
Enhancing Relocatability of Partial Bitstreams for Run-Time Reconfiguration

Tobias Becker1, Wayne Luk1 and Peter Y.K. Cheung2

1 Department of Computing, Imperial College London
2 Department of Electrical and Electronic Engineering, Imperial College London

{tobias.becker, w.luk, p.cheung}@imperial.ac.uk

Abstract

This paper introduces a method that enhances the relo-
catability of partial bitstreams for FPGA run-time reconfig-
uration. Reconfigurable applications usually employ par-
tial bitstreams which are specific to one target region on
the FPGA. Previously, techniques have been proposed that
allow relocation between identical regions on the FPGA.
However, as FPGAs are becoming increasingly heteroge-
neous, this approach is often too restrictive. We introduce a
method that circumvents the problem of having to find fully
identical regions based on compatible subsets of resources,
enabling flexible placement of relocatable modules. In a
software defined radio prototype with two reconfigurable re-
gions, the number of partial bitstreams is reduced by 50%
and the compile time is shortened by 43%.

1 Introduction

Advanced Field Programmable Gate Arrays (FPGAs)
have emerged into platforms that allow the development
and implementation of complex systems with short devel-
opment time, high flexibility and high performance. The
introduction of processors, RAMs and DSPs in platform
FPGAs have made these devices capable of full system-on-
chip implementations for complex applications. The contin-
uing trend of moving dedicated hardened IP-cores such as
Ethernet MACs and PCI Express [20] into the FPGA fabric
is consistent with their evolution from glue logic to become
the centre of the system.

Most of today’s commercially available FPGAs are
based on SRAM technology, which can be exploited to re-
configure the device fully or partially at run time in order
to adapt the system to new computational requirements.
Run-time reconfiguration can improve performance [12],
increase functional density [14] and reduce power dissipa-
tion [7], [13]. Idle parts of a system can be unloaded to save
power or to free up space for a new incoming module. A
static part of the system can continue its operation during

reconfiguration without disruption. It has been proposed to
integrate the control of the reconfiguration process into the
FPGA itself [1]. Embedded processors, such as the Xil-
inx MicroBlaze softcore [15] or PowerPC hardcore proces-
sor [16], provide a capable means of embedded processing
for FPGAs. In combination with the Internal Configuration
Access Port (ICAP) [1], they can form systems that quickly
modify themselves.

Partial bitstreams used in reconfigurable applications are
usually location specific, i.e. a bitstream contains configu-
ration information which is specific to one location on the
device. However, a significant number of reconfigurable
applications could benefit from relocatable bitstreams. Re-
locatable bitstreams contain configuration data which can
be reused in multiple reconfigurable regions on the FPGA.
Early work on run-time reconfiguration considers the possi-
bility of an operating system that runs tasks in hardware on a
partially reconfigurable FPGA [2]. Brebner suggests swap-
pable logic units that can execute a certain function and can
be placed anywhere on the FPGA. This concept is supported
by the regular structure of the Xilinx 6200 architecture.
Hübner et. al. propose a reconfigurable platform for au-
tomotive control functions on a Xilinx Virtex-II FPGA [4].
The system contains four reconfigurable regions of iden-
tical size which are connected by a common bus system.
However, the system does not employ bitstream relocation
because of the irregular location of combined BlockRAM
(BRAM) and multiplier columns in the reconfigurable re-
gions. Other work considers a reconfigurable system-on-
chip for a portable media platform that can move tasks from
software into reconfigurable hardware [9]. This system can-
not relocate tasks on the FPGA and requires a bitstream for
every possible task location. Sedcole et. al. propose a re-
configurable platform for video processing [10]. The design
exploits symmetries of the BRAM location in the Virtex-
II FPGA to relocate image processing elements. Another
interesting application for bitstream relocation are reconfig-
urable software defined radio systems. One research project
involves a software defined radio demonstrator with two
reconfigurable waveforms on a Virtex-II Pro FPGA [11].

1



However, the circuits processing the waveforms are not re-
locatable. Especially more complex systems with a larger
number of waveforms would benefit from the relocatability
of bitstreams.

