
Modeling and FPGA Implementation of Applications using Parameterized
Process Networks with Non-Static Parameters

Hristo Nikolov Todor Stefanov Ed Deprettere

Leiden Institute of Advanced Computer Science (LIACS), Leiden University, The Netherlands
{nikolov, stefanov, edd}@liacs.nl

Abstract

Today’s applications in the domains of multimedia,

signal processing, etc. consist of a number of interacting
components. If the way of interaction is determined at run
time, we say that an application is non-static. In general,
complex real-world applications are non-static. In this
paper, we summarize a method for modeling and FPGA
implementation of applications that have a specific type of
non-static behavior. This method is based on program
decomposition resulting in the generation of truly
Parameterized Kahn Process Networks and their mapping
onto FPGAs. We automated the method by integrating it
in our tools Compaan/Laura. The efficiency of our method
is demonstrated by an implementation of a real-world
application taken from the automotive domain.

1. Introduction
Today’s embedded applications in the domains of

multimedia, imaging, or signal processing consist of a
number of components interacting between each other. In
general, the way of interaction is data dependent and
determined at runtime. We call such applications non-
static. A real-world industrially relevant example is the
Low Speed Obstacle Detection (LSOD) application used
in the European IST research project ‘Camellia’: core for
ambient and mobile intelligent imaging applications [21].
Its objective is to build a smart imaging hardware core.
The core is low-cost, low-power, and flexible enough to
be used in a large class of embedded mobile smart
imaging consumer applications.

The need of high performance requires this kind of
applications to be implemented as parallel systems. To do
this, we believe that such applications are most
conveniently specified using the Kahn Process Network
(KPN) Model of Computation (MoC) [7]. This is because
distributed control and distributed memory are two main
features of a KPN that allow to program heterogeneous
multiprocessor systems relatively easy and to generate
highly efficient hardware implementations [5] [7] [11]
[12] [16]. However, deriving KPN specifications for an
application is difficult and time consuming process.
Designers have to study the application in order to identify

possible task-level parallelism that is available and to
reveal it. Therefore, in our research group we develop the
Compaan/Laura design flow [1] [4] [15] [16] which aims
at helping the designers to derive KPN specifications from
an application described as a sequential program and to
implement these KPNs in software and/or hardware.

The first tool, Compaan, takes an application
described as a sequential program in Matlab and
automatically generates functionally equivalent KPNs.
Laura operates as a backend tool for FPGA mapping of a
KPN specification generated by Compaan. Until recently,
the sequential program had to be a parameterized static
affine nested loop program. For such a program the
behavior can be completely analyzed at compile time.
Although, this is a nice property, many applications can
not be specified as static programs. With the description of
the LSOD application in the following subsection we show
an example of a program that has the specific non-static
behavior we consider in this paper and we outline the
problems in our design flow introduced by this behavior.

1.1 Motivating example – LSOD application
The LSOD application is intended to detect and to

track objects in front of a car in traffic. The output of the
system presents accurate spatial positions for targets –
cars, pedestrians, etc. The structure of the LSOD
application is depicted in Figure 1. Five general image
processing components help to find new targets, and to
track existing targets. The components implement vertical
edge detection, motion segmentation, shadow detection,
symmetry detection, and lights detection. The result from
each component is collected by a particle filter component
[14]. The output is the result of evaluated likelihood
functions.

The first step is to obtain two images from a given
camera picture. They are named high and low resolution
images and are depicted by the two dark rectangles in
Figure 2. Applying the different algorithms on these
images, hypotheses whether cars exist are computed.
Possible targets are defined as coordinates and dimensions
of rectangles belonging either to the high or low resolution
image. Two possible targets are presented by the white
rectangles, surrounding the cars in Figure 2. Vertical
summing is applied on the target area, based on edge

detection operator, and then used to support or decline the
existence of the targets.

The edge detection part of the LSOD application in
Figure 1 is an example of a non-static program. It is shown
in Figure 3 and we consider this example for further
analysis. This program is non-static because the function
getLSODTarget in line 2 initializes variables Height and
Width used as loop bounds. The variables define the size
of a target and the amount of data to be processed. Since,
a target is moving in front of a camera, the positions and
dimensions will differ for different targets in the frame and
for one and the same target in different frames. That is
why the values of variables Height and Width are not
known at compile time which makes the LSOD
application to have a non-static behavior. As a
consequence the Compaan/Laura design flow can not
handle the program shown in Figure 3. The solution of this
problem is the contribution of the paper. Our approach
extends the range of the applications Compaan/Laura
design flow can handle. The solution is based on program
decomposition that results in generation of parameterized
KPNs suitable for software and hardware implementation.
Applying this technique we can model and implement
efficiently applications that have non-static behavior using
the KPN MoC.

