a Procedure
Abstraction Language that can be used to speciéy th
calling conventions for different architectures. nva
Emmerik described the use of patterns to ideniffyaty
functions in executables [23].

The above-mentioned work deals mainly in transtatin
binary codes from one fixed ISA to another. Howeoeir
compiler differs in that it automatically translatbinary
codes from one ISA into hardware in the form of RTL
VHDL and Verilog.

There has been related work in the area of hardware
software co-designs. Stitt and Vahid [11] have regub
work on hardware-software partitioning of binarydes.
They took kernels from frequently executed loopshat
binary level for a MIPS processor and investigateslr
hardware implementations on a Xilinx Virtex FPGAist
study was done manually. Stitt et al [12] have ndge
reported work on dynamic  partitioning  of
hardware/software of software binaries for a MIPS
processor. They have developed an approach to take
kernel functions consisting of simple loops and
automatically map them onto reconfigurable hardware
The hardware used is significantly simpler than
commercial FPGA architectures. The automatic
generation of RTL code is limited to only combioathl
logic. Hence the loops that must be implementedhen
hardware are implemented in a single cycle. This
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approach only works for sequential memory addreasds
fixed size loops. The focus of their work is ontfas
dynamic hardware software partitioning, whereas the
focus of our work is on the actual automated sysithef
software binaries onto hardware.

Levine and Schmidt [13] have proposed a hybrid
architecture called HASTE, which consists of an
embedded processor and a reconfigurable compugihtion
fabric (RCF) inside a chip. Instructions from threqessor
are dynamically compiled onto the RCF using a hardw
compilation unit (HCU). Ye et al [14] have develdpa
compiler for the CHIMAERA architecture with a siauil
architecture of a general-purpose processor coaté¢ota
reconfigurable functional unit (RFU).

CriticalBlug an Electronic Design Automation
(EDA) start-up [15], has recently announced thedtdwuof
its Cascade Tool Suite. Cascade synthesizes a aardw
co-processor specifically designed to acceleratevare
tasks selected by the user. However, there
description of the technology or any published
benchmarking results that would enable us to coenfras
compiler to their approach.
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3. Overview of the Compiler

We now provide an overview of the FREEDOM
compiler’s infrastructure, which is illustrated kigure 1.
The compiler was designed to have a common enint po
for all assembly languages. To this effort, thenfrend
requires a description of the processor ISA in pride
configure the assembly language parser. It uses ISA
specifications written in SLED from the New Jersey
Machine-Code toolkit [5,6], coupled with a new set@a
description language designed for this project. paeser
generates a virtual assembly representation calhed
Machine Language Abstract Syntax Tree (MST).

The MST representation is similar to the MIPS
processor ISA in syntax, and is generic enough to
encapsulate most ISAs, including but not limitedARM,
MIPS, Intel IA-32 and IA-64, and Texas Instrumeifils
320TMSC6000 processors. It supports both predicate
and parallel instruction sets. All MST instructioase
three-operand, predicated instructions, in whicle am
more of the operands may be null. An MST Instruci®
defined as:



Label: if (pred OR red==null) ) then do
dst «— op (srcl, src2)

Operand types include: memory addresses, registers

immediate values, and labels. Operator types imGlbdt

are not limited to: logical operators (AND, NAND B,
NOR, NOT, OR, SLL, SRA, SRL, XNOR, XOR),
arithmetic operator (ADD, DIV, MULT, SUB), branch
operator (BEQ, BGEQ, BGT, BLEQ, BLT, BNEQ,
GOTO, JMP, CALL), comparison operators (CMPEQ,
CMPNEQ, CMPLT, CMPLE, CMPGT, CMPGE),
assignment operator (LD, ST, MOVE, UNION), and
general operators (NOP).

The Control and Data Flow Graph (CDFG) is
generated from the MST, and represent the data
dependencies and the flow of control. Static-single

variable assignment (SSA) is used to break thesteyi
name dependencies.

