
Time Domain Numerical Simulation for Transient Waves 
on Reconfigurable Coprocessor Platform 

Chuan He, Wei Zhao, and Mi Lu 
Texas A&M University, College Station, TX 77843 

chuanhe@ee.tamu.edu, w-zhao@tamu.edu, mlu@ee.tamu.edu

Abstract 

A successful application-oriented reconfigurable 
coprocessor design requires not only a powerful FPGA-
based computing engine along with suitable hardware 
architecture, but also an efficient algorithm tailored for 
this special application. In this paper, we present our 
hardware architecture and numerical algorithms 
designed to speedup the time-domain finite-difference 
simulation of linear wave propagation problems in 2D 
and 3D space on FPGA-based reconfigurable platforms. 
Application fields of this work include seismic modeling 
and migration, computational electromagnetics, 
aeroacoustics, marine acoustics, to name a few.  

By writing first-order linear wave equations into 
second-order form, we halve the number of unknowns and 
simplify the treatment of parameters. We also adopt 
higher-order finite-difference (FD) schemes to further 
reduce the number of unknowns at the cost of increasing 
floating-point computations per discrete grid point. By 
doing so, we relief the bandwidth requirements between 
the FPGA and onboard memories but put more burden on 
the computing engine to take full advantage of FPGA’s 
computational potentials. The speed of our design 
implemented on a Xilinx ML401 Virtex-4 evaluation 
platform is about 1.5~4 times faster than a pure software 
implementation of the same algorithm running on a 
3.0GHz DELL workstation. This impressive result is 
mainly attributed to the memory architecture design, 
which is well-tuned for our numerical higher-order FD 
algorithms and can utilize onboard memory bandwidth 
more wisely. Furthermore, the good scalability of our 
design makes it compatible with most commercial 
reconfigurable coprocessor platforms and 
correspondingly, the performance would be proportional 
to their onboard memory bandwidth. 

1. Introduction and related work 

Time domain numerical simulation can improve 
people’s understanding on dynamic behaviors of complex 

time-evolution problems, so plays an important role in 
scientific research and engineering design. In the past 
decades, efforts of simulating linear wave phenomena, 
including acoustic, electromagnetic, and elastic waves, 
have grown rapidly with the performance improvement of 
digital computers. Pure software acceleration methods, 
from low-level instruction reordering to high-level 
process parallelism, are all exhausted to speedup these 
numerical simulations. However, because the 
computational requirements of these problems in 2D or 
3D space are extraordinarily high, especially when the 
geometrical size under study is much larger than the 
wavelength of sources, this kind of simulations is still 
limited in institutes that can afford high costs of running 
and maintaining supercomputers or large PC-cluster 
systems.  

Recently, with the great improvement on 
reprogrammable hardware resources inside an FPGA chip, 
people start showing their interests in accelerating time 
domain numerical simulations for wave-like equations 
with FPGA-based reconfigurable hardware platform. 
Comparing with pure software procedures running on 
general-purpose computers or fully-customized VLSI 
hardware chips, FPGA technology can provide people a 
compromise between the best flexibility of software and 
the highest performance of hardware implementations. 
The idea of accelerating acoustic wave simulations using 
hardware platforms for geophysical applications can be 
traced back to 1990s [1]. The first effort of implementing 
such a stand-alone system was described in [2]. In [3], a 
reconfigurable coprocessor platform using high density 
FPGA was proposed to speedup seismic migration 
problems. For computational electromagnetics problems, 
several authors proposed their FPGA-based solutions to 
accelerating the standard Yee’s Finite-Difference Time-
Domain (FDTD) algorithm from the early 1990s [4-5]. 
Recent work in this field can be found in [6-9].  

While most reconfigurable coprocessor platforms 
proposed in recent years mainly focus on real-time signal 
processing for stream-oriented input and output, the 
fundamental hindrance of simulating wave propagation 
problems numerically is the massive data volume along 
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with the complex numerical algorithms. Specifically, 
memory bandwidth available between the computing 
engine (FPGA) and onboard memory modules has been 
proven a bottleneck preventing people taking full 
advantage of FPGA’s computational potentials [3, 8, 9]. 
In this paper, we try to alleviate this bottleneck from two 
approaches: First, we rewrite the prevailing first-order 
linear wave equations into second-order form and adopt 
higher-order FD schemes to greatly reduce the number of 
discrete grid points inside the simulation area. Second, we 
propose a new memory architecture design for our 
applications. The time domain higher-order FD numerical 
algorithms can be effectively mapped into this memory 
architecture without changing memory bandwidth 
requirements and sustained high computational 
throughput can be achieved. 