...

Particle
Filter

Output

Edge
Detection

Motion
Segmentation

Image
Processing n

Particle updating
using likelihood

functions
Feedback
to image

processing
modules

Figure 1: Low Speed Obstacle Detection application
framework. Results from different image processing

components are collected by a particle filter.

1.2 Related work
In [2] Bhattacharya et al. describe a parameterized

dataflow framework. They extend the Synchronous
Dataflow (SDF) MoC to Parameterized SDF (PSDF)
targeting software implementation of parameterized
systems for DSP. They use a hierarchy discipline that
allows subsystem behavior to be controlled by sets of
parameters, which can be configured dynamically. Dealing
with parameters greatly enhances the utility of the model.
The relation to our work is that we also use a
parameterized MoC, in our case KPN, for modeling and
implementation. However, modeling applications using

PSDFs is done manually and needs some consistency
analysis at run time, whereas our KPN specifications are
derived automatically and are correct by construction so
that no consistency checks are needed.

In [9] van Dijk et al. propose an extension of the KPN
MoC. They introduced a simple non-deterministic
construct and called the resulting network Context-Aware
Process Network (CAPN). They show that these networks
are capable of handling external events. The relation to
our work is in the sense that with our parameterized KPN
we also can handle external events if the parameters are
changed from an external environment dynamically, at
runtime. The difference is that in our KPN we do not
introduce non-deterministic behavior.

Target 1Target 1

Target 2Target 2

Figure 2: LSOD applied on real data. The vehicles in

front of the camera are detected and tracked. The dark
rectangles depict the area of the image that is

processed.
Celoxica [20] provides electronic design automation

(EDA) products for system design and implementation.
Their products implement software-compiled system
design, allowing hardware implementation from a high
level, C-based language called Handel-C. The relation to
our work is that our Compaan/Laura tool chain also can
generate hardware starting from a high level language -
Matlab. The difference is that in our case the underlying
MoC is KPN, whereas Celoxica uses Communicating
Sequential Processes (CSP). The KPN is suitable for
stream-oriented applications while the CSP MoC is more
suitable for control-oriented applications. Another
difference is that the Celoxica design flow puts fewer
restrictions on the input program. However, the designer
has to reveal the inherent parallelism in the program and
to describe it manually. In our case this is done
automatically by Compaan/Laura which reduces
significantly the design time.

In [13] MATCH (MATlab Compiler for distributed
Heterogeneous computing systems) compiler project is
presented. It is further commercialized by AccelChip Inc
[18]. The objective of the MATCH compiler is to allow
developing an efficient code for distributed heterogeneous

computing systems. The compiler takes MATLAB
descriptions of an application, and automatically maps it
onto Field-Programmable Gate Arrays (FPGAs),
embedded processors and digital signal processors. It uses
both IP cores and automated generation of C code for the
DSP and RTL VHDL code for the FPGAs. The relation
with Compaan/Laura design flow is that it also generates
C (or Java) code from a Matlab specification that can be
compiled either for DSP, RISC or general purpose
processors, and VHDL code for hardware mapping using
IP cores. However, our approach has major differences
described bellow.

1

2

3
4
5
6
7

8
9
10
11
12
13
14
15

16
17
18

19
20
21
22
23

24
25
26

27

for j=0:1:Targets,

 [Height ,Width] = getLSODTarget();

for j=0:1:Height+1,
for i=0:1:Width+1,

 [img_in(j,i)] = ReadTarget() ;
end

end

for j=1:1:Height,
for i=1:1:Width,

 [img_out(j-1,i-1)] = SOBEL(img_in(j-1 , i-1), img_in(j-1 , i+1),
 img_in(j , i-1), img_in(j , i+1),
 img_in(j+1, i-1), img_in(j+1, i+1));

 [img_out(j-1,i-1)] = ABS_F(img_out(j-1, i-1));
end

end

for j=0:1: Height-1,
for i=0:1: Width-1,

 [out_vsums(i)] = VSUM(vsums(i), img_out(j,i));
end

end

for i=0:1: Width-1,
 [out(i)] = WriteVSUMResult(out_vsums(i));
end

for i=0:1: Width-1,
 [vsums(i)] = ZERO();
end

end

Figure 3: Matlab source code of the edge detection
part of the motivating example. The size of a target is

specified by variables Height and Width set by
getLSODTarget function and used as loop bounds.

