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Abstract 

 
Today’s applications in the domains of multimedia, 

signal processing, etc. consist of a number of interacting 
components. If the way of interaction is determined at run 
time, we say that an application is non-static. In general, 
complex real-world applications are non-static. In this 
paper, we summarize a method for modeling and FPGA 
implementation of applications that have a specific type of 
non-static behavior. This method is based on program 
decomposition resulting in the generation of truly 
Parameterized Kahn Process Networks and their mapping 
onto FPGAs. We automated the method by integrating it 
in our tools Compaan/Laura. The efficiency of our method 
is demonstrated by an implementation of a real-world 
application taken from the automotive domain. 

1. Introduction 
Today’s embedded applications in the domains of 

multimedia, imaging, or signal processing consist of a 
number of components interacting between each other. In 
general, the way of interaction is data dependent and 
determined at runtime. We call such applications non-
static. A real-world industrially relevant example is the 
Low Speed Obstacle Detection (LSOD) application used 
in the European IST research project ‘Camellia’: core for 
ambient and mobile intelligent imaging applications [21]. 
Its objective is to build a smart imaging hardware core. 
The core is low-cost, low-power, and flexible enough to 
be used in a large class of embedded mobile smart 
imaging consumer applications.  

The need of high performance requires this kind of 
applications to be implemented as parallel systems. To do 
this, we believe that such applications are most 
conveniently specified using the Kahn Process Network 
(KPN) Model of Computation (MoC) [7]. This is because 
distributed control and distributed memory are two main 
features of a KPN that allow to program heterogeneous 
multiprocessor systems relatively easy and to generate 
highly efficient hardware implementations [5] [7] [11] 
[12] [16]. However, deriving KPN specifications for an 
application is difficult and time consuming process. 
Designers have to study the application in order to identify 

possible task-level parallelism that is available and to 
reveal it. Therefore, in our research group we develop the 
Compaan/Laura design flow [1] [4] [15] [16] which aims 
at helping the designers to derive KPN specifications from 
an application described as a sequential program and to 
implement these KPNs in software and/or hardware. 

The first tool, Compaan, takes an application 
described as a sequential program in Matlab and 
automatically generates functionally equivalent KPNs. 
Laura operates as a backend tool for FPGA mapping of a 
KPN specification generated by Compaan. Until recently, 
the sequential program had to be a parameterized static 
affine nested loop program. For such a program the 
behavior can be completely analyzed at compile time. 
Although, this is a nice property, many applications can 
not be specified as static programs. With the description of 
the LSOD application in the following subsection we show 
an example of a program that has the specific non-static 
behavior we consider in this paper and we outline the 
problems in our design flow introduced by this behavior. 

1.1 Motivating example – LSOD application 
The LSOD application is intended to detect and to 

track objects in front of a car in traffic. The output of the 
system presents accurate spatial positions for targets – 
cars, pedestrians, etc. The structure of the LSOD 
application is depicted in Figure 1. Five general image 
processing components help to find new targets, and to 
track existing targets. The components implement vertical 
edge detection, motion segmentation, shadow detection, 
symmetry detection, and lights detection. The result from 
each component is collected by a particle filter component 
[14]. The output is the result of evaluated likelihood 
functions. 

The first step is to obtain two images from a given 
camera picture. They are named high and low resolution 
images and are depicted by the two dark rectangles in 
Figure 2. Applying the different algorithms on these 
images, hypotheses whether cars exist are computed. 
Possible targets are defined as coordinates and dimensions 
of rectangles belonging either to the high or low resolution 
image. Two possible targets are presented by the white 
rectangles, surrounding the cars in Figure 2. Vertical 
summing is applied on the target area, based on edge 



detection operator, and then used to support or decline the 
existence of the targets.  