Several traditional optimizations are performed on
the CDFG [2]. Scheduling and resource binding dse a
preformed on the CDFG, where computations in each
basic block are mapped onto various resources (gdde
multipliers, etc) in different states within a ti&i state
machine. Figure 2 shows an example assembly codie an

the corresponding CDFG representation of a dotymrbd

application.
DOTPROD: MVK . S1 500, Al
ZERO .L1 A7
M/K .Sl 2000, A3
LOOP: LDW Dl  *Ad++, A2
LDW .Dl *A3++, A5
NOP 4
MPY ML A2, A5, A6
SUB .Sl AL, 1,Al
ADD .L1 A8, A7, A7
[ AL] B .82 LOOP
NOP 5
STW .DL A7, *A3
(a) TI C6000 Assembly code
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(b) CDFG representation

Figure 2. Assembly code and CDFG for dot-product.

The optimized CDFG is translated into another
intermediate abstract syntax tree, analogous tdgh- h
level Hardware Description Language (HDL). The HDL
models processes, concurrency, and finite statéimas:
Additional optimizations and customizations are
performed on the HDL to enhance the efficiency e t
output and to correctly support the target device's
architecture. Architecture-specific informationaisquired
via the Architecture Description Language (ADL)efil
This includes data pertaining to resource availgbil
signal names, etc. Memory models are generatetiein t
HDL as required by backend synthesis tools, such as
Synplify Pro [3], to automatically infer both symomous
and asynchronous RAMs. Memory pipelining is used to
improve the throughput performance.

The complete HDL is translated directly to RTL
VHDL and Verilog to be mapped onto FPGAs, while
automatically generating a testbench to verify the
correctness of the output. The testbenches are tased
guarantee bit-true behavior in the synthesized e,
compared to that of the original Tl assembly code
versions.

4. Compiler Optimizations

It is obvious that without optimizations, the
performance of an FPGA would be much worse thanh tha
of a DSP processor. The uniqueness of our comigilier
the methodologies and the various compiler optitiona
that we have developed in order to exploit the rieht
parallelism of the FPGA. A key step in applying soof
these optimizations is the recognition of high-leve
language constructs such as loops, and arrays. &ie n
discuss these optimizations in detail.

4.1. Analyzing Data Dependenciesin Scheduled
Softwar e Binaries

The fixed number of physical registers on processor
necessitates the use of advanced register reusetlahgs
by compilers. This introduces false dependencissdan
the register names, and results in difficulties mvhe
determining correct data dependencies, specificalign
dealing with scheduled or pipelined binaries anchibel
instruction sets. As a solution, each MST instarctis
assigned a timestamp, specifying a linear instoactiow.
Each cycle begins with an integer base starhpParallel
instructions are assigned the timestarfips= T + 0.01 x
n’ in succession. Assembly instructions that expand t
more than one MST instruction are assigned timgstam
values'T, = T + 0.0001 x n’ Each MST instruction is
also assigned an operatidalay, equivalent to the number
of execution cycles. The write-back time for the



instruction, or the cycle in which the destinatiegister is
valid, is defined as/b = timestamp + delay

Figure 3 illustrates how the timestamp and delay ar
used to determine data dependencies. In the first
instruction, the MPY operation has one delay slod a
therefore requires two cycles to complete. The walwe
of register A4 is not written until the end of ogcl, and
may only be used at the beginning of cycle 2.
Consequently, the first three instructions are ddpat on
the same source register A4. Similarly, the ADD
instruction at cycle 2.00 is dependant on registetsn
cycle 0.00 and A2 in cycle 1.00, but not on regist2 of
the LD instruction at cycle 1.01.

0.00 MPY (2) $A4, 2, $A4
1.00 ADD (1) $A4, 4, $A2
1.01 LD (5) *($Ad), $A2
2.00 ADD (1) $Ad, $A2, $A3

Figure 3. Timestamps and delays for MST
instructions.

Scheduled or pipelined software binaries presemyma
difficulties when attempting to analyze data depsmies.
In the Vectorsum example in Figure 4, each branch
instruction is executed in consecutive iteratioristhe
loop. Furthermore, the dependencies of the ADD
instruction in the loop body changes with eachaiien of
the loop. In order to correctly determine data
dependencies in scheduled or pipelined assemblgscod
one must linearize the assembly code, which can be
accomplished in three steps. The first step ibuitd a
correct control flow graph representation, using th
algorithm developed by Cooper et al [20].