The rest of this paper is organized as follows: in 
Section 2, we first provide a brief review of wave 
equations in second-order derivative form and the 
corresponding standard second-order accuracy FD 
scheme. We then introduce the maximum order FD 
schemes and analyze their advantage over the standard 
one. In Section 3, after summarizing common hardware 
architecture properties of conventional reconfigurable 
coprocessor platforms, we propose our memory 
architecture design for the simplest standard second-order 
FD scheme in 2D space. We then extend our design to 
higher-order schemes and 3D space to show its simplicity 
and scalability. Section 4 provides our simulation results 
and performance comparisons between the hardware 
accelerator implemented on Xilinx ML401 evaluation 
platform and its pure software counterpart on a referential 
3.0GHz P4 workstation based on two simple seismic 
modeling problems in 2D and 3D space, respectively. 
Finally, conclusions and a discussion of future research 
direction are presented in Section 5.  

2. Numerical algorithms for wave equations 

 Wave equations are generally presented as linear 
system equations in first-order derivative form. It is well 
known that those governing equations can also be written 
as second-order derivative form without losing generality 
[10]. Representing wave equations in second-order 
derivative form has no benefit for conventional Finite-
Difference Time-Domain (FDTD) algorithms executed on 
general-purpose computers. However, as we will see in 
this section and section 3, it plays a key role in our 
FPGA-based implementation to increase the efficiency of 
memory accesses.  

2.1 Wave equations in second derivative form 

Seismic modeling (forwarding) governed by acoustic 
or elastic wave equations in geophysics are a class of 

numerical methods that simulate the scattering field 
arising when an impulsive source excites an underground 
region with known physical properties like density, 
velocity, anisotropy, elasticity, etc. Let’s consider the 
simplest 3D scalar acoustic case in the form of second-
order linear Partial Differential Equation (PDE), which 
relates the temporal and spatial derivatives of the vertical 
pressure field as, 
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where P  is the time-variant scalar pressure field 
(pressure in vertical direction) excited by an energy 
impulse ),,,( tzyxf ; ),,( zyxρ and ),,( zyxv  are the 
density and acoustic velocity of underground media, 
which are already known as input parameters.  
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, equation (2.1) 

describes the propagation of acoustic waves inside 2D or 
3D heterogeneous media with known physical properties. 
The numerical modeling problem we are facing here is to 
simulate the time evolution of the scalar pressure field P
at each discrete grid points in 2D or 3D space accurately. 
For computational electromagnetical problems, the 
classical 3D Maxwell’s equations can also be rewritten as 
three scalar second-order wave equations in x , y , or z
direction respectively with a similar but more complex 
form as equation (2.1). So without losing generality, in 
this paper we will limit our discussion to the simplest 
second-order acoustic wave equations and focus on 
seismic modeling problems in geophysics field. It is 
straightforward to extend the numerical methods and 
corresponding hardware designs proposed in this paper to 
electromagnetic numerical simulations.  

We make a constant density assumption to further 
simplify equation (2.1) as, 
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operator. Notice that the input and output of this Laplace 

operator are all scalars and the vector field V
v

disappears. 
Equation (2.2) is still very practical and widely used for 
2D and 3D acoustic modeling problems in seismic data 
processing industry.
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2.2 Second-order and higher-order Finite 
Difference Schemes  

Finite difference time-domain methods are the 
simplest but the most popular approach to solve time 
evolution problems governed by PDEs or ODEs 
numerically. Given the values of a function on a set of 
discrete points, the finite difference approximation to the 
derivative of the function at one grid point can be 
expressed as a linear combination of function values at 
neighboring points. The theory of finite difference 
approximations for first order hyperbolic system 
equations is by now well developed. However, rewriting 
the first-order wave equations into second-order form 
halves the number of unknowns and simplifies the 
treatment of coefficients so will benefit our FPGA-based 
hardware implementation.  

We discretize equation (2.2) by standard second-
order FD scheme as, 
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where the subscript marks the spatial position of 
discretized unknown pressure fields or parameters, 
superscript marks the time point when those unknowns 
are evaluated, dx , dy , and dz  define the spatial 

interval between two adjacent grids in x , y , or z
direction respectively, dt is the time-marching step, and 

( )2∆  represents the second-order accuracy FD 
approximation of the spatial Laplace operator.  