The edge detection part of the LSOD application in 
Figure 1 is an example of a non-static program. It is shown 
in Figure 3 and we consider this example for further 
analysis. This program is non-static because the function 
getLSODTarget in line 2 initializes variables Height and 
Width used as loop bounds. The variables define the size 
of a target and the amount of data to be processed. Since, 
a target is moving in front of a camera, the positions and 
dimensions will differ for different targets in the frame and 
for one and the same target in different frames. That is 
why the values of variables Height and Width are not 
known at compile time which makes the LSOD 
application to have a non-static behavior. As a 
consequence the Compaan/Laura design flow can not 
handle the program shown in Figure 3. The solution of this 
problem is the contribution of the paper. Our approach 
extends the range of the applications Compaan/Laura 
design flow can handle. The solution is based on program 
decomposition that results in generation of parameterized 
KPNs suitable for software and hardware implementation. 
Applying this technique we can model and implement 
efficiently applications that have non-static behavior using 
the KPN MoC. 
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Figure 1: Low Speed Obstacle Detection application 
framework. Results from different image processing 

components are collected by a particle filter.  
 

1.2 Related work  
In [2] Bhattacharya et al. describe a parameterized 

dataflow framework. They extend the Synchronous 
Dataflow (SDF) MoC to Parameterized SDF (PSDF) 
targeting software implementation of parameterized 
systems for DSP. They use a hierarchy discipline that 
allows subsystem behavior to be controlled by sets of 
parameters, which can be configured dynamically. Dealing 
with parameters greatly enhances the utility of the model. 
The relation to our work is that we also use a 
parameterized MoC, in our case KPN, for modeling and 
implementation. However, modeling applications using 

PSDFs is done manually and needs some consistency 
analysis at run time, whereas our KPN specifications are 
derived automatically and are correct by construction so 
that no consistency checks are needed.  

In [9] van Dijk et al. propose an extension of the KPN 
MoC. They introduced a simple non-deterministic 
construct and called the resulting network Context-Aware 
Process Network (CAPN). They show that these networks 
are capable of handling external events. The relation to 
our work is in the sense that with our parameterized KPN 
we also can handle external events if the parameters are 
changed from an external environment dynamically, at 
runtime. The difference is that in our KPN we do not 
introduce non-deterministic behavior.  
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Figure 2: LSOD applied on real data. The vehicles in 

front of the camera are detected and tracked. The dark 
rectangles depict the area of the image that is 

processed. 
Celoxica [20] provides electronic design automation 

(EDA) products for system design and implementation. 
Their products implement software-compiled system 
design, allowing hardware implementation from a high 
level, C-based language called Handel-C. The relation to 
our work is that our Compaan/Laura tool chain also can 
generate hardware starting from a high level language - 
Matlab. The difference is that in our case the underlying 
MoC is KPN, whereas Celoxica uses Communicating 
Sequential Processes (CSP). The KPN is suitable for 
stream-oriented applications while the CSP MoC is more 
suitable for control-oriented applications. Another 
difference is that the Celoxica design flow puts fewer 
restrictions on the input program. However, the designer 
has to reveal the inherent parallelism in the program and 
to describe it manually. In our case this is done 
automatically by Compaan/Laura which reduces 
significantly the design time. 

In [13] MATCH (MATlab Compiler for distributed 
Heterogeneous computing systems) compiler project is 
presented. It is further commercialized by AccelChip Inc 
[18]. The objective of the MATCH compiler is to allow 
developing an efficient code for distributed heterogeneous 



computing systems. The compiler takes MATLAB 
descriptions of an application, and automatically maps it 
onto Field-Programmable Gate Arrays (FPGAs), 
embedded processors and digital signal processors. It uses 
both IP cores and automated generation of C code for the 
DSP and RTL VHDL code for the FPGAs. The relation 
with Compaan/Laura design flow is that it also generates 
C (or Java) code from a Matlab specification that can be 
compiled either for DSP, RISC or general purpose 
processors, and VHDL code for hardware mapping using 
IP cores. However, our approach has major differences 
described bellow. 