The second step is to linearize pipelined branch
operations by moving a copy of the branch instawctio
all possible write-back times in the CFG, and tketiing
its delay to zero. The source and predicate opsrahthe
branch instruction are stored in temporary Vvirtual
registers. If a branch operation is not predicated, its
execution time falls outside its current blockhe CFG, a
predicate is added to the instruction. An exampkhiown
in cycle 3 of Figure 5. If the normal control flopasses
through the branch instruction’s original positioncycle
3, the virtual predicate operand PO is set. When th
control flow reaches the branch instruction’s icked
execution stage at the end of cycle 8, PO is iegerallel
with the branch execution, thus preventing the tnan
instruction from further execution outside the nafm
control flow.

The third step is to levelize pipelined operatiofis
is accomplished by breaking up a multi-cycle instian
whose write-back time occurs in another block into
multiple single-cycle instructions. Virtual regisdeare
introduced at each state of the levelization precEer an

instruction withn delay slots, the original instruction is
written to a temporary virtual regist®, and the delay on
the instructions is changed to one cycle. In each
successive cycle, we move virtual registersRR,, R..
2Ry, ... RyERy, where Ris the original register name.
This approach assumes that no two instructionseaee
scheduled to write back to the same register instrae
cycle. When the end of a block is reached, the
assignments are propagated to the target anchfalligh
blocks. We may eliminate redundant virtual register
assignments by keeping track of the cycles to witey
have been written.

VSUM MK .Sl 500, Al

ZERO .L1 A7

ZERO .L1 A4

B .S2  LOoP

LDW .DL  *Ad++, A6
[ B .S2  LOOP

LDW .DL  *Ad++, A6
[ B .S2  LOOP

LDW .DL  *Ad++, A6
[ B .S2  LOOP

LDW .DL  *Ad++, A6
[ B .S2  LOOP
LOCP: ADD .L1 A6, A7, A7
[l [Al] LDW .Dl1 *Ad++ A6
[| [Al] SUB .Sl Al 1, Al
[l [Al] B .S2  LOOP

MK .L1 2000, A5

STW .DL A7, *A5

Figure 4. TI C6000 Assembly code for Vectorsum

3.00 MVE (1) 1, $PO

4. 00 LD (1) *($A4), $A6_4
5. 00 MOVE (1) $A6_4, $A6_3
5. 01 LD (1) *($Ad), $A6_4
6.00 MVE (1) $A6_ 3, $A6_2
6. 01 MVE (1) $A6_4, $A6 3
6. 02 LD (1) *($Ad), $A6_4
7.00 MVE (1) $A6_ 2, $A6_1
7.01 MVE (1) $A6_3, $A6 2
7.02 MVE (1) $A6 4, $A6 3
7.03 LD (1) *($A4), $A6 4
8.00 LOOP: MOVE (1) $A6_1, $A6

8. 01 MVE (1) $A6 2, $A6_1
8. 02 MVE (1) $A6 3, $A6 2
8. 03 MVE (1) $A6 4, $A6 3
8. 04 ADD (1) $A6, $A7, A7
8.05 [$AL] LD (1) *($A4), $A6 4
8. 06 MOVE (1) 0, $PO

8.07 [$P0] GOTO (0) LOOP

Figure 5. Selected MST Instructions for Vectorsum

Figure 5 shows selected MST instructions for the
Vectorsum of Figure 4. We determine that the LD
instruction in cycle 4 with four delay slots has write-
back stage in the fall-through block (LOOP). The LD



instruction is now written to virtual register A6 afd the
instruction delay is changed from five cycles t@ aycle.