Figure 1. Second-order time-marching stencil  
for the 2D acoustic equation 

Equation (2.3) shows us the second-order time-
marching scheme and equation (2.4) is the second-order 
FD scheme evaluating the spatial Laplace operator. Figure 
1 depicts the time-marching stencil of equation (2.3) in 

2D space. We also draw the 3D spatial stencil of ( )2∆  in 
figure 2. All grid points that are involved in calculation 
are marked with subscripts in these figures. From these 
two figures, we can conclude that eight pressure values 
are needed to progress the evaluation of 3D pressure field 
P  at grid point ),,( kji  to a future time, seven of them 
come from the present pressure field at this spatial point 
and its six orthogonal neighbors, the last one is the 
pressure value at the same grid point but from previous 
time step.  

Figure 2. Second-order FD stencil  
for the 3D Laplace operator 

Numerical errors arise from both the temporal and 
spatial discretizations. The errors associated with linear 
wave propagation problem involve mainly dispersion, 
dissipation, and anisotropy errors. Here, we omit detailed 
numerical theories but give the reader an intuitive result 
that numerical errors will cause the high frequency wave 
components propagating in slower speeds, damped 
amplitudes, or wrong directions in numerical simulations 
than in the reality. These errors will accumulate gradually 
and finally destroy the original shape of wave sources 
after propagating over a long distance or time. The FD 
scheme (2.3) and (2.4) is of second order accuracy with 
respect to time and space (a so-called (2, 2) FD scheme). 
Assuming the temporal derivative term can be calculated 
precisely by decreasing time-marching step and choosing 
the spatial discretization interval as 20 points per shortest 
wavelength (corresponds to the highest frequency 
component), the simulation results of the (2, 2) FD 
scheme are considered satisfactory only for wave 
propagating in an area with moderate size, generally on 
the order of 10 wavelengths [11].  For waves propagating 
over longer distances, the spatial interval required by this 
(2-2) scheme should be further refined, leading to 
enormous number of grid points in 2D or 3D space, 
impractical memory requirements, and unfeasible 
computational costs. This is the main motivation of the 
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development of higher-order FD schemes. We must point 
out that the famous Yee’s FDTD method, which has been 
widely adopted for electromagnetic modeling problems, is 
also a (2, 2) FD scheme but for the first-order derivative 
Maxwell equations discretized on staggered spatial grids. 
So it suffers the same numerical errors we discussed 
above, although they are generally less serious than the 
standard (2, 2) FD scheme. 

We consider only spatial higher-order FD schemes 
and keep the second-order time-marching stencil in 
equation (2.3) unchanged. Numerical derivatives of a 
function defined on discrete points can be derived from 
Taylor expansion. The goal of the maximum order FD 
schemes [12] we adopted here is to make the 
approximation accurate by canceling as many the lower 
order terms in Taylor expansion formula as possible. The 
first un-cancelled Taylor series term determines the 
formal truncation error and the accuracy order of the 
finite difference approximation. For example, the one-
dimensional Taylor expansions along x-axis at 

dxix ⋅±= )1(  for P are, 
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Add these two equations together to eliminate odd 
derivative terms at the right hand side,  
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Equation (2.6) shows us that the difference (truncation 
error) between the second-order derivative of P  and the 

three term FD scheme 
( )2

11 )()(2)(

dx

xPxPxP iii +− +−  is 

proportional to ( )2dx . That is the name (2, 2) FD scheme 
of equation (2.3) and (2.4) comes from. Using the same 
idea at more discrete points along x-axis, we can make 
higher order terms canceled and our approximation to the 
second-order derivative will be more accurate in the sense 
of truncation error. Systematically, we can approximate 
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the values of P  at ( )12 +m  discrete grid points as 
follows, 
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which are chosen to maximize the order of the un-
cancelled truncation term. 

Expanding the higher-order FD schemes to y and z-

axis is straightforward, so a class of ( )thm2 -order FD 

approximation of the Laplace operator in 2D or 3D space 
can be easily obtained and we finally get our higher-order 
(2-2m) FD schemes. The benefit is obvious: adopting 
higher order FD scheme means higher order of the un-
cancelled truncation term, which leads to less 
approximation errors. Put it another way, by using higher-
order FD schemes, we can enlarge the spatial 
discretization interval so that reduce the number of grid 
points without deteriorating our error criterions.  