In this paper we analyse the problem of bitstream re-
location in modern heterogeneous FPGAs, and propose a
method that enhances the relocatability. We illustrate this
method on Virtex-4 FPGAs and point out improvements
over previous approaches. Our method can also be applied
to Virtex-5 and Spartan-3 FPGAs and to older architectures
such as Virtex-E, Virtex-II and Virtex-II Pro.

The key contributions of this paper are:

• A model for relocation of configurations to non-
identical regions in FPGAs based on compatible sub-
sets of resources (Section 3),

• An adaptation of our method to Xilinx Virtex-4 FPGAs
(Section 4 and 5),

• An implementation of our method as software driver
for ICAP (Section 6),

• Demonstration of relocatable bitstreams in a reconfig-
urable software defined radio prototype (Section 7.1),

• A detailed analysis of module relocatability with
our method compared to previous approaches (Sec-
tion 7.2).

2 Background and Related Work

Traditional FPGA design involves floorplanning where
modules or blocks of the design are constrained to specific
areas of the device. Applications with run-time reconfig-
urable modules usually require stricter floorplanning to iso-
late dynamic modules from the static part of the system [8].
Conventionally, reconfigurable modules are assigned to a
dedicated area inside the FPGA. If multiple instances of one
module are used in different regions an individual bitstream
is created for each region. However, it is not necessary to re-
strict a physically implemented instance of a module to one
location. FPGAs provide a regular fabric, and one circuit
could potentially reside in multiple locations.

The advantage of being able to relocate a bitstream is
reduced design time as well as reduced memory require-
ments. Without relocation, for M modules usable in N re-
gions, N · M partial bitstreams have to be produced and
stored for run-time reconfiguration. With bitstream reloca-
tion, one version of the module can be instantiated in all lo-
cations, therefore reducing the total number of required bit-
streams to M . This significantly reduces the size of mem-
ory required to store the partial bitstreams. With full bit-
streams containing up to 50 Mbits in Virtex-4 [19] and up
to 80 Mbits in Virtex-5 [18] partial bitstreams could have up

to tens of MBits. It is therefore important to keep the num-
ber of partial bitstreams as low as possible to reduce cost
of the storage, especially since costly fast memories should
be used to minimise impact on performance. One aspect
of run-time reconfiguration is more efficient utilisation of
the FPGA which should not be contradicted by requiring an
expensive configuration storage. Another aspect is reduced
design time. The generation of bitstreams requires phys-
ical implementation including time-consuming placement
and routing. Reducing the number of partial bitstreams by
a factor of N can considerably shorten the design cycle.

B
R
A
M

B
R
A
M

D
S
P

B
R
A
M

1 2 30

Figure 1. Relocation from region 0 to an iden-
tical (1) and non-identical regions (2, 3).

Previous work has reported methods and tools to perform
bitstream relocation between identical regions as illustrated
by relocating from region 0 to region 1 in figure 1. In con-
trast, this paper presents a method which allows relocation
to non-identical regions, such as regions 2 and 3.

Previous tools include PARBIT, which can relocate par-
tial bitstreams on Virtex and Virtex-E FPGAs [3]. It can also
be used to move partial bitstream between different devices.
The tool runs under UNIX or Windows and is not suitable
for run-time relocation. REPLICA and REPLICA2Pro are
tools for run-time relocation on Virtex, Virtex-E, Virtex-II
and Virtex-II Pro [5], [6]. Both tools are implemented as
hardware blocks which reside inside the FPGA and modify
addresses within the bitstream as the configuration data is
streamed in. Blodget et. al. propose an API for ICAP that
allows run-time modification of CLB configuration data [1].
The API also includes a copy function that can be used to
relocate CLB content. The API is called from application
code and requires a MicroBlaze or PowerPC system inside
the FPGA with ICAP peripheral.

3 Model of Flexible Configuration Relocation

Early FPGA architectures provide a regular fabric which
is beneficial for the relocation of configurations. Memory



blocks are the first specialised resource to be introduced to
the FPGA fabric because memory is expensive to realise
in generic logic resources. Modern FPGA fabrics show a
continuing trend of growing heterogeneity. Specialised re-
sources can provide certain functions more efficiently and
with higher performance than an equivalent function imple-
mented in generic logic resources.