In cycle 5, A6_4 is written to A6_3; in cycle 6, AB is
written to A6_2; in cycle 7, A6_2 is written to AB. The
path continues to the fall-through block, where AGs
written to the original register A6 in cycle 8. Slianly, we
determine the write-back stage of the LD instructio
cycle 5 occurs at the end of the second iteratiothe
LOOP block, and perform the same procedure as above
Although this LD instruction writes to register A®_in
parallel with the assignment of A6 4 to A6_3,
nevertheless, the one cycle delay on the formeefthe
latter to be correctly dependant on the previodsevaf
A6_4 in cycle 4. The final two virtual register @gsnents
for this instruction both occur in cycle 8 of th@©OP
block.

4.2. Traditional Optimizations

Several traditional optimizations have been
implemented at the CDFG level of the compiler [2] a
shown in Figure 6. Many of the optimizations u#liz
reaching definitions to determine definition-use
dependencies [2]. Prior to running the optimizagidnput
and output ports are identified using reachingrdidins.

An inputport is defined as a node that is used, but has no
prior definition; anoutput port is defined as a node that
has a definition but no subsequent usednant port is a
variable that has been defined as botlinpat and output
port. The CDFG is then converted into Static single
variable assignment (SSA) form, which is esseniial
removing dependencies among registers and decgeasin
the lifetime of variables. The effects of SSA apparent

in register allocation, dead code elimination a@sburce
binding.

The goal of the CDFG optimizations is to reduce the
code size and resource usage, and increase thefreg
of the design. The compiler runs the following
optimizations repeatedly until the design converges

Undefined variable elimination assigns a value arbz
to a node that is used prior to having been defindich
would otherwise produce erroneous results in harelwa

Common sub-expression elimination uses hash-defined
strings in determining redundant operations that
frequently arise after loop unrolling is performed.
Similarly, redundant memory access elimination uses
hash-defined strings to represent memory addrefeses
determining redundant memory operations that often
occur after unrolling a loop or due to memory $pgl
optimziations. A memory operation is said to be
redundant if: twoconsecutivememory read operations
access the same address, the second memory rea
operation is eliminated and the result of the firgmory
read operation is forwarded; twoonsecutivememory

write operations access the same address, thenkrsiory
write operation is eliminated; a memory read opernat
immediately follows a memory write operation in wini
both access the same address, the memory readiopera
is eliminated and the value written to memory is
forwarded.
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Figure 6. Compiler Optimizations at the CDFG level.

Copy propagation is a transformation that given an
assignment of variablesy, replaces later uses wfwith
y, as long as the intervening instructions havechanhged
the value of eithex or y [2]. Constant propagation is
similar to copy propagation, in that given an assignt
x&c for a variablex and a constant, the optimization
replaces later uses gfwith ¢, as long as the intervening
instructions have not changed the valu {##]. Constant
folding solves for operations on constants at ctertphe.

Strength reduction and algebraic simplification are
performed simultaneously to replace assembly ojoeisat
that may produce costly hardware structures in RITIL
with simplified operations. For instance, a multption
or division by a constant value that is a powetvas is
replaced by a shift operation to save cycle dekayd
resource utilization.

Constant predicate elimination solves for predidate
instruction in which the predicate condition is stamt
and may be solved at compile time. These conditions



often arise after constant propagation is performed
Predicate reduction
multiple sequences of conditional set operatioaaggally
used as predicates for other operations. The restitis
optimization leads to a reduction in the number of
multiplexers implemented in a hardware design, rgavi
the cost of area and critical path.

Merging block sets is an optimization that merdes t
nodes in a set of consecutive blocks, where tisé ifilock
is the only predecessor to the second block, amed th
second block is the only successor to the firsthldhe
result produces more efficient scheduling techrsgue
allowing for more parallelism in a design.

Finally, dead code elimination removes operatians i
which there are no subsequent uses of the reswiilog.

4.3. Procedure Extraction

Procedures are extracted from the linked assengihgu
an idiomatic approach. Three passes are used mtifide
function bodies within the binary. They use thegadure
calling convention [21] to recognize caller proleguand
callee epilogues. Details of the procedure exipacti
algorithms are described in a related paper [26].