We designed a simple experiment to show the 
effectiveness of higher-order FD schemes. We simulate 
an exponentially-attenuated single-frequency sine wavelet 
propagating in 1D homogenous media (constant velocity) 
along x-axis. Setting the time-marching step small enough 
to make temporal discretization errors neglectable, we try 
to find out a suitable spatial discretization interval that 
reduce the power of numerical errors to about 0.1 percent 
of the  energy of the original wavelet after it propagating 
a distance of 400 wavelengths. The simulation results are 
concluded in table 1 for different FD schemes. We can 
observe that the (2, 16) FD scheme decreases the total 
number of spatial grids in our test to 1600 (a propagation 
distance of 400 wavelengths times four points per 
wavelength), which is about five times less than (2, 4) 
scheme or ten times less than the standard (2, 2) scheme. 
This reduction will become much more significant if we 
apply this scheme to 2D ( 100102 =  times less grids) or 
3D � 1000103 =  times less grids�cases. 

Table 1. Performance Comparison 
for different HD Schemes 

Note: The standard (2, 2) FD scheme is incapable of simulating 
this wavelet propagating for hundreds of wavelengths accurately 
with a reasonable spatial sampling interval.  

Similar to the standard (2-2) FD scheme, we draw a 

3D spatial stencil of ( )4∆  in figure 3. This figure shows us 

FD 
schemes

Propagation 
Distance 
(Wavelength)

Grid Density
(Grid/ 
Wavelength)

Total 
Number 
of Grid 
Points 

Relative 
Error 
Power 

(2, 2) 40 40 1600 0.0024

(2, 4) 400 19 7600 0.0037

(2, 8) 400 7 2800 3.8e-4 

(2, 16) 400 4 1600 0.0010

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05) 

0-7695-2445-1/05 $20.00 © 2005 IEEE



that thirteen grid values around the grid point ),,( kji are 
needed to evaluate the Laplacian value at this position, six 

points more than the ( )2∆  case.  

Figure 3. Fourth-order FD stencil 
for the 3D Laplace operator 

3. Memory Architecture Design 

We introduce now our hardware implementations for 
higher-order FD numerical algorithms based on but not 
limited to the reconfigurable hardware platform we 
proposed in [3]. Generally speaking, DDR-SDRAM 
module, which is the prevailing choice as large capacity 
onboard memories for general-propose computers and 
most commercial reconfigurable coprocessor platforms, 
has high potential data throughput at relatively low price, 
but the bandwidth utilization is usually poor in practice 
due to random-access natures of most applications. Based 
on data dependency properties of the higher-order FD 
algorithms and our applications, we introduce a special 
buffering system between the computing engine and 
onboard memory modules using on-chip memory blocks 
inside FPGA chips. This buffering system can utilize 
onboard memory bandwidth more efficiently than 
previous designs [8-9] and can be fitted into most 
commercial FPGA-based hardware platforms effectively.  

In this section, we first summarize common 
architecture characters of conventional reconfigurable 
coprocessor platforms. After analyzing the floating-point 
computation and memory bandwidth requirements of FD 
algorithms for our application, we show the basic idea of 
our design by a simple hardware implementation of the 
standard second-order FD scheme in 2D space and 
compare its performance with designs proposed in [8, 9]. 
Then, we extend our design to higher-order schemes and 
3D space to show its simplicity and good scalability. 

We have to point out that the memory buffering 
system we proposed here is specified for higher-order FD 
schemes of equation (2.2) only. For equation (2.1), more 

complex memory structure is needed for buffering vector 

fieldV
v

.

3.1 Architecture properties of general FPGA-
based hardware platforms 

With the emergence of high capacity FPGAs, more 
and more people notice its potentials as high speed 
computing engine to accelerate large-scale computation-
dominating applications. Consequently, many 
reconfigurable hardware platforms have been designed for 
fields like scientific computing, genetic computing, 
cryptography, image signal processing, radar signal 
processing, to name a few. Similar objectives make these 
hardware platforms have the same characters as follow: 
First, almost all of them were designed as a coprocessor 
attached to PC or workstation to enhance their flexibility 
for multiple application fields. Second, similar hardware 
architecture are adopted, including one or several high 
capacity FPGA chips acting as computing engine, one or 
several memory blocks to buffer or store data and 
parameters, high speed I/O channels interfacing the 
coprocessor with its host machine. Third, pipelining and 
parallelism are extensively used in these designs to 
increase processing speed and data throughput.  