A MATCH compiler implementation has a
centralized control. The compiler generates a main control
thread that makes remote procedure calls of functions
running on different processors. In our work we have
distributed control due to the KPN MoC we use. It allows
naturally exploiting the parallelism hidden in the
application.

The MATCH compiler performs automated mapping
and scheduling of resources using a mixed integer linear
programming. The Compaan/Laura design flow also uses
integer linear programming to generate KPN specification.
It can be mapped easily in software or hardware. The
implementation can be clustered and mapped on different
resources (mixed hardware/software implementation) but
still the clustering has to be done manually.

For the software part of an implementation the
MATCH compiler uses the Single Program Multiple Data

(SPMD) model, where all processors execute the same
program but on different portions of data. The loop
bounds in the loop nest are partitioned so that each
processor executes only those iterations for which the data
resides on. In our approach we use KPN MoC and there is
no need to partition the loop bounds to achieve an efficient
implementation. The Match compiler can handle loop
bound expressions that may have compile-time unknowns.
In the paper we also show how we deal with some
compile-time unknowns and how we are able to generate
parameterized implementations and to change the
parameters at runtime.

In the FPGA mapping of an application obtained by
MATCH compiler, each user function is converted into a
process in VHDL. The functions share a common
memory. This is a major difference from our work. For
each function our design flow generates a process of a
KPN specification. The structure of a process is described
in Section 4.2. A process assumes that input data is read
from FIFOs and the result is written to FIFOs that are
distributed between the processes.

1.3 Paper outline
First, a limited background about KPNs and Compaan

generated KPNs (CPN) is given. Then in Section 3 we
present our solution approach for dealing with non-static
programs. Section 4 presents the implementation of the
edge detection part of the LSOD using Compaan/Laura
design flow. With an FPGA mapping we describe the
consequence of the solution approach to the
implementation of parameterized KPNs in hardware.
Results are presented and commented in Section 5.
Finally, we conclude the paper.

2. Background

A KPN [7] assumes a network of concurrent
autonomous processes that communicate in a point-to-
point fashion over unbounded FIFO channels, using a
blocking read synchronization primitive, i.e., a process
that attempts to read from an empty channel is stalled until
the channel has sufficient data to complete a read action.
Each process in the network performs a sequential
computation concurrently with the other processes. A
well-known characteristic of KPNs is that their MoC is
deterministic. Always for a given input data, one and the
same output data is produced. This input/output relation
does not depend on the order in which the processes are
executed. As the control is incorporated into the processes
no global scheduler is present. Moreover, the concurrency
between the processes is naturally exploited, since each of
them can be executed if there is data on their input ports.

Compaan generated KPNs (CPN) are seen to be a
subset of KPNs. This is because of the restrictions put on
the sequential program. As we mentioned, Compaan

converts parameterized nested loop programs to input-
output equivalent parameterized KPN specifications.
Compaan generates a process for each function in the
program (i.e. the bubble PS_5 in Figure 4 corresponds to
the function VSUM, line 21 in Figure 3), and edges
between processes (the arrows in the Figure 4) in
accordance with the data dependences in a program.

2.1 Iteration space of process in a Compaan
generated KPN

A process is generated for each function present in a
program. A process firing represents one execution of the
function call. The iteration space of a process is defined
by the bounds of nested loops, surrounding the function
and represents the number of the firings of the process.
Each process has its own iteration space, its own notion of
time.

2.2 Run of a Compaan generated KPN

When a process finishes the execution of the last
iteration from its iteration space, one run of the process is
completed and the process is suspended. Since there is no
global scheduler, the processes can run concurrently if
there is data on their input ports. The amount of parallel
process executions depends on the program a CPN
represents. When each process of a CPN completes its
run, one run of the process network is defined.

The KPN MoC is suitable for processing endless,
streaming data. It is easy to describe an application in
software that never ends, but this complicates the
dependence analysis a lot. Therefore, it is reasonable to
describe the application in terms of processing a finite
piece of data, i.e. a frame or number of frames (if images
are processed). In general, when a CPN finishes the
processing of the current data (finishes its current run) it
stops. However, if there is new data to be processed, the
network is run again. This can be done automatically, i.e.
when a process completes its run it starts another run if
there is new data. As a result we have overlapping process
executions between different runs of a CPN, leading to
maximum performance.

In our implementations we have also the ability to
stop and to start a CPN between different runs. In that case
we loose the overlapping of process executions in
different runs but we gain an easy way to control the CPN
when it is a part of a complex system. This ability to
control a CPN does not deal with scheduling of a CPN.