 
1

2

3
4
5
6
7

8
9
10
11
12
13
14
15

16
17
18

19
20
21
22
23

24
25
26

27

for j=0:1:Targets,

    [Height ,Width] = getLSODTarget();

for j=0:1:Height+1,
for i=0:1:Width+1,

      [img_in(j,i)] = ReadTarget() ;
end

end

for j=1:1:Height,
for i=1:1:Width,

       [img_out(j-1,i-1)] = SOBEL(img_in(j-1 , i-1), img_in(j-1 , i+1),
                                  img_in(  j  , i-1), img_in(  j  , i+1),
                                  img_in(j+1, i-1), img_in(j+1, i+1) );

       [img_out(j-1,i-1)] = ABS_F( img_out(j-1, i-1));
end

end

for j=0:1: Height-1,
for i=0:1: Width-1,

      [out_vsums(i)] = VSUM(vsums(i), img_out(j,i));
end

end

for i=0:1: Width-1,
   [out(i)] = WriteVSUMResult(out_vsums(i));
end

for i=0:1: Width-1,
   [vsums(i)] = ZERO();
end

end
 

Figure 3: Matlab source code of the edge detection 
part of the motivating example. The size of a target is 

specified by variables Height and Width set by 
getLSODTarget function and used as loop bounds.  

 

A MATCH compiler implementation has a 
centralized control. The compiler generates a main control 
thread that makes remote procedure calls of functions 
running on different processors. In our work we have 
distributed control due to the KPN MoC we use. It allows 
naturally exploiting the parallelism hidden in the 
application.  

The MATCH compiler performs automated mapping 
and scheduling of resources using a mixed integer linear 
programming. The Compaan/Laura design flow also uses 
integer linear programming to generate KPN specification. 
It can be mapped easily in software or hardware. The 
implementation can be clustered and mapped on different 
resources (mixed hardware/software implementation) but 
still the clustering has to be done manually.  

For the software part of an implementation the 
MATCH compiler uses the Single Program Multiple Data 

(SPMD) model, where all processors execute the same 
program but on different portions of data. The loop 
bounds in the loop nest are partitioned so that each 
processor executes only those iterations for which the data 
resides on. In our approach we use KPN MoC and there is 
no need to partition the loop bounds to achieve an efficient 
implementation. The Match compiler can handle loop 
bound expressions that may have compile-time unknowns. 
In the paper we also show how we deal with some 
compile-time unknowns and how we are able to generate 
parameterized implementations and to change the 
parameters at runtime.  

In the FPGA mapping of an application obtained by 
MATCH compiler, each user function is converted into a 
process in VHDL. The functions share a common 
memory. This is a major difference from our work. For 
each function our design flow generates a process of a 
KPN specification. The structure of a process is described 
in Section 4.2. A process assumes that input data is read 
from FIFOs and the result is written to FIFOs that are 
distributed between the processes.  

1.3 Paper outline 
First, a limited background about KPNs and Compaan 

generated KPNs (CPN) is given. Then in Section 3 we 
present our solution approach for dealing with non-static 
programs. Section 4 presents the implementation of the 
edge detection part of the LSOD using Compaan/Laura 
design flow. With an FPGA mapping we describe the 
consequence of the solution approach to the 
implementation of parameterized KPNs in hardware. 
Results are presented and commented in Section 5. 
Finally, we conclude the paper. 

2. Background 

A KPN [7] assumes a network of concurrent 
autonomous processes that communicate in a point-to-
point fashion over unbounded FIFO channels, using a 
blocking read synchronization primitive, i.e., a process 
that attempts to read from an empty channel is stalled until 
the channel has sufficient data to complete a read action. 
Each process in the network performs a sequential 
computation concurrently with the other processes. A 
well-known characteristic of KPNs is that their MoC is 
deterministic. Always for a given input data, one and the 
same output data is produced. This input/output relation 
does not depend on the order in which the processes are 
executed. As the control is incorporated into the processes 
no global scheduler is present. Moreover, the concurrency 
between the processes is naturally exploited, since each of 
them can be executed if there is data on their input ports.  