Our application of numerical simulation for wave 
propagating problems can be classified into scientific 
computing, so its FPGA-based hardware implementations 
should bear all those characters we mentioned above. 
Moreover, the application’s unfeasible data manipulation 
requirements between computing engine and on-board 
memories force people integrating as many dedicated 
memory channels as possible into their designs. This 
special hardware property can be seen clearly from the 
recent works presented in [3] and [9], which accidentally 
proposed two almost the same FPGA-based hardware 
platforms applied to seismic acoustic wave and 
electromagnetic wave simulations, respectively. However, 
because of the limited number of I/O pins of an FPGA 
chip, only a few dedicated memory channels could be 
implemented in practice, and we can predict that the 
restricted memory-bandwidth would always be a 
bottleneck preventing people taking full advantage of 
FPGA’s computational potentials in the near future.  

3.2 Memory architecture design for second-order 
FD scheme in 2D space 

We rewrite the standard second-order FD scheme 
(2.3) and (2.4) in 2D space and ignore the source term, 
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We need six pressure values and one velocity to 

evaluate these two equations for one grid point at 
position ),( ki . As for the computational costs, we need 
five additions and two multiplications to approximate the 
2D Laplace operator in equation (3.2), another one 
multiplication and two additions are needed to calculate 
the final result in equation (3.1). (We ignore three 
multiply-by-two operations because they can be easily 
merged into other hardware arithmetic units.) So, we 
totally need seven additions and three multiplications 
operated on seven pressure or velocity values for the 
evaluation of one grid point at one time-marching step. Of 
cause, the number of memory accesses is one more than 
the number of operands because the new results should be 
saved back for the next time-marching step.  

From this analysis, we can find out that the number 
of floating-point computations and memory accesses are 
nearly balanced for the standard second-order FD scheme 
(similarly the Yee’s FDTD scheme). So the execution 
speed of these schemes on general-propose computers is 
mainly decided by available memory bandwidth but not 
the CPU’s nominal speed. Although higher-order schemes 
reduce the number of grid points and complicate the 
computations at each grid point, they do require more 
operands in their computational stencils so that the ratio 
of computations and memory accesses is almost kept 
constant. So higher-order schemes result in little benefit 
on generic computers and are seldom put into practice in 
reality.  

Figure 4. Stripped 2D operands feed into the fixed 
computing engine through three input ports 

The maximal memory channels available on 
reconfigurable coprocessor platforms could be 

significantly more than but still comparable to generic 
computers. For example, an up-to-date PC has two DDR 
memory channels compared with four of them on the 
coprocessor platform presented in [9], which is the top 
record to our best knowledge. Previous designs in [8, 9] 
tried to migrate the software version of Yee’s FDTD 
algorithm directly into their FPGA-based hardware 
platforms. Their efforts concentrated on integrating more 
hardware arithmetic units into FPGA so that the 
aggressive computational speed of their designs would 
exceed generic computers. This approach works great and 
all these works reported impressive speedup comparing 
with PCs.  However, the memory bandwidth bottleneck 
will finally be reached and after that, no more speed 
benefit will be gained.  

Figure 5. Stripped 2D operands feed into the 
computing engine through two input ports 

In our design, we try to find suitable on-chip 
memory architecture to utilize onboard memory 
bandwidth more wisely. We define “row” as a line of 
spatial grids along the X-axis and “column” as a line of 
grids along Z-axis in 2D space. Because little 
optimization can be applied to equation (3.1) to reduce its 
computations and memory accesses, we consider only 
equation (3.2) here and suppose we evaluate this equation 
grid by grid along each column. Our approach can be 
imagined as moving a striped 2D operands mesh into the 
fixed computing engine through one or several input ports.  
Figure 4 shows a trivial implementation of this idea, 
which explores few data dependencies and corresponds to 
the execution of the (2, 2) FD algorithm on generic 
computers. If we calculate 1

,
+n

kiP  when the operand at grid 

point ),( ki  reaches the center of our computing engine, 
we observe that almost all those pressure values we 
needed to calculate 1

,
+n

kiP  have been encountered 
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except n
kiP 1, +

. This observation implies that if we could 

store some used grid values in our FPGA chip temporarily, 
we may avoid accessing the same data repeatedly from 
onboard memories and save memory bandwidth a lot. 
This idea is reflected in the implementation in figure 5, 
where values at grid points of a whole column )1(:, −k
are saved in the computing engine. Notice two input ports 
are needed here, one less than the previous case.  