However, heterogeneity is problematic for relocation of
configurations. In prior work identical regions are required.
However for large modules, it can be difficult to find an
identical target region. Even if identical regions are found,
they can be impractical because of other floorplanning con-
straints.

3.1 Model

We propose a technique that does not require fully iden-
tical regions. Instead we utilise a compatible subset of re-
sources in non-identical regions. We model the FPGA as an
architecture with two layers as illustrated in figure 2:

• The functional layer: it contains logic resources and
routing resources.

• The configuration memory layer: an underlying layer
of memory cells that control the configuration of logic
and routing resources of the functional layer.

L

L

L

L

R R

R R

functional
layer

configuration
memory layer

logic configuration memory

routing configuration memory

logic resource

routing resource

MR ML MR ML

Figure 2. FPGA model with functional layer
and configuration memory layer.

The configuration memory is characterised by an allo-
cation to functional units. Logic resources L and routing
resources R are mapped to memory pages ML and MR.
In a regular FPGA structure, this mapping of resources to
memory is uniform for all tiles i.e. configuration data from
one specific memory location ML can be used to configure
any resource L on the device. This is the basic precondition
for bitstream relocation.

First we focus on the functional layer. We consider a
fabric of logic resource A that which is interrupted by het-
erogeneous resources B and C. Adjacent to these logic re-
sources are routing blocks. In FPGAs routing resources are
usually uniform i.e. they provide identical connectivity to
neighbouring cells.

A

A

A

B

B

B

A

A

A

A

A

A

C

C

C

A

A

A

R R R

R

R

R

R

R

R

R R R

R

R

R

R

R

R

region 1 region 2

Figure 3. Heterogeneous FPGA fabric with
compatible subset of resources.

Figure 3 illustrates an example of two regions that are not
fully identical. Region 1 contains heterogeneous resources
of type B whereas region 2 provides resources of type C. To
enable relocation between these two regions, we identify an
identical subset of resources. Identical in both regions are
the two outer columns of resource A as well as all routing
resources R. Even though logic resources B and C cannot
be used, their associated routing resources are still available.
The compatible subset of resources is highlighted grey.

Configuration data corresponding to this subset can be
considered as relocatable between the two non-identical re-
gions as illustrated in figure 4. This configuration can create
a functioning circuit in both region 1 and region 2.

3.2 Design Flow

In order to create relocatable configuration data the de-
signer has to ensure that only the compatible subset of re-
sources is used by the implementation tools. We assume
that the design is already partitioned into a static part and
a number of reconfigurable modules. The design flow con-
sists of the following steps:

1. Floorplanning: the reconfigurable regions are placed
on the FPGA. If fully identical regions cannot be found
the designer tries to minimise the number of mismatch-
ing resources. Other floorplanning considerations can
include the connectivity of regions, device fragmenta-
tion and the location of static logic.



C

C

A

A

R R

R R

functional
layer

configuration
memory layer

MR MC MR MA

A

A

R

R

MR MA

relocatable
configuration dataDR,1 D R,2 DA,2DR,0 DA,0

B

B

A

A

R R

R R

MR MB MR MA

A

A

R

R

MR MA

region 1 region 2

DR,1 DR,2 DA,2DR,0 DA,0 DB,1

partial
configuration data

Figure 4. Model of a relocatable bitstream: configuration data corresponding to the compatible sub-
set can be loaded in both locations.

2. Selection of the module implementation region: all
modules are only instantiated in one region. This re-
gion is used for physical implementation.

3. Constraint setup: area constraints are created for all
reconfigurable regions to keep them free from static
logic. Additionally the designer has to set up imple-
mentation constraints that instruct the placement pro-
gram not to place any logic instances into mismatching
logic resources. If for instance in figure 3 region 1 is
chosen as module implementation region, the place-
ment program is not allowed to place logic into re-
sources B. However, the router is allowed to use all
routing resources. All other constraints such as timing
requirements and IO locations are added.

4. Physical implementation: the design tools map, place
and route to implement the static design and all recon-
figurable modules on the FPGA according to the de-
sign constraints.

5. Configuration generation: a full configuration file is
generated for initial configuration of the static system.
Additionally one partial configuration file is generated
for each module.