Compaan generated KPNs (CPN) are seen to be a 
subset of KPNs. This is because of the restrictions put on 
the sequential program. As we mentioned, Compaan 



converts parameterized nested loop programs to input-
output equivalent parameterized KPN specifications. 
Compaan generates a process for each function in the 
program (i.e. the bubble PS_5 in Figure 4 corresponds to 
the function VSUM, line 21 in Figure 3), and edges 
between processes (the arrows in the Figure 4) in 
accordance with the data dependences in a program. 

 

2.1 Iteration space of process in a Compaan 
generated KPN 

 

A process is generated for each function present in a 
program. A process firing represents one execution of the 
function call. The iteration space of a process is defined 
by the bounds of nested loops, surrounding the function 
and represents the number of the firings of the process. 
Each process has its own iteration space, its own notion of 
time.  

 

2.2 Run of a Compaan generated KPN 
 

When a process finishes the execution of the last 
iteration from its iteration space, one run of the process is 
completed and the process is suspended. Since there is no 
global scheduler, the processes can run concurrently if 
there is data on their input ports. The amount of parallel 
process executions depends on the program a CPN 
represents. When each process of a CPN completes its 
run, one run of the process network is defined.  

The KPN MoC is suitable for processing endless, 
streaming data. It is easy to describe an application in 
software that never ends, but this complicates the 
dependence analysis a lot. Therefore, it is reasonable to 
describe the application in terms of processing a finite 
piece of data, i.e. a frame or number of frames (if images 
are processed). In general, when a CPN finishes the 
processing of the current data (finishes its current run) it 
stops. However, if there is new data to be processed, the 
network is run again. This can be done automatically, i.e. 
when a process completes its run it starts another run if 
there is new data. As a result we have overlapping process 
executions between different runs of a CPN, leading to 
maximum performance.  

In our implementations we have also the ability to 
stop and to start a CPN between different runs. In that case 
we loose the overlapping of process executions in 
different runs but we gain an easy way to control the CPN 
when it is a part of a complex system. This ability to 
control a CPN does not deal with scheduling of a CPN.  

In this manner, streaming data can be processed by 
CPNs, generated after a simplified dependence analysis of 
the initial program and with reduced control logic. We 
exploit the capability to start and stop CPNs in our 
solution approach described in the next Section.  

3. Solution approach 
The non-static program in Figure 3 can be divided in 

two parts that are static programs. The first part, function 
getLSODTarget in code line 2, defines the size of the 
current target by variables Height and Width. The second 
part, code lines 3-26, applies the vertical edge detection 
algorithm on the current target. This code can be seen as a 
parameterized static affine program if the variables Height 
and Width are interpreted as parameters.  

Since, the two parts are static programs each of them 
can be processed by the Compaan tool, thereby generating 
two KPNs as shown in Figure 4. Given that KPN1 
corresponds only to one function, getLSODTarget, we ran 
the function as a software program without processing it 
through Compaan. KPN2 is a process network generated 
by Compaan as a result of the initial program represented 
by code lines 3-26 in Figure 3. Each process (bubble) in 
Figure 4 represents a function in the initial program (code 
lines 5, 10, 13, 17, 21, and 25). The processes 
communicate between each other through data channels, 
depicted as solid black arrows (edges) in Figure 4. The 
KPN2 is parameterized by Height and Width, which 
values are set at runtime by getLSODTarget function. The 
interaction between ‘KPN1’ and KPN2 is realized through 
control channels, shown as dashed arrows in Figure 4. The 
values of the parameters are communicated via these 
channels.  

The problem is that we have to add control to the 
KPN2 to enable the update of certain parameters from 
outside the network. The questions that arise are: when to 
update the parameters, and how to update them in order to 
preserve the consistency of the process network?  