This basic idea is almost the same as on-die data or 
instruction caches appearing in architectures of most 
modern generic CPUs. However, the caching mechanism 
is too complex to implement on reconfigurable hardware 
platforms. We need to find out a much more efficient on-
chip memory structure to implement this “buffering” idea. 

Figure 6. Block diagram and dataflow of the buffering 
structure and computing engine in 2D space. 

Figure 6 illustrates the block diagram and dataflow 
design of our buffering structure and computing engine 
inside FPGA. We use two cascaded FIFOs as our data 
buffer, each of which has the capacity to contain a whole 
row of grid values. Generally, this number is less than a 
couple of thousands and can be efficiently implemented 
by one or several memory blocks inside FPGA. Pressure 
values are feed into the FPGA chip from one input port at 
the bottle of the first FIFO and discard at the top of the 

last one. We delay the calculation of 1
,

+n
kiP  a whole row 

until the grid value n
kiP 1, +  enters our data buffer structure 

so that all operands we needed to evaluate equation (3.2) 
are available inside FPGA chip. Considering the grid 

value 1
,

−n
kiP  at previous time step and the parameter kiv ,

that are needed for calculating equation (3.1) and taking 
the inevitable save back operation into account, we need 

only four memory accesses to evaluate one time-marching 
step at one grid point, which is the best a complex cache 
system of modern generic CPUs could achieve. We also 
introduce simple input caching circuits after SDRAM 
modules so that input data can be feed into the buffering 
structure at a constant speed and the computing engine 
can be fully pipelined to achieve high computational 
throughput. We will revisit this input cache design in 
section 4. 

3.3 Extension to higher-order FD schemes and 3D 
space 

Consider the higher-order FD stencils we derived in 
section 2, we can conclude that (4m+1) present pressure 
values at grids around position ),( ki  for 2D case or 

(6m+1) values at grids around ),,( kji  for 3D case are 
needed to evaluate the Laplacian value at this center point 
up to (2m) accuracy order. The requirements of one old 
pressure value and one velocity parameter keep 
unchanged for second-order time-marching scheme. The 
extension of our design to higher-order schemes is 
straightforward and easy to implement. (2m) cascaded 
FIFOs are needed as row buffer, and correspondingly, we 

delay the calculation of 1
,

+n
kiP  for m rows to make sure all 

the operands appear at correct positions in our buffer 
structure. Inevitable, extra addition and multiplication 
units should be inserted into the pipeline of our 
computing engine.  

Figure 7. Block diagram of the buffering structure and 
computing engine for (2, 4) FD scheme in 2D space 
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The most exciting observation of our higher-order 
implementation is although the memory bandwidth 
requirements for pure software implementations increase 
linearly with the order of FD schemes, this requirements 
are unchanged for our design, i.e., the number of memory 
accesses to evaluate one time-marching step at one grid 
point is still four. The only costs we pay for the higher-
order schemes are on-chip memory blocks and 
conventional addition or multiplication arithmetic units, 
which are all abundant inside an up-to-date high density 
FPGA chip. This result encourages us adopting 
extraordinarily higher-order FD schemes in our design to 
further enlarge the spatial discretization interval until 
reaching the extreme of two samples per wavelength, 
which is bounded by the famous Nyquist-Shannon 
sampling theorem. For example, we can easily extend our 
design to a (2, 16) FD scheme using 16 cascaded on-chip 
FIFOs and 56 arithmetic units (35 additions and 21 
multiplications) and still need four memory accesses per 
grid point per time step.  

Figure 8. Block diagram of buffering structure for the 
(2, 2) FD scheme in 3D space 

Now, the basic idea of our approach is very clear: 
Consider the design for the (2, 2) FD scheme in section 
3.2, the computing engine for this simplest case consists 
of ten conventional arithmetic units (seven additions and 
three multiplications), which cost only a very small 
portion of hardware resources even for the fastest fully-
pipelined implementations. Because the clock frequencies 
applied to FPGAs and memory channels are within the 
same range as hundreds of MHz per second, the 
bandwidth of onboard memories would be saturated 
rapidly with considerable part of FPGA hardware 
resources being wasted. By introducing higher-order FD 
schemes, we could make the computations as complex as 

necessary to throw the burden back on the computing 
engine again. Moreover, higher-order FD schemes allow 
larger discrete intervals in spatial axes so that the number 
of grid points is considerably reduced, and consequently, 
memory bandwidth requirements for the same problem 
decrease in an indirect way. Put it another way, we can 
always find a point, at witch the utilization of onboard 
reconfigurable hardware resources and memory 
bandwidth are well balanced.  