4.4. Exploiting Fine-Grain Parallelism through
Scheduling

As was mentioned in the introduction, the real fiene
of migrating applications from a DSP processor aato
FPGA is in exploiting the on-chip parallelism. For
example, the Xilinx Virtex Il Pro [19] XC2Vp125 h&s6
embedded multipliers that can potentially expl&@6&vay
parallelism in each clock cycle. Hence, one neets t
explore the fine grain parallelism that is inheréntthe
CDFG through data scheduling.

The scheduling and binding pass performs behavioral

synthesis on the CDFG representation by scheddiag
computations of nodes in each basic block in tha flaw
graph onto various resources (adders, multipliets).
The delay and resource availability is used to duleeas
many operations in parallel as possible. The typd a
qguantity of each of these architectural resources a
described using the Architecture Description Lamggua
(ADL) of the target FPGA. The high-level synthesis

algorithms  handle  multi-cycle  operators  during
scheduling, as well as multi-cycle memory read arite
operations.

Two simple scheduling algorithms have been

implemented, namely, As Soon As Possible (ASAP) and

As Late As Possible (ALAP) scheduling [27]. Using
ALU operation chaining, one is able to schedule ynan
more simple operations per state, mainly thosedbatot

affect the frequency of the design. Complex stmasty

is an optimization that reduces such as multiplication, are generally not chairesl they

tend to increase the critical path of the desigh.[2
45. Register Allocation

Register allocation is an optimization that is parfed
after scheduling to reduce the number of registehich
generally leads to smaller design size. Unlike DSP
processor architectures, FPGAs are not limited $mall,
fixed number of registers. Since they are capalile o
handling significantly more registers, one doesrmesd to
be concerned with issues such as memory spilling.
However, one must realize that the scheduling of
operations affect the number of possible registaeses.

Register allocation was implemented on the
FREEDOM compiler using the Linear-Scan (left-edge)
algorithm [33]. We assume the nodes in the CDFGrare
SSA form, in which data dependencies are broken. We
also assume an unbound number of register resources
the target FPGA, and our task is to assign theakbi
lifetimes to the smallest subset of registers. Pt
running the Linear-Scan algorithm, one must deteemi
the liveness of each variable, or the time from the
variable’s first definition until its last use. Ehi
information is obtained from the nodes in the CDéf@&r
scheduling [27].

4.6. Loop Unrolling

The unrolling optimization helps exploit on chip
parallelism. It takes a loop body and generatesraolled
form by attaching successive copies of all therirstons
inside. For example, the CDFG shown in the basiclbl
of Figure 2(b) can be unrolled four times to getrfomes
as many operators to schedule in a given time stekey
step in applying optimizations in the compiler is t
recognize high-level language constructs such apslo
and array subscripts. Loop unrolling is performieebtigh
recognizing loop constructs using interval analysisthe
flow graph. Loop variables are adjusted for unngjlby
using induction analysis within the loop body.

4.7. Memory and Register Optimizations

General-purpose DSP processors have a limited
number of memory ports (typically 2) for supporting
memory loads and stores, and a small number of
functional units (2-4) that can operate in parallEhe
advantage of mapping applications to FPGAs is ¢imet
can exploit the parallelism in a design by impletirgna
large number of computations in parallel. However,
doing so, one also requires a greater storage @reacan



store the data for an FPGA design in registers, or beyond the scope of a DSP processor. Furthermdren w

embedded RAMSs.

If we map all variables to registers, we can acegdlss
the data in parallel, however, the results of thesggsters
have to be distributed through large multiplexeos t
various functional units. This can increase th@wam of
area required by a design. However, if one maphete
variables onto embedded RAMS, one can reduce tsie co
of the multiplexers on the FPGAs, but at the cdst o
reduced memory bandwidth. We use a simple heuiistic
that all scalar variables are mapped to registand, all
array variables that are greater than 128 bytesnapped

this code is unrolled, successive iterations afapImust
wait for the preceding memory writes to completéobe
performing their operations. Other limitations apparent
when loop indices are placed on the stack. These
problems can be resolved through alias analysis and
partitioning data across different memories.