A Kahn process network is a parallel model of 
computation and due to the distributed control there is no 
global schedule present. That allows to incorporate easily 
the control for updating the parameters into the processes.  
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Figure 4: The KPN generated by Compaan from the 
vertical edge detection part of the motivating example. 
The getLSODTarget function is not processed by the 

Compaan tool. 
In our Compaan/Laura design flow the parameters 

have to be fixed before each implementation. Each set of 
parameter values defines one instance of a CPN. The 
analysis performed by the tools guarantees that each 



instance is consistent for the values of the parameters 
within a specified range. Using this feature and due to the 
way of interaction between the dataflow and the control 
flow we are able to deal with the parameters without 
disturbing the consistency. 

We introduce three conditions and following these 
conditions we can model control in parameterized KPNs 
with non-static parameters. The aim of the conditions is to 
preserve the deterministic behavior and to deal with 
parameters at runtime: 

C1: Each interaction of a CPN with its environment 
includes one run of the process network. 

C2: Updating parameters is done before a new run of 
a CPN. 

C3: Each set of parameters initiates a new run of a 
CPN. 

Following the conditions guarantees that if the 
network is deadlock-free before introducing the 
parameters it will not deadlock after the parameterization. 
This is because it is not possible to send new parameters 
to the process network while it is still running and then the 
completion of the current run to be made according to 
their new values.  

We propose and implement a simple mechanism to 
send and update the values of the parameters that is 
compliant with the defined conditions above. The 
parameters are updated before each run of the process 
network. That allows sending parameters to the CPN at 
any time, however they will be updated after the current 
run is completed and just before the new run is initiated. 

4. Implementation 

In this section we show the implementation of the 
motivating example by integrating the solution approach 
in the Compaan/Laura design flow. The first part of the 
decoupled program (getLSODTarget function) was 
implemented in software. The vertical edge detection 
algorithm of the example (the second part) was 
implemented in hardware using our design flow and 
described in the remaining part of the paper. It 
corresponds to KPN2 in Figure 4. 

4.1 Compaan tool 
Compaan tool is a compiler [1] that fully automates 

the transformation of applications described in Matlab into 
KPN specification. It can be in the forms of Y-chart 
Application Programmers Interface (YAPI) [6] (C++ code 
for system level application modeling and performance 
analysis), or Ptolemy [8] (Java code that can be used for 
functional simulation in Ptolemy II). A robust dependence 
analysis is performed [10] [17] that reveals the parallelism 
hidden in the sequential source code. As a result a 

Dependency Graph (DG) of the initial program is created. 
Then the DG is converted to a Polyhedral Reduced 
Dependence Graph (PRDG) data structure, which is a 
compact mathematical representation of the DG in terms 
of polyhedrons. Finally, a process network is generated 
from the PRDG. The parallel processes communicate with 
each other in accordance with the data dependency given 
in the DG. 

The vertical edge detection program (Figure 3, 
without code lines 1 and 2) is described as nested loops 
program with parameterized iteration space and several 
functions. The possible dimensions of a target are 
described by the parameters Height and Width, specified 
in a range. Then, a KPN specification is generated by the 
Compaan tool: a process for each function in the program; 
and edges between processes, according to the data 
dependences (KPN2 in Figure 4). By specification the 
CPN is consistent for each value of the parameters within 
the range, guaranteed by dependence analysis. 

4.2 Laura tool 
Laura accepts as input CPN specification, and 

generates synthesizable RTL hardware specification in 
several steps [4]. It targets FPGAs as an implementation 
technology. First, the CPN is converted to an internal 
hardware model. A node is generated for each process 
from the process network. The edges between processes 
are substituted with hardware FIFO channels that are 
intermediate storage elements in the communication 
between nodes as shown in Figure 5. To generate the HDL 
code Laura uses additional information about the token 
size, IP Cores, target architecture and the parameters. 
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Figure 5: Laura generated hardware model of the 
KPN2 in Figure 4. The functionality is realized by 
processes communicating between each other 

through FIFOs. The purpose of the Control Bus is to 
transfer the parameters to each node. 