As shown in figure 4, relocatable configuration data can
be produced by simply removing configuration data DB,1.

When loaded into region 1 or 2 it will leave the mismatch-
ing logic resources B or C in their unconfigured default
state. Alternatively, zero-configuration data for resource B
or C can be dynamically inserted into the configuration data
when loading it into the device.

4 Virtex-4 Configuration Architecture

All Xilinx Virtex families support partial run-time recon-
figuration. We demonstrate the technique for Virtex-4 FP-
GAs [19] which support run-time reconfiguration of two-
dimensional blocks. We briefly describe the Virtex-4 con-
figuration architecture to outline the implementation of our
method. Figure 5 shows the structure of the Virtex-4 LX25
FPGA. The device consists of a regular CLB grid which
is interrupted by columns of specialised resources. These
specialised columns can contain BRAMs, DSPs and IOs.
A notable difference to Virtex-II and Virtex-II Pro devices,
which have combined columns of BRAMs and multipliers,
is the separation of BRAMs and DSPs in Virtex-4. Another
change in the architecture is the presence of one IO column
in the middle of the device. Overall the heterogeneity has
increased compared to previous Virtex families.

The configuration memory is organised in frames which
are usually loaded in a sequential order. Frames are random
addressable and represent the smallest unit of configuration.
All Virtex-4 FPGAs have a fixed frame length of 1312 bits.



This differs from previous Virtex families which are con-
figured by frames that span the entire height of the device.
Therefore reconfigurable modules also have to cover the full
height in these devices. Two-dimensional reconfiguration
is also possible but requires more complex techniques [11].
The fixed frame length in Virtex-4 corresponds to rows with
a height of 16 CLBs. Rows can be configured without dis-
turbing any logic above or below, thus enabling much more
flexible floorplans. Figure 5 shows a possible floorplan with
four reconfigurable modules. Multiple reconfigurable mod-
ules as well as static logic can coexist in the same column.

IO IO IO
BRAM

BRAM
BRAM

DSP
CLK

top
half

bottom
half

basic configuration
row = 16 CLBs high

CLB

1 2

3 4

Figure 5. Structure of the Virtex4 LX25 FPGA
with an exemplary floorplan of four reconfig-
urable modules.

Configuration frames have a 32-bit address which is
composed of five values. The memory map of the first four
values is indicated in figure 6. The block type address field
can have three different values: Block type 0 contains all
frames for CLB, DSP, IO and clock configuration. Block
type 1 contains BRAM interconnect configuration frames.
Block type 2 specifies frames with BRAM data content.
The top/bottom bit indicates if a frame is located in the
top-half or the bottom-half of the device. The row address
specifies the row within one half of the FPGA and is incre-
mented from the centre of the device to the outside. Within
each row resources are organised in columns. A column has
a height of 16 CLBs, 4 DSPs or 4 BRAMs. The column ad-
dress is incremented from the left side of the FPGA to the
right. Since BRAM configuration frames have a different
block type, they are addressed independently from all other
resources.

Each column in the configuration memory is configured

IO

0

0

1

0

block type

top / bottom

row

column

C
LB

0

0

1

1

C
LB

0

0

1

2

C
LB

0

0

1

3

C
LB

0

0

1

n-1

IO

0

0

1

n
B

R
A

M
 IN

T

1

0

1

0

B
R

A
M

 IN
T

1

0

1

m

B
R

A
M

 D
ATA

2

0

1

0

B
R

A
M

 D
ATA

2

0

1

m

... ... ... ... ...

Figure 6. Configuration memory map in
Virtex-4 FPGAs.

by multiple frames as illustrated in figure 7. The frame
number is the fifth value in the address field.

CLB columns are configured by 22 frames where the
first 20 frames control routing resources and the last two
frames configure the logic resources of the CLB column. A
DSP column is configured by 21 frames. Again the rout-
ing resources are configured by the first 20 frame. The last
frame contains the configuration of the DSP. BRAM con-
figuration data consist of two separate block types. The first
block contains 20 frames of routing information. A second
block contains 64 frames of BRAM data. CLB, DSP and
BRAM columns contain equal memory sections for routing
configuration memory. The first 20 frames of each column
correspond to routing configuration memory MR.