A simple aliasing technique has been devised fer th
stack and memory. It requires that any memory acces
have addresses of the typB[x*R+y], whereB is the
base addresR is a register, anc andy are numeric
constants. Two address expressions refer to thee sam

to embedded memories. By using the embedded block location if x, y andR are identical. The simplicity of the

RAMs on the FPGA it is therefore possible to suppor
larger data bandwidths through parallel memory s&ce

Towards this effort, the FREEDOM compiler generates
RTL VHDL and Verilog codes that allow backend
synthesis tools, such as Synplify Pro [9], to awttcally
infer both synchronous and asynchronous RAMs. Mgmor
pipelining is used to improve the throughput perfance.
Through alias analysis, we are able to automagicall
partition data into different memories, thus insiag the
number of memory access per state and the pasatléfi
the design.

4.8. Memory and Data Partitioning through
Alias Analysis

technique relies on the fact that memory addresses
usually modified by immediate values only. Withitoap,
the array base would remain the same while theebffs
would change based on the loop index, representérl b
It is aided by induction analysis, by removing saofi¢he
register name dependence.

In a simple 2D-array, stored in the row-major form
A[l,J], the address expression would be*I+J+y”.
Here, x would be the row length ang the base. The
arrays are distinguished by the difference in thases. In
our experiments, data on array sizes and offsetdbban
used when convenient. User input of minimum ariagss
has also been used effectively in some cases. The
occurrence of address expressions within loops thad
presence of loop iterators within the expressions a

When compiling high-level language programs onto a Indicators to the presence of arrays.

DSP processor, global variables are generally nhppe
onto the data memory and local variables are placed
the stack. The limited size of the register fileteof
requires that variables be spilled to the memoyst

5. Experimental Results

The FREEDOM compiler was tested using the Texas

generating numerous memory accesses. When such code Instruments C6000 DSP processor architecture [4] an

are translated into RTL VHDL or Verilog, it severel
limits the performance on the FPGA since the FPGA i
capable of supporting an extensive humber of regigstr

assembly language as the DSP processor platforch, an
Xilinx Virtex 1l [19] as the target FPGA platform.
The TI1 C6000 processor (model C64x) has 64 general-

Table 1. Results of FREEDOM compiler translating TI C6000 DSP assembly programs
to Xilinx Virtex Il FPGAs.

T1 C6000 processor Xilinx Virtex Il FPGA

Speedup | Speedup

Benchmark| Cycles | Freq (MHz) | Cycles | Area (LUT) | Freq (MHz) | (cycles) |(exec time)
dot_prod | 12516 300 1555 1063 83.9 8.0 2.3
iir 22987 300 2105 2170 87.4 10.9 3.2
firl6tap | 113285 300 16400 1301 84.3 6.9 1.9
fir_cmplx | 72856 300 9637 3690 84.3 7.6 2.1
matmul | 1799064 300 138602 1672 87.9 13.0 3.8
laplace | 74673 300 5174 2655 120.9 14.4 5.8
sobel | 127495 300 11744 4213 106.4 10.9 3.9
gcd 268 300 78 862 152.1 34 1.7
ellip 335 300 105 1402 122 3.2 1.3
diffeq 2318 300 119 1831 88.3 19.5 5.7




purpose 32-bit registers, 2 multipliers, and 6 ALWsan
execute up to 8 simultaneous instructions. It sugpo
8/16/32-bit data, and can additionally support 408t
arithmetic operations. It has two sets of 32 gdnera
purpose registers, each 32 bits wide. Two multiplire
available that can perform two 16x16 or four 8x8
multiplies each cycle. It has special support fan-n
aligned 32/64-bit memory access. The C64x has stippo
for bit level algorithms and for rotate and bit obu
hardware.

We now report on the results on ten benchmark
examples that were originally available in C. Vgedithe
Tl Code Composer Studio to generate the Tl software
assembly version for those codes. The RTL HDL sode
generated by the compiler were synthesized usieg th
Synplify Pro 7.2 logic synthesis tool [3] from Syicgy
and mapped onto Xilinx Virtex Il XC2V250 device9]1
These synthesis results were used to obtain estimat
frequencies and area utilization for each benchmiBlnke
areas of the synthesized designs were measurennis t
of Look Up Tables (LUTSs) for the Xilinx FPGAs. The
RTL HDL codes were also simulated using the ModelSi
5.6 tool from Mentor Graphics. In each case the bit
accuracy of the results was confirmed. The exeoutio
times on the FPGAs were measured by counting the
number of clock cycles needed to simulate the desin
the FPGAs using ModelSim. The execution time fa th
software implementation on the embedded procesasr w
measured using the TI C6000 simulator.