A token is a piece of data that is communicated 
between nodes through the channels, in our case one pixel 
value. In the design flow each function is implemented by 
an IP core written in VHDL. The needed information 
about each IP is taken from a library. Target architecture 
gives information about the FPGA family that will be used 
for the implementation and the interface logic for the 
FPGA environment – host PC for example. To be able to 
generate and to manage the hardware implementation of 



parameterized KPN, information about the parameters is 
used. A common control bus is connected to each node – 
the dashed arrows in Figure 5. It is used to set the 
parameters from outside the CPN. 

Introducing the concept of parameters into the 
hardware model of the process network does not break the 
consistency of the network if the defined conditions in 
Section 3 are respected. 

To describe how the parameters are updated, first we 
explain the structure of a node, shown in Figure 6. The 
node consists of three parts: communication, computation, 
and control part. The communication part contains Read 
and Write Units. A set of input data ports belongs to the 
read unit and a set of output data ports belongs to the write 
unit. The number of the input/output ports is equal to the 
number of the edges going in (respectively out of) the 
process as they are depicted in the CPN structure (solid 
arrows of KPN2 in Figure 4). The read unit is responsible 
for getting data from proper channels (FIFOs) at each 
iteration. The write unit is responsible for writing the 
result to proper channels (FIFOs) at each iteration. 
Selecting a ‘proper channel’ at each iteration means to 
follow a local schedule incorporated into the read and 
write units. These local schedules are extracted from the 
CPN specification automatically by Laura tool. Also, the 
read unit implements the blocking read mechanism 
described in Section 2. Similarly, the write unit 
implements a blocking write mechanism. Laura tool 
estimates the sizes of the FIFO channels and since, they 
are finite values it could happen that the channel is full 
when a node attempts to write data in it. If such situation 
appears, the node is suspended until the channel is ready 
to accept the data. 
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Figure 6: The structure of a node of a CPN 

The computational part is represented by the 
execution unit. It gets data from its inputs and produces 
data on its outputs. The execution unit is realized as a 
wrapper of an IP core. The core can be pipelined or not. 
The number and the size of the input/output ports of the 
core, the number of the stages of the pipeline (or 
respectively the number of the clock cycles needed to 
produce data) is taken from a library. To be incorporated 
into a node, an IP core has to have ‘Enable’ and ‘Ready’ 

signals. ‘Enable’ signal allows running the core when 
there is data to be processed and suspended otherwise. 
The ‘Ready’ signal indicates whether the data on the IP 
outputs is valid or not. In the implementation of KPN2 we 
use IP cores for sobel, absolute value, zero, and vertical 
sum functions.  

The function of the control unit is to synchronize the 
operation of the other units and to make them to work 
together. 
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Figure 7: Loading and updating parameters. Read Unit 
is depicted as an example of the logic involved in 

updating the parameters 
There is no additional latency in the data path added 

to the CPN by the node. The execution unit (the IP core) 
reads the input data directly from the FIFO outputs and 
store the results directly in the FIFOs. If the IP core 
contains only combinational logic, the combinational data 
path (from an input FIFO to an output FIFO) becomes the 
critical path in the design that sacrifices the performance. 
To avoid that, we put registers at the outputs of the IP 
core. In that case one clock period delay is added to the 
data path. 

In each Read and Write unit the control logic (the 
local schedule) is implemented as a pipeline that has three 
stages. It could be seen that each node adds to the CPN 6 
clock periods additional delay and in case of a network 
with many nodes the delay would become significant. 
However, as we stated earlier, each process (node) has its 
own notion of time. Moreover, read and write pipelines 
work independently. For that reason filling the control 
pipelines begins in parallel immediately after the CPN 
starts a new run. As a consequence, latency of only 3 clock 
periods is added to the whole CPN regardless of how 
many nodes it contains and how they are connected 
between each other.  