Extending our design to 3D space is also 
straightforward but the hardware implementation will 
become less efficient than 2D cases. Now, we need 
several large-capacity FIFO structures to buffer 2D pages 
instead of 1D grid lines as before. Practical 3D wave 
simulations contain generally hundreds to thousands of 
grid points along each spatial axis, so the capacity of page 
buffers could easily reach several millions of words per 
page, which approaches the maximal capacity of on-chip 
block memories inside an up-to-date FPGA chip. So we 
have to sacrifice some onboard memory bandwidth to 
meet our buffering requirements, and we still need to 
spend some extra hardware resources to imitate the FIFO 
behavior on commercial memory modules. Figure 8 
depicts the block diagram of the (2, 2) FD scheme in 3D 
space. 

4. Simulation Results 

The aim of this section is to show the correctness and 
effectiveness of our hardware accelerator design for 
wave-propagation modeling problems. The target FPGA-
based prototyping platform we used is a low-end Xilinx 
ML401 Virtex-4 evaluation board [13]. Although this 
device provides very limited onboard hardware resources 
(one XC4LX25 FPGA chip embedding 24,192 Logic 
Cells, 48 DSP Slices and 72 18-kb SRAM Blocks; 64MB 
onboard DDR-SDRAM modules with 32-bit interface to 
the FPGA chip; and 9Mb onboard ZBT-SRAM with 32-
bit interface.), it contains all necessary components we 
needed to validate our accelerator design. The software 
development environments are Xilinx ISE 6.3i and 
ModelSim 6.0 se. 

Table 2. Size of Test Problems

 2D Test Problem 3D Test Problem 

Number of 
Spatial Grids 10001000× 100100100 ××
Total Time 

Steps 
6000 6000 

Storage 
Requirements

4 Million Words 4 Million Words 

Number of 
Grid 

Computations

9106 × 9106 ×
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Two small seismic modeling problems are selected as 
our benchmarks in 2D or 3D space, respectively. Table 2 
shows their computation and storage sizes. These two 
problems are chosen carefully to make sure that they can 
be fitted into our hardware platform.  The simulation 
results are compared with their software counterparts 
running on a referential Intel P4 3.0 GHz workstation.  

Our hardware designs are based on the block 
diagrams presented in figure 6 and 7 for 2D and 3D cases 
respectively. As we show in table 2, there are one million 
discrete grids for each problem so that four million words 
of onboard DDR-SDRAM are assigned as data storage 
space. These storages are organized as four data volumes 
to save information about the previous pressure field, the 
present pressure field, the unknown future pressure field, 
and the velocity table, respectively. In order to utilize the 
bandwidth of DDR-SDRAM more efficiently, an extra 
cache circuit is constructed for each data volume using 
two on-chip RAM Blocks at the interface between the 
onboard DDR-SDRAM modules and our data buffering 
structure.  This input cache contains two parallel 512-
word data buffers, each of which can accept a whole 
physical column of data from SDRAM and works in a 
swapping manner to hide the irregular data accessing and 
periodic refreshing behaviors of SDRAM components. 
This implementation isolates our buffering and computing 
engine from the memory interface circuits so that a 
constant computational throughput can be achieved.  

Table 3. Performance Comparison for Test Problems

We modified the single-precision floating-point adder 
and multiplier design proposed in [14] as our arithmetic 

units. These functional units are open-source and IEEE 
754 compliant. They utilize hundreds of logic cells and 
can provide a sustained computational speed at over 80 
MHz per second, which is fast enough for our design on 
ML401 platform because of the limitation of onboard 
memory bandwidth. The simulation results of the 
software and hardware implementations for these two test 
problems are shown in table 3. 