In this manner, streaming data can be processed by
CPNs, generated after a simplified dependence analysis of
the initial program and with reduced control logic. We
exploit the capability to start and stop CPNs in our
solution approach described in the next Section.

3. Solution approach
The non-static program in Figure 3 can be divided in

two parts that are static programs. The first part, function
getLSODTarget in code line 2, defines the size of the
current target by variables Height and Width. The second
part, code lines 3-26, applies the vertical edge detection
algorithm on the current target. This code can be seen as a
parameterized static affine program if the variables Height
and Width are interpreted as parameters.

Since, the two parts are static programs each of them
can be processed by the Compaan tool, thereby generating
two KPNs as shown in Figure 4. Given that KPN1
corresponds only to one function, getLSODTarget, we ran
the function as a software program without processing it
through Compaan. KPN2 is a process network generated
by Compaan as a result of the initial program represented
by code lines 3-26 in Figure 3. Each process (bubble) in
Figure 4 represents a function in the initial program (code
lines 5, 10, 13, 17, 21, and 25). The processes
communicate between each other through data channels,
depicted as solid black arrows (edges) in Figure 4. The
KPN2 is parameterized by Height and Width, which
values are set at runtime by getLSODTarget function. The
interaction between ‘KPN1’ and KPN2 is realized through
control channels, shown as dashed arrows in Figure 4. The
values of the parameters are communicated via these
channels.

The problem is that we have to add control to the
KPN2 to enable the update of certain parameters from
outside the network. The questions that arise are: when to
update the parameters, and how to update them in order to
preserve the consistency of the process network?

A Kahn process network is a parallel model of
computation and due to the distributed control there is no
global schedule present. That allows to incorporate easily
the control for updating the parameters into the processes.

PS_1

ED_1

ED_2

ED_3

ED_4

ED_5

ED_6

ED_7
ED_10

ED_9

ED_8

ED_11

PS_2

PS_3 PS_4

PS_6PS_5

getLSODTarget

‘KPN1’

KPN2

Dataflow
Control flow

Figure 4: The KPN generated by Compaan from the
vertical edge detection part of the motivating example.
The getLSODTarget function is not processed by the

Compaan tool.
In our Compaan/Laura design flow the parameters

have to be fixed before each implementation. Each set of
parameter values defines one instance of a CPN. The
analysis performed by the tools guarantees that each

instance is consistent for the values of the parameters
within a specified range. Using this feature and due to the
way of interaction between the dataflow and the control
flow we are able to deal with the parameters without
disturbing the consistency.

We introduce three conditions and following these
conditions we can model control in parameterized KPNs
with non-static parameters. The aim of the conditions is to
preserve the deterministic behavior and to deal with
parameters at runtime:

C1: Each interaction of a CPN with its environment
includes one run of the process network.

C2: Updating parameters is done before a new run of
a CPN.

C3: Each set of parameters initiates a new run of a
CPN.

Following the conditions guarantees that if the
network is deadlock-free before introducing the
parameters it will not deadlock after the parameterization.
This is because it is not possible to send new parameters
to the process network while it is still running and then the
completion of the current run to be made according to
their new values.

We propose and implement a simple mechanism to
send and update the values of the parameters that is
compliant with the defined conditions above. The
parameters are updated before each run of the process
network. That allows sending parameters to the CPN at
any time, however they will be updated after the current
run is completed and just before the new run is initiated.

4. Implementation

In this section we show the implementation of the
motivating example by integrating the solution approach
in the Compaan/Laura design flow. The first part of the
decoupled program (getLSODTarget function) was
implemented in software. The vertical edge detection
algorithm of the example (the second part) was
implemented in hardware using our design flow and
described in the remaining part of the paper. It
corresponds to KPN2 in Figure 4.

4.1 Compaan tool
Compaan tool is a compiler [1] that fully automates

the transformation of applications described in Matlab into
KPN specification. It can be in the forms of Y-chart
Application Programmers Interface (YAPI) [6] (C++ code
for system level application modeling and performance
analysis), or Ptolemy [8] (Java code that can be used for
functional simulation in Ptolemy II). A robust dependence
analysis is performed [10] [17] that reveals the parallelism
hidden in the sequential source code. As a result a

Dependency Graph (DG) of the initial program is created.
Then the DG is converted to a Polyhedral Reduced
Dependence Graph (PRDG) data structure, which is a
compact mathematical representation of the DG in terms
of polyhedrons. Finally, a process network is generated
from the PRDG. The parallel processes communicate with
each other in accordance with the data dependency given
in the DG.