4.3 Updating the parameters 
Updating the parameters is based on a double 

buffering technique. To implement this technique 



hardware buffers are placed in each unit of a node. In 
Figure 7 a read unit is taken as an example. The first 
buffer is a shift register and the second is a register file. 
The parameters are sent one after another and they are 
stored temporary in the shift register in each unit. 
Depending on CPN specifications generated by Compaan 
it can happen that not all the parameters are used in each 
unit. However, all the parameters are stored in the shift 
registers in order to simplify the process of sending 
parameters to the nodes of a CPN. The real update of the 
parameters is done by transferring them in parallel from 
the shift registers to the register files. Sending parameters 
to the shift registers can be done at any time. However the 
transfer to the register files must be done after the 
completion of each run of a CPN in order to keep its 
deterministic behavior as explained in Section 3. 

 

5. Experiments and results 
 

In this section we describe the experiments and the 
results we have obtained by mapping the edge detection 
part from the LSOD application on FPGA platform. We 
did these experiments with Compaan/Laura in order to 
validate the solution approach presented in this paper and 
to evaluate the performance of the generated hardware in 
terms of speed and resource utilization. 

In the experiments we used ADM XRC-II, FPGA 
prototyping board manufactured by Alpha Data Parallel 
system Ltd. [19] The ADM XRC-II is a high performance 
PCI card equipped with Xilinx FPGA. The board is 
connected to a Pentium based personal computer (PC) 
running at 1.8 GHz. The FPGA board consists of Virtex-II 
(XC2V6000-FF1152) device and 6 banks of static 
memory, 256K x 32bits each. The memory can be 
accessed either from the PC or the FPGA. Transferring 
data between the board and the main processor is managed 
by a PCI controller. 

5.1 Synthesis results 
For the synthesis and hardware implementation we 

used the ISE XILINX Foundation design environment 
software. The results are presented in Table 1. Resource 
utilizations are given for the IP cores, the logic involved in 
the CPN implementation and the interface logic used for 
the PCI and memory communication. The FPGA 
resources are grouped into slices that contain 
combinational logic (4-Iinput Look-Up tables), distributed 
memory (Flip-Flops); and dual port memory blocks 
(BRAMs). Laura tool automatically instantiates BRAMs 
for implementation of the FIFO channels in a process 
network. One BRAM can implement FIFO with size 512 
words by 32 bits. If larger FIFOs are needed, Laura tool 
generates them by usage of optimal combinations of 
BRAMs.  

In the current implementation we use IP cores for 
sobel, absolute value, zero, and vertical sum functions. 
They consist of basic synthesizable operations.  Sobel 
contains two additions, one subtraction and shift 
operations. Absolute value is implemented with one 
comparison, one addition and one negation. Zero is 
constant zero. Vertical sum contains only one addition. It 
is obvious that the resource utilization of such simple 
functions will be low – in our case only 424 slices.  

From the table it is seen that the logic needed for the 
implementation of the CPN structure and control is almost 
twice larger than the processing units (IP cores). However, 
the area of the controllers does not directly depend on the 
size of the data and the size of the IP cores they control - 
larger IP cores will not lead to increased control logic. For 
example, in our previous work we implemented part of a 
Motion JPEG using Compaan/Laura design flow, where 
the IP cores (Discrete Cosine Transform and pre-shift 
operation) utilizes 4 times more FPGA resources than the 
CPN control logic. 

 The parameterization of a hardware implementation 
of a CPN increases only the number of the Flip-Flops used 
in realizing the shift registers and the parameter registers. 
That increase depends on the number of the parameters 
defined in the initial program. 

5.2 Performance results 
The LSOD application runs as a software program on 

the host PC. As input data the program takes high 
resolution image, low resolution image, positions and 
dimensions of two targets for which we have a reference 
data. It calculates each target to which image belongs, 
extracts the data from the proper image and stores it into 
the memory of the FPGA prototyping board. The 
described steps above model the behavior of function 
getLSODTarget in Figure 3. For one run of the CPN, one 
target is processed. Thus, for each target present in the 
image the process network has to be run again. To model 
this behavior the LSOD application does the following 
steps:  

1. Store the pixel data of a target into the FPGA 
board memory; 

2. Set (send to the FPGA) new parameters; 
3. Run the CPN; 
4. Read back the result (from the FPGA board 

memory) when the processing is finished; 
5. Repeat the steps above for each target. 