All frames have a fixed length of 1312 bits or 41 32-bit
words. Frames in the bottom half of the device are bit re-
versed to frames in the top haft with exception of the middle
word of the frame.

0 15 16 17 18 19... 0 15 16 17 18 19...0 15 16 17 18 19... 20 21 20

CLB column DSP column BRAM column

routing
configuration logic

configuration

routing
configuration DSP

configuration

routing
configuration

1312 bits

block type 0 block type 0 block type 1

0 61 62 63...+

BRAM
data

block type 2

Figure 7. Configuration memory of CLB, DSP
and BRAM resources.

During the reconfiguration process, frame addresses can
be auto-incremented. A bitstream usually contains a start



address and frames are sequentially written throughout all
frames, columns, rows, top/bottom and finally block types.

5 Bitstream Relocation in Virtex-4

In this section we describe how our method of configura-
tion relocation can be applied to Virtex-4 devices. Because
of its columnar structure, we have to consider vertical and
horizontal relocation separately. A vertical relocation from
region 1 to 3 in figure 5 provides identical resources on the
functional layer. Thus, a circuit can be placed in both re-
gions without restrictions. However, in our model we as-
sume that the mapping of resources to configuration mem-
ory is uniform for all tiles on the device. This condition
is violated for relocation between top-half and bottom-half
because of the reversed order of bits in each frame. The
solution to this problem is simply to bit-reverse the entire
frame. The centre word is not reversed because it has the
same order of bits in both halves. Vertical relocation has
the advantage of providing identical resources. On the other
hand relocatability is limited to steps of 16 CLBs.

For horizontal relocation we have to consider the hetero-
geneity of the device. Depending on the size of the mod-
ule and other floorplanning constraints it can be impossible
to find completely identical regions. Regions 1 and 2 in
figure 5 exhibit a mismatch between a DSP column in re-
gion 1 and a BRAM column in region 2. However, both
columns provide the same routing resources to their neigh-
bouring CLB columns. These routing resources are config-
ured by the same 20 frames of configuration data. Therefore
the configuration can be relocated by copying the first 20
frames of the DSP column into the memory location of the
according BRAM interconnect columns. The last frame of
DSP configuration data is discarded. All other columns can
be copied by address offsetting. For the reverse transforma-
tion from region 2 to 1, 20 frames of BRAM interconnect
data are copied into the according memory location of the
DSP column. The last frame number 21 can be omitted
or filled with a pad frame if address auto-increment is used.
The same operations apply to transformations between CLB
and DSP and between CLB and BRAM. In any case the first
20 frames of routing configuration are copied; DSP or CLB
logic configuration frames can be filled with one or two pad
frames. In comparison to vertical relocation, horizontal re-
location allows much finer placement steps of 1 CLB. How-
ever it is preferable to choose a placement that reduces the
number of non-matching columns.

In order to enable the horizontal relocation between two
or more not fully identical regions, all mismatching re-
sources have to be prohibited from being used by the im-
plementation tools. The Xilinx placement and rooting tool
PAR can be directed by PROHIBIT constrains to not place
logic instances into certain resources. However, the router

is still allowed to use the according routing resources. If in
our current example a module is physically implemented in
region 1 then PROHIBIT constrains have to be applied to
all DSPs in this region. The resulting module can be used
in all four regions. For relocation to region 4 both frame
reversal and the DSP to BRAM frame transformation are
applied. It should be noted that we do not need to prohibit
all heterogeneous resources in relocatable modules. In our
example a module can make use of the right BRAM column
if required. Only non-matching resources are prohibited.

6 Software Implementation

This section presents a software implementation of our
method for FPGA self-reconfiguration with an internal pro-
cessor. However, self-reconfiguration is not strictly neces-
sary and our software solution could be adapted to run on
an external processor. Instead of generating pre-parsed bit-
streams which lack configuration data for mismatching re-
sources as indicated in figure 4 we chose to transform regu-
lar partial bitstreams produced by the implementation tools.
A bitstream is parsed and modified at run time according to
the requirements of the target region.

PowerPC
or

MicroBlaze

HwIcap

ICAP

BRAM

Control

FPGA

Bus

Reconfigurable
Region A

Flash
Controller

DDR
Controller

Flash
Memory

Reconfigurable
Region B

DDR
RAM

Figure 8. Example of a self-reconfigurable
system with HwIcap.

We have implemented our technique as a software driver
for the OPB HwIcap core [17]. HwIcap is an IP core pro-
vided by Xilinx as part of the Embedded Development Kit
(EDK). The core contains the ICAP primitive and is de-
signed as an OPB peripheral. This supports the fast and
easy creation of a processor based system for FPGA self-
reconfiguration. Figure 8 illustrates the structure of such
a system. The HwIcap core contains one BlockRAM and
additional control logic. During a reconfiguration process
the BRAM is filled with configuration data which is subse-
quently streamed into the configuration port. A low-level



device driver enables basic data transfers to the core and
a high-level driver provides a function setConfiguration() to
load a partial bitstream. Our device driver builds on the low-
level driver and provides a function loadModule() which al-
lows to load any partial bitstream with an X,Y CLB offset
from its original location. The vertical offset has to be a
multiple of 16 CLBs since this is the basic vertical unit of
configuration. The horizontal offset can be any whole num-
ber of CLBs.

The function performs three tasks to relocate the bit-
stream:

1. Address transformation: the memory addresses for
configuration data have to be calculated based on a lo-
cation offset applied to the bitstream.

2. Bit reversal: if configuration frames are relocated into
the other half of the FPGA the order of bit has to be
reversed.

3. Column conversion: if a column is relocated to a non-
identical location the routing frames are copied and
pad frames are added if necessary.

Our driver function first calculates the original location
based on the address given in the bitstream. The bitstream
is then parsed into blocks of configuration data which cor-
respond to one column of resources, e.g. one column of
CLB, DSP or BRAM configuration data. As a next step the
new target address is determined. The new column address
can not be calculated based on simple equations because
configuration data can be exchanged between block type 0
and block type 1 in case of a resource mismatch involv-
ing BRAM. BRAMs follow a different address scheme than
CLBs, DSPs, IOs and clocks and it is not possible to corre-
late both address spaces without further device information.
Therefore we read the bitstream IDCODE to determine the
device type. Our function contains a look-up table with lo-
cations of heterogeneous resources in Virtex-4 devices. We
use this information to transform both address spaces into
a unified linear address space which enables calculation of
the target address and checking for mismatching resources.

The next step is to relocate the configuration data. For
a horizontal relocation the function checks if the target lo-
cation provides an identical resource. If the target column
provides the same resource the configuration data block is
written out without modification. In case of a resource mis-
match the function copies the first 20 frames. CLB tar-
get columns are filled with two pad frames and DSP target
columns with one pad frame. In the case of vertical relo-
cation, the function checks if the target region is located in
the opposite half of the FPGA. Is this case the frame is bit
reversed. For both horizontal and vertical relocation both
steps are executed sequentially.

Each block of configuration data is combined with the
new address and directly written to the configuration mem-
ory before the next block is parsed. This keeps the memory
requirements during the bitstream parsing low, because data
do not have to be copied between block type 0 and block
type 1 within the bitstream.

Figure 9 illustrates an example for a horizontal relocation
that contains one non-identical column. The original par-
tial bitstream generated by the implementation tools con-
tains a start sequence, start address, configuration data and
end sequence. For relocation the bitstream is parsed into
columns which are written out individually. The function
DSP2BRAM copies the first 20 frames and discards the last
one. Each column is transferred with a start and end se-
quence to avoid synchronisation loss with ICAP between
transfers. The average increase of overall data volume is
only 4% compared to the original bitstream. However, an
improved transfer process might not require start and end
sequences for each individual column. In this case the aver-
age data volume would be equal to the original bitstream.

C
LB

0

0

1

8

block type

top / bottom

row

column

D
S

P

0

0

1

9

C
LB

0

0

1

10

C
LB

0

0

1

23

B
R

A
M

0

1

1

2

C
LB

0

0

1

23

addr: 0, 0, 1, 8

CLB 
configuration

data

DSP 
configuration

data

CLB 
configuration

data

addr: 0, 1, 1, 2

BRAM INT 
configuration 

data

addr: 0, 0, 1, 23

CLB 
configuration

data

addr: 0, 0, 1, 24

CLB 
configuration

data

original location target location

original bitstream relocated bitstream

22 fram
es

21 fram
es

22 fram
es

22 fram
es

20 fram
es

22 fram
es

DSP2BRAM

start sequence

end sequence

start sequence

start sequence

start sequence

end sequence

end sequence

end sequence

Figure 9. Example of a bitstream relocation
from DSP to BRAM.

7 Results

In this section we provide one implementation of a re-
configurable application that employs bitstream relocation.
We also analyse how our method enhances the relocatability
of bitstreams.



7.1 Software defined radio prototype

To prototype a relocatable software defined radio appli-
cation, we developed a proof-of-concept design with re-
locatable audio filters. Software defined radio is an inter-
esting application for run-time reconfiguration because the
software waveforms can be accelerated by reconfigurable
hardware modules, thus providing the same flexibility as a
pure software implementation with hardware performance.
Reconfigurable waveform modules are relatively large and
therefore difficult to relocate.

The design was implemented on a Virtex-4 LX25 FPGA
using the ML401 board. The control system consists of a
MicroBlaze processor running at 100 MHz with 64 kB in-
struction memory, HwIcap and UART core as well as ex-
ternal Flash and DDR memory. The system is controlled
via UART by a terminal program. The design has two re-
configurable regions which can host filters for the left and
right audio channel. In this example relocatability reduces
the number of partial bitstreams by 50% since one imple-
mentation of a filter can be used in both regions. Figure 10
shows the placed and routed design with the high pass filter
present in the left region. The right region is empty. Four
different filter types are available: low pass, band pass, high
pass and all pass. Our method enables the relocation to the
non-identical right region therefore reducing the number of
partial bitstreams from 8 to 4. The compile time for the
entire design was reduced from 54 min to 31 min on a PC
with a 3.2 GHz Pentium 4 CPU and 1 GB of RAM. This
corresponds to a reduction of 43%.

If a filter is configured into the left region the unmodified
bitstream is loaded with the setConfiguration() function of
the original device driver. In order to load a filter to the
right region the bitstream is relocated with the loadMod-
ule() function of our device driver. The function transforms
the bitstream accordingly. This design could prove that a
bitstream designed for the left region can be successfully
loaded into a non-identical region using bitstream transfor-
mations. The performance is measured using a bus timer
module. The partial bitstreams have a size of 127 kB and
can be loaded to the original location in 25.4 ms. This is
equivalent to a transfer rate of 5 MB/s. Loading the bit-
stream to the right location with our device driver takes
27 ms which represents a transfer rate of 4.7 MB/s. This
represents performance penalty of 6% which can be ex-
plained with the increased data volume. Overall the com-
putational requirements are very low. These results could
vary with system frequency, system load or when using the
PowerPC. The overall relatively low transfer speed can be
explained by the fact that the OPB bus does not support
burst transfers.

reconfigurable regions

Flash
IOs

DDR
IOs

Microblaze
ICAP

B
R

A
M

D
S

P

B
R

A
M

B
R

A
M

Figure 10. Reconfigurable and relocatable
software defined radio prototype: filter for
two audio channnels on a Virtex-4 LX25
FPGA. A filter is implemented only in the left
region and one bitstream is stored. The con-
figuration can be relocated dynamically.

7.2 Analysis of relocatability

In this section we analyse how the relocatability is en-
hanced by our method. The analysis is performed on a
Virtex-4 FX140 FPGA. We chose this device because it is
the largest in the Virtex-4 FX series and therefore a good
potential candidate for the implementation of a complex re-
configurable software defined radio system. The FPGA has
height of 192 CLBs and a width of 84 CLBs. A total of 12
BRAM, 2 DSP and 3 IO columns interrupt the CLB fab-
ric. These resources are arranged in a pattern where four
CLB columns are interleaved with one heterogeneous col-
umn. The device also contains two PowerPC processors
which are excluded from our method. Although it might
be possible to identify a compatible subset between regions
with PowerPCs we consider this as impractical. However,
rows above or below the PowerPC core can be used without
restriction.