Utilizing the onboard 100MHz oscillator, we set the 
clock frequencies applied to onboard DDR-SDRAM 
modules at 100MHz and the computing engine at 50MHz. 
(The maximal clock frequency for the DDR-SDRAM 
modules on the ML401 platform is 133MHz, so the 
theoretical maximal computational throughput is 66 
million grids per second.) Comparing with the 50 million 
grid-per-second theoretical computational throughput, the 
speed of our implementation is degraded for less than 2 
percent because of pipeline stalls, which occur mainly 
when we flush the cascaded data FIFOs at the beginning 
of each time-marching step and when we deal with 
imaginary boundary points. The corresponding software 
codes are programmed by ANSI C language and compiled 
using INTEL C++ compiler v8.1with optimization for 
speed. All results are obtained on a referential DELL 
workstation equipped with one Intel P4 3.0 GHz CPU and 
1GB memory. We have to admit that the performances of 
software implementations might be further improved 
using some low-level tuning and optimization tools. 
However, this approach is so involved and hard to predict 
that only specialists could benefit from it [14].  

In our experiments, we keep the number of 2D or 3D 
grid points unchanged to evaluate the speeding-up 
attributed purely to our hardware implementations. If we 
take into account the results we concluded in table 1 that 
higher-order FD schemes can reduce the number of 
discrete grids considerably, the speeding-up of our design 
will become much more impressive. 

We emphasize again that our FPGA-based design is 
implemented on a low-end Xilinx ML401 Virtex-4 
evaluation platform. The limited onboard memory 
bandwidth considerably restricts the performance of our 
hardware accelerator. To prove this point, we designed 
our own pipelined high-speed floating-point multipliers 
and adders, which are optimized for Xilinx Virtex II 
series FPGA. By employing more pipeline stages than the 
designs in [15], the speeds of our floating-point arithmetic 
units reported by Xilinx ISE 6.3i after place-and-route 
(PAR) are 238MHz for multiplier with 7 pipelined stages 
and 216MHz for adder with 12 stages. Suppose we have a 
reconfigurable coprocessor platform integrating one 
200MHz 72-bit DDR-SDRAM memory module, because 
the aggressive onboard memory bandwidth is 800 million 
words per second now, this platform can afford our 
computing engine working at a sustained speed of 200 
million grids per second, which is four times faster than 
the ML401 platform.  

Hardware Implementations 

FD 
scheme

Software 
Compu 
-tational 
Through

-put 
(Million 

Grid 
/ second)

Compu- 
tational 

Throughput 
(Million 

Grid/second)

Speed-
up

Resource 
Utilizations

(RAM 
Blocks / 

DSP Slices 
/Logic 
Slices) 

(2, 2) 
for 2D 
case 

33.27 49.69 1.49 12/6/4336

(2, 4) 
for 2D 
case 

27.53 49.57 1.80 16/18/6532

(2, 8) 
for 2D 
case 

19.90 49.43 2.48 24/26/9098

(2, 16) 
for 2D 
case 

12.45 49.10 3.94 
40/42 

/15370 

(2, 2) 
for 3D 
case 

21.37 48.33 2.26 52/8/5482
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5. Conclusion 

 In this paper, we proposed an FPGA-based 
hardware implementation to accelerate time-domain 
numerical simulations of linear wave propagation 
problems in 2D and 3D space. By adopting higher-order 
finite difference numerical algorithms along with 
efficient on-chip memory architecture, we alleviate the 
bandwidth bottleneck between the FPGA chip and 
onboard memories at the cost of much more 
computational requirements, which fortunately are 
absorbed into the pipelined computing engine without 
any speed or memory bandwidth penalty. Our hardware 
accelerator design takes full advantage of data 
dependency of the higher-order FD algorithms, its 
desirable properties of simplicity and scalability make it 
compatible with most commercial FPGA-based 
reconfigurable coprocessor platforms and its 
performance is expected to increase linearly with 
available onboard memory bandwidth. The simulation 
results on a low-end Xilinx ML401 Virtex-4 evaluation 
platform show impressive speeding-up comparing with 
their pure software counterpart running on a referential 
Intel P4 3.0 GHz workstation.  
 To the best of our knowledge, this is the first 
attempt to solve a practical seismic modeling problem 
using FPGA technology. The main motivation for 
introducing reconfigurable logic to seismic data 
processing industry is its immense computational 
potentials along with acceptable flexibility so that the 
same hardware resources can be reconfigured for 
different algorithms used in different processing stages. 
Future work in this field will concentrate on improving 
our design for 3D cases and extending it to more general 
form of wave equations. 
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