The part of the LSOD application running on the PC 
and the CPN communicate pictures (loading the data to 
the FPGA board memory and read back the results), but 
the CPN processes pixels.  

To estimate an interpretable performance rate (i.e. 
number of targets per frame or per second) first, we 



assumed that there are infinite numbers of targets in the 
input image. Then we set the dimensions to be equal to the 
first target that we have reference data for. We ran the 
application following the five steps above for one second 
and counted how many times the CPN was run. This is the 
number of targets per second. For an input data rate of 25 
frames per second we divide the results by 25 thus 
obtaining number of targets per frame at 25 frames per 
second. Then we set the target dimensions to be equal to 
the second target that we have reference data for and ran 
the process network again for one second. Finally, we 
made the targets to have the largest possible size: equal to 
the high resolution image, and ran the application again 
for one second. With the last dimension the system can 
process 9 targets per frame at 25 frames per second. But 
the target is large as the whole image and in case of non-
overlapping targets it is not possible to have more than 
one target per frame. The results are presented in Table 2. 
The main processor works at 1.8 GHz and the board 
works at its maximum: 66 MHz.  

 

Table 1: Device Utilization (XC2V6000) 

Utilization Slices 4-Input 
LUT 

Sliced 
FFs BRAMs

IP Cores 424 574 388 - 
CPN 

Control 816 1056 621 11 

Interface 
Logic 470 665 717 - 

Overall 1710 
(5%) 

2295 
(3%) 

1717 
(2%) 

11   
(7%) 

 

The parameterization of the system does not sacrifice 
the measured performance. We computed that the CPN 
needs N(2M+1)+12 clock cycles to process one target 
with size NxM pixels. This means that the maximum 
achievable performance is 1658 targets per second 
(180x110 at 66MHz). The difference with the measured 
performance is about a factor of 7. We found out this is 
due to the card drivers (i.e. the time needed for setting a 
DMA channel) and the function calls under Windows OS. 
We are limited in terms of performance by the PCI 
interface connecting the prototyping board and the host 
processor. However, even with this restriction we achieve 
performance which satisfies the real-time requirements of 
this application.  

 

Table 2: Measured performance. T/F@25F/sec means 
“targets per frame at 25 frames per second” 

Target size 58x60 40x45 180x110 
Targets/sec 1089 1843 229 

T/F@25F/sec 43 74 9 
 

To ensure that our hardware implementation works 
correctly we compared the results from the FPGA 
mapping with a reference data that we have. We did not 
perform an RTL (cycle accurate) simulation of the 
generated hardware because the generated CPN is correct 
by construction. There is no need to test the IP cores as 
well. That reflects on a significantly reduced development 
time. 

 

6. Conclusion 
 
 

We proposed a method for modeling and FPGA 
implementation of non-static programs using 
parameterized KPNs. We applied our method on an image 
processing application, namely Low Speed Obstacle 
Detection and generated a parameterized hardware 
implementation using our Compaan/Laura design flow. 
From the experiments and results we conclude the 
following:  

 

•  The parameterized KPN model we presented allows 
us to implement easily parameterized systems due to 
the fact that the CPN has a self-timed schedule. The 
parameters are updated at runtime without 
introducing non-deterministic behavior of the 
system.  

•  The implementation results in a high performance 
parameterized system capable of processing data at 
more than 25 frames per second. This rate is the 
real-time requirement in many image processing 
applications. 

•  The KPN MoC used in our automated 
Compaan/Laura design flow results in effortless 
analysis, debugging, and tuning of the system. 

•  Starting from an application specified as a sequential 
program it is a matter of hours to go to a hardware 
implementation as CPN. This is because its 
functionality is realized by integrating IP cores in a 
communication network where the control and the 
communication hardware are generated 
automatically by our tools. 
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