The vertical edge detection program (Figure 3,
without code lines 1 and 2) is described as nested loops
program with parameterized iteration space and several
functions. The possible dimensions of a target are
described by the parameters Height and Width, specified
in a range. Then, a KPN specification is generated by the
Compaan tool: a process for each function in the program;
and edges between processes, according to the data
dependences (KPN2 in Figure 4). By specification the
CPN is consistent for each value of the parameters within
the range, guaranteed by dependence analysis.

4.2 Laura tool
Laura accepts as input CPN specification, and

generates synthesizable RTL hardware specification in
several steps [4]. It targets FPGAs as an implementation
technology. First, the CPN is converted to an internal
hardware model. A node is generated for each process
from the process network. The edges between processes
are substituted with hardware FIFO channels that are
intermediate storage elements in the communication
between nodes as shown in Figure 5. To generate the HDL
code Laura uses additional information about the token
size, IP Cores, target architecture and the parameters.

Control Bus

...

...
ABS OUT

ZERO

INIT SOBEL VSUM

Figure 5: Laura generated hardware model of the
KPN2 in Figure 4. The functionality is realized by
processes communicating between each other

through FIFOs. The purpose of the Control Bus is to
transfer the parameters to each node.

A token is a piece of data that is communicated
between nodes through the channels, in our case one pixel
value. In the design flow each function is implemented by
an IP core written in VHDL. The needed information
about each IP is taken from a library. Target architecture
gives information about the FPGA family that will be used
for the implementation and the interface logic for the
FPGA environment – host PC for example. To be able to
generate and to manage the hardware implementation of

parameterized KPN, information about the parameters is
used. A common control bus is connected to each node –
the dashed arrows in Figure 5. It is used to set the
parameters from outside the CPN.

Introducing the concept of parameters into the
hardware model of the process network does not break the
consistency of the network if the defined conditions in
Section 3 are respected.

To describe how the parameters are updated, first we
explain the structure of a node, shown in Figure 6. The
node consists of three parts: communication, computation,
and control part. The communication part contains Read
and Write Units. A set of input data ports belongs to the
read unit and a set of output data ports belongs to the write
unit. The number of the input/output ports is equal to the
number of the edges going in (respectively out of) the
process as they are depicted in the CPN structure (solid
arrows of KPN2 in Figure 4). The read unit is responsible
for getting data from proper channels (FIFOs) at each
iteration. The write unit is responsible for writing the
result to proper channels (FIFOs) at each iteration.
Selecting a ‘proper channel’ at each iteration means to
follow a local schedule incorporated into the read and
write units. These local schedules are extracted from the
CPN specification automatically by Laura tool. Also, the
read unit implements the blocking read mechanism
described in Section 2. Similarly, the write unit
implements a blocking write mechanism. Laura tool
estimates the sizes of the FIFO channels and since, they
are finite values it could happen that the channel is full
when a node attempts to write data in it. If such situation
appears, the node is suspended until the channel is ready
to accept the data.

EXEC
UNIT

Node

Empty

DATA DATA

CONTROL
BUS

CTRL
UNIT

WRITE
UNIT

3-stage
control
pipeline

READ
UNIT

3-stage
control
pipeline

Read
Write
Full

FIFOsFIFOs

Figure 6: The structure of a node of a CPN

The computational part is represented by the
execution unit. It gets data from its inputs and produces
data on its outputs. The execution unit is realized as a
wrapper of an IP core. The core can be pipelined or not.
The number and the size of the input/output ports of the
core, the number of the stages of the pipeline (or
respectively the number of the clock cycles needed to
produce data) is taken from a library. To be incorporated
into a node, an IP core has to have ‘Enable’ and ‘Ready’

signals. ‘Enable’ signal allows running the core when
there is data to be processed and suspended otherwise.
The ‘Ready’ signal indicates whether the data on the IP
outputs is valid or not. In the implementation of KPN2 we
use IP cores for sobel, absolute value, zero, and vertical
sum functions.

The function of the control unit is to synchronize the
operation of the other units and to make them to work
together.

PCTRL
LOGIC

SHIFT
REG.