Table 1 shows the results of the implementatidns o
the 10 benchmarks on a DSP processor and on axXilin
Virtex 1l XCV2V250 FPGA. The first column lists ¢h
benchmarks. The second column shows the execirtien t
of the benchmark in clock cycles on a TI C6000 DSP
processor using the TI Code Composer Studio insbnc
level simulator. The third column shows the maximu
frequency of operation of the TI C6000 processdhe
fourth, fifth, and sixth columns show the resulfsoor
FREEDOM compiler mapping DSP assembly programs
onto FPGAs in terms of execution time in cyclesan
Xilinx FPGA (measured by ModelSim), area of the APG
implementation (measured in Look Up Tables by Siynpl
Pro 7.2), and frequency of the design (measurddHiz
estimated by Synplify Pro). We can see that using
automated compilation techniques, it is possiblelitain
performance gains of abogt20x with an FPGA over the
DSP processor with respect to clock cycles. Imseof
actual execution times, including the impact of theck
frequencies, the performance gains are ai@ibx with
an FPGA over an embedded processor. The impact of
various optimizations on the area, frequency and
performance are described in a related publicd#6h

One may speculate that decompiling software binarie
into a high-level language, such as C, and using a

behavioral synthesis tool to generate hardware davoul
produce better results. In order to test this hypsis we
took all ten example benchmarks in C, and use®&eT
compiler [10] to generate a hardware implementation
an FPGA. Both the FREEDOM and PACT compilers use
very similar optimizations and are therefore corapée.
Table 2 shows a comparison of the PACT compilaultes
with our FREEDOM compiler in terms of area, fregeyen
and cycles. It is clear that the results of the two
approaches are comparable. This validates our clzain
one does not need to decompile software binaries or
assembly code to a high-level language in ordebtain
quality results. Rather, assembly and binary codsg be
used as an intermediate language from any high-leve
language to generate efficient hardware implemiemisit

Table 2. Performance Comparison between PACT and
FREEDOM compilers.

PACT FREEDOM
(Cto FPGA (Assembly to FPGA)
Benchmark | Cycles | Area | Freq |Cycles| Area | Freq
dot_prod 3357| 2447 69.2] 1555 1063 83.9
iir 3010 5873 98.4| 2105 21700 874
fir16tap 115209| 547| 69.7] 16400] 1301] 84.3
fir_cmplx 8499 6083 57.9 9637 3690 84.3
matmul 277703 2155 70.2| 138602 1672 87.9
laplace 8467| 10000, 78.2] 5174] 2655 120.9
|sobe| 81418| 7873 57.6| 11744 4213 106.4
ch 48] 322 1582 78] 862 152.1
ellip 431 1222 180.0 105 14021 122.0
ldiffeq 79 1396 69.4 119 1831] 88.3

6. Conclusions

This paper described the process and considesati
for designing a compiler that translates DSP alfjors
written in the assembly language or binary coda BISP
processor into Register Transfer Level (RTL) VHDL o
Verilog code for FPGAs. Experimental results were
shown on ten assembly language benchmarks fromalsign
processing and image processing domains. Results
showed performance gains between 3-20x in terms of
reductions of execution cycles and 1.3-5x in temfs
reductions of execution times for the FPGA desigwesr
that of the DSP processor.

The preliminary results are very encouraging. Futur
work includes a look at more complex benchmarkg. (e.
MPEG4, JPEG2000, MP3 decoders, Viterbi, Turbo
decoders, 3G and 4G wireless applications), other
optimizations for area, delay and power reduction.
Finally, ~we will investigate the issues of
hardware/software co-design and function partitigni
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