To put module sizes in perspective, we try to obtain a
size estimate of potential reconfigurable modules. The au-



dio filters from our previous example require about 1000
logic slices which is equivalent to 250 CLBs. Thus, a filter
could be constrained to 16x16 CLBs. The radio waveforms
in [11] are approximately four times larger and could cover
an area of 32x32 or 16x64 CLBs. We therefore consider a
width of 16 CLBs as slim reference module, and a width of
32 CLBs as wide reference module. These numbers corre-
spond to a relative width of 19% and 38% of the device.

In the following analysis we consider the horizontal re-
location of modules with variable width, and measure the
number of alternative placement options. The width of
modules measured relative to the width of the device. Fig-
ure 11 illustrates the relocatability for three different sce-
narios. Traces in the diagrams correspond to regions with
a fixed left boundary and a growing width. The upper dia-
gram illustrates alternative placements without our method;
the target region has to be fully identical. Small modules
with a width up to 10% have plenty of placement options.
Modules with a width between 10% and 15% can have up
to five further placement options and all other modules with
a width up 30% have at most one further placement option.
All modules wider than 30% cannot be relocated. For the
slim reference module, there is only one fully identical re-
location target. However, regions identified as valid options
do not necessarily have to be feasible in a real floorplan.
The placement can be too close to a PowerPC, or can cause
undesirable fragmentation of the device. The wide refer-
ence module cannot be relocated.

With our method it is possible in principle to relocate a
module to any other region. Since all non-identical columns
can only be used for routing, it is preferable to maximise the
percentage of matching resources. The middle diagram il-
lustrates alternative placement options if we require at least
90% identical resources in the target region. Overall, the
relocatability is significantly increased and there are 11 al-
ternative placements for the slim module and two for the
wide module. Modules with a width up to 46% can be relo-
cated. If we expect at least 80% matching resources mod-
ules with a width up to 99% can be relocated all illustrated
in the lower diagram. The slim module can have 34 alterna-
tive placements and the wide module 11. For our reference
modules a parameter of 90% match seems to be appropriate.
It has to be noted that non-matching resources might not be
needed by the application. For example a module solely
implemented in CLB logic uses BRAM columns only for
routing. If this module is relocated over a DSP column no
additional resources are wasted by our method.

Future FPGA architectures can be optimised for bit-
stream relocation without having to relinquish heterogene-
ity. If specialised columns are arranged in a regular inter-
leaved pattern similar to Virtex-4 FX devices, relocation
is significantly simplified. An FPGA designer can try to
create a high level of symmetry in the device. Potentially

al
te

rn
at

iv
e 

pl
ac

em
en

ts
al

te
rn

at
iv

e 
pl

ac
em

en
ts

al
te

rn
at

iv
e 

pl
ac

em
en

ts

at least 90% identical resources in target region

at least 80% identical resources in target region

fully identical target region

relative module width in %

relative module width in %

relative module width in %

slim
module

wide
module

slim
module

wide
module

slim
module

wide
module

Figure 11. Alternative placement options for
software defined radio application on an
Virtex-4 FX140 FPGA for different relative
module widths and for fully identical, at least
90% identical and at least 80% identical tar-
get regions.

columns can be rearranged without affecting the overall
performance. This could provide enough identical regions
from smaller modules. Larger modules might be hindered
by one or two non-identical columns. Our technique will
also enable the relocation of those modules.



8 Summary

We have introduced a model of bitstream relocation
based on a compatible subset of resources. Our method
solves the problem of growing heterogeneity by not requir-
ing fully identical regions for bitstream relocation. Our
method can significantly improve flexibility when floor-
planning smaller relocatable modules, and serves as an en-
abling technique for the relocation of larger modules. Based
on Virtex-4 FPGAs we have shown the feasibility of our
method and have provided a concrete implementation as a
software driver for the HwIcap core. In a software defined
radio prototype with two reconfigurable regions the number
of partial bitstream is reduced by a factor of 2 and the design
time shortened by 43%.

Current and future work includes the adaptation of our
driver to the latest devices such as Virtex-5. Another as-
pect is the inclusion of IO columns