REG.
FILE

READ
UNIT

CTRL
UNIT

EXEC
UNIT

WRITE
UNIT

PCTRL

Node

Din Dout

CTRL
FIFOs

DATA
PATH

CTRL
FIFOs

DATA
PATH

CONTROL
BUS

...
Pn

P2
P1

Figure 7: Loading and updating parameters. Read Unit
is depicted as an example of the logic involved in

updating the parameters
There is no additional latency in the data path added

to the CPN by the node. The execution unit (the IP core)
reads the input data directly from the FIFO outputs and
store the results directly in the FIFOs. If the IP core
contains only combinational logic, the combinational data
path (from an input FIFO to an output FIFO) becomes the
critical path in the design that sacrifices the performance.
To avoid that, we put registers at the outputs of the IP
core. In that case one clock period delay is added to the
data path.

In each Read and Write unit the control logic (the
local schedule) is implemented as a pipeline that has three
stages. It could be seen that each node adds to the CPN 6
clock periods additional delay and in case of a network
with many nodes the delay would become significant.
However, as we stated earlier, each process (node) has its
own notion of time. Moreover, read and write pipelines
work independently. For that reason filling the control
pipelines begins in parallel immediately after the CPN
starts a new run. As a consequence, latency of only 3 clock
periods is added to the whole CPN regardless of how
many nodes it contains and how they are connected
between each other.

4.3 Updating the parameters
Updating the parameters is based on a double

buffering technique. To implement this technique

hardware buffers are placed in each unit of a node. In
Figure 7 a read unit is taken as an example. The first
buffer is a shift register and the second is a register file.
The parameters are sent one after another and they are
stored temporary in the shift register in each unit.
Depending on CPN specifications generated by Compaan
it can happen that not all the parameters are used in each
unit. However, all the parameters are stored in the shift
registers in order to simplify the process of sending
parameters to the nodes of a CPN. The real update of the
parameters is done by transferring them in parallel from
the shift registers to the register files. Sending parameters
to the shift registers can be done at any time. However the
transfer to the register files must be done after the
completion of each run of a CPN in order to keep its
deterministic behavior as explained in Section 3.

5. Experiments and results

In this section we describe the experiments and the
results we have obtained by mapping the edge detection
part from the LSOD application on FPGA platform. We
did these experiments with Compaan/Laura in order to
validate the solution approach presented in this paper and
to evaluate the performance of the generated hardware in
terms of speed and resource utilization.

In the experiments we used ADM XRC-II, FPGA
prototyping board manufactured by Alpha Data Parallel
system Ltd. [19] The ADM XRC-II is a high performance
PCI card equipped with Xilinx FPGA. The board is
connected to a Pentium based personal computer (PC)
running at 1.8 GHz. The FPGA board consists of Virtex-II
(XC2V6000-FF1152) device and 6 banks of static
memory, 256K x 32bits each. The memory can be
accessed either from the PC or the FPGA. Transferring
data between the board and the main processor is managed
by a PCI controller.

5.1 Synthesis results
For the synthesis and hardware implementation we

used the ISE XILINX Foundation design environment
software. The results are presented in Table 1. Resource
utilizations are given for the IP cores, the logic involved in
the CPN implementation and the interface logic used for
the PCI and memory communication. The FPGA
resources are grouped into slices that contain
combinational logic (4-Iinput Look-Up tables), distributed
memory (Flip-Flops); and dual port memory blocks
(BRAMs). Laura tool automatically instantiates BRAMs
for implementation of the FIFO channels in a process
network. One BRAM can implement FIFO with size 512
words by 32 bits. If larger FIFOs are needed, Laura tool
generates them by usage of optimal combinations of
BRAMs.

In the current implementation we use IP cores for
sobel, absolute value, zero, and vertical sum functions.
They consist of basic synthesizable operations. Sobel
contains two additions, one subtraction and shift
operations. Absolute value is implemented with one
comparison, one addition and one negation. Zero is
constant zero. Vertical sum contains only one addition. It
is obvious that the resource utilization of such simple
functions will be low – in our case only 424 slices.

From the table it is seen that the logic needed for the
implementation of the CPN structure and control is almost
twice larger than the processing units (IP cores). However,
the area of the controllers does not directly depend on the
size of the data and the size of the IP cores they control -
larger IP cores will not lead to increased control logic. For
example, in our previous work we implemented part of a
Motion JPEG using Compaan/Laura design flow, where
the IP cores (Discrete Cosine Transform and pre-shift
operation) utilizes 4 times more FPGA resources than the
CPN control logic.

 The parameterization of a hardware implementation
of a CPN increases only the number of the Flip-Flops used
in realizing the shift registers and the parameter registers.
That increase depends on the number of the parameters
defined in the initial program.

5.2 Performance results
The LSOD application runs as a software program on

the host PC. As input data the program takes high
resolution image, low resolution image, positions and
dimensions of two targets for which we have a reference
data. It calculates each target to which image belongs,
extracts the data from the proper image and stores it into
the memory of the FPGA prototyping board. The
described steps above model the behavior of function
getLSODTarget in Figure 3. For one run of the CPN, one
target is processed. Thus, for each target present in the
image the process network has to be run again. To model
this behavior the LSOD application does the following
steps:

1. Store the pixel data of a target into the FPGA
board memory;

2. Set (send to the FPGA) new parameters;
3. Run the CPN;
4. Read back the result (from the FPGA board

memory) when the processing is finished;
5. Repeat the steps above for each target.

The part of the LSOD application running on the PC
and the CPN communicate pictures (loading the data to
the FPGA board memory and read back the results), but
the CPN processes pixels.

To estimate an interpretable performance rate (i.e.
number of targets per frame or per second) first, we

assumed that there are infinite numbers of targets in the
input image. Then we set the dimensions to be equal to the
first target that we have reference data for. We ran the
application following the five steps above for one second
and counted how many times the CPN was run. This is the
number of targets per second. For an input data rate of 25
frames per second we divide the results by 25 thus
obtaining number of targets per frame at 25 frames per
second. Then we set the target dimensions to be equal to
the second target that we have reference data for and ran
the process network again for one second. Finally, we
made the targets to have the largest possible size: equal to
the high resolution image, and ran the application again
for one second. With the last dimension the system can
process 9 targets per frame at 25 frames per second. But
the target is large as the whole image and in case of non-
overlapping targets it is not possible to have more than
one target per frame. The results are presented in Table 2.
The main processor works at 1.8 GHz and the board
works at its maximum: 66 MHz.

Table 1: Device Utilization (XC2V6000)

Utilization Slices 4-Input
LUT

Sliced
FFs BRAMs

IP Cores 424 574 388 -
CPN

Control 816 1056 621 11

Interface
Logic 470 665 717 -

Overall 1710
(5%)

2295
(3%)

1717
(2%)

11
(7%)

The parameterization of the system does not sacrifice
the measured performance. We computed that the CPN
needs N(2M+1)+12 clock cycles to process one target
with size NxM pixels. This means that the maximum
achievable performance is 1658 targets per second
(180x110 at 66MHz). The difference with the measured
performance is about a factor of 7. We found out this is
due to the card drivers (i.e. the time needed for setting a
DMA channel) and the function calls under Windows OS.
We are limited in terms of performance by the PCI
interface connecting the prototyping board and the host
processor. However, even with this restriction we achieve
performance which satisfies the real-time requirements of
this application.

Table 2: Measured performance. T/F@25F/sec means
“targets per frame at 25 frames per second”

Target size 58x60 40x45 180x110
Targets/sec 1089 1843 229

T/F@25F/sec 43 74 9

To ensure that our hardware implementation works
correctly we compared the results from the FPGA
mapping with a reference data that we have. We did not
perform an RTL (cycle accurate) simulation of the
generated hardware because the generated CPN is correct
by construction. There is no need to test the IP cores as
well. That reflects on a significantly reduced development
time.

6. Conclusion

We proposed a method for modeling and FPGA
implementation of non-static programs using
parameterized KPNs. We applied our method on an image
processing application, namely Low Speed Obstacle
Detection and generated a parameterized hardware
implementation using our Compaan/Laura design flow.
From the experiments and results we conclude the
following:

• The parameterized KPN model we presented allows
us to implement easily parameterized systems due to
the fact that the CPN has a self-timed schedule. The
parameters are updated at runtime without
introducing non-deterministic behavior of the
system.

• The implementation results in a high performance
parameterized system capable of processing data at
more than 25 frames per second. This rate is the
real-time requirement in many image processing
applications.

• The KPN MoC used in our automated
Compaan/Laura design flow results in effortless
analysis, debugging, and tuning of the system.

• Starting from an application specified as a sequential
program it is a matter of hours to go to a hardware
implementation as CPN. This is because its
functionality is realized by integrating IP cores in a
communication network where the control and the
communication hardware are generated
automatically by our tools.

7. Acknowledgment

The research is supported by the PROGRESS
program of the Dutch Technology Foundation STW. The
authors would like to acknowledge W. Kruijtzer from
Philips Research; I. Cimpian, and B. Kienhuis for the
discussions about the ‘Camellia’ project. Also, we would
like to thank the anonymous reviewers for their
constructive comments and helpful suggestions.

8. References

[1] A. Turjan, B. Kienhuis, E. Deprettere. Translating
affine nested loop programs to Process Networks. Int.
Conf. on Compilers, Architectures and Synthesis for
Embedded Systems (CASES’04), Washington, Sep.
22-25 2004

[2] B. Bhattacharya, S. Bhattacharyya. Parameterized
Dataflow Modeling for DSP Systems. IEEE Trans. on
Signal Processing, 49(10), Oct. 10 2001.

[3] B. Dwivedi, A. Kumar, M. Balakrishnan. Automatic

Synthesis of System on Chip Multiprocessor
Architectures for Process Networks. In Proc Int.
Conf. on Hardware/Software Codesign and System
Synthesis (CODES+ISSS 2004), Stockholm, Sweden,
September 2004.

[4] Claudiu Zissulescu, Todor Stefanov, Bart Kienhuis,
Ed Deprettere. LAURA: Leiden Architecture
Research and Exploration Tool. In Proc. 13th Int.
Conference on Field Programmable Logic and
Applications (FPL’03).

[5] E. de Kock. Multiprocessor Mapping of Process
Networks: A JPEG Decoding Case Study. In Proc.
15th Int. Symposium on System Synthesis
(ISSS’2002), pages 68-73, Kyoto, Japan, Oct. 2002.

[6] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der
Wolf, J.Y. Brunel, W.M. Kruijtzer, P. Liverse, and
K.A. Vissers. YAPI: Application Modeling for Signal
Processing Systems. In Proc. 37th Design Automation
Conference (DAC’2000), pages 402-405, Los
Angeles, CA, June 5-9 2000

[7] Edwart A. Lee and Tomas M. Parks. Dataflow
Process Networks. In Proc. of the IEEE, 83(5):773-
799, May 1995.

[8] Edwart A. Lee et al. Ptolemy II: Heterogeneous
Concurrent Modeling and Design in Java. Technical
report, University of California at Berkeley, 1999.
UCB/ERL M99/40.

[9] H.W. van Dijk, H.J. Sips, E.D. Deprettere. Context-
Aware Process Networks. In Proc. of the 14th IEEE
Int. Conf. on Application-specific Systems,

Architectures and Processors (ASAP’03), The Hague,
The Netherlands, June 24-26, 2003.

[10] P. Feautrier. Parametric integer programming.
Operations research, 22(3): 243-268, 1988.

[11] P. Lieverse, T. Stefanov, P van der Wolf, Ed
Deprettere. System Level Design with SPADE: an M-
JPEG Case Study. In Proc. Int. Conference on
Computer Aided Design (ICCAD’01), pages 31-38,
San Jose CA, USA, Nov. 4-8 2001.

[12] P. van der Wolf, Paul Lieverse, Mudit Goel, David La
Hei, Kees Vissers. An Mpeg-2 Decoder Case Study as
a Driver for a System Level Design Methodology. In
Proc. 7th Int. Workshop on Hardware/Software
Codesign (CODES’99), Rome, Italy, May 3-5 1999.

[13] P.Banerjee, A.Choudhary, S. Hauck, N. Shenoy. The
MATCH Project: MATLAB Compilation
Environment for Adaptive Computing Systems.
www.ece.nwu.edu/cpdc/Match/Match.html

[14] Sanjeev Arulampalam, Simon Maskell, A Tutorial of
Particle Filter for On-line Non-linear/Non-Gaussian
Bayesian Tracking. IEEE Transactions on Signal
Processing, pages 174-188, Feb. 2002.

[15] T. Stefanov, B. Kienhuis, E. Deprettere. Algorithmic
Transformation Techniques for Efficient Exploration
of Alternative Application Instances. In Proc. “10th
Int. Symposium on Hardware/Software Codesign
(CODES’02)”, pages 7-12, Estes Park, Colorado,
USA, May 6-10, 2002.

[16] Todor Stefanov, Claudiu Zissulescu, Alexandru
Turjan, Bart Kienhuis, Ed Deprettere. System Design
Using Kahn Process Networks: Compaan/Laura
Approach. In Proc 7th Int. Conf. Design, Automation
and Test in Europe (DATE’04), Paris, France, Feb
16-20 2004.

[17] W. Pugh. The Omega Test: A Fast and practical
Integer Programming Algorithm for Dependence
Analysis. Communications of the ACM 35, 1992,
pages102-114

[18] www.accelchip.com/, AccelChip Inc. homepage
[19] www.alpha-data.com/adm-xrc-ii.html, ADM-XRC-II.
[20] www.celoxica.com, Handle-C.
[21] www.iuma.ulpgc.es/camellia/, ‘Camellia’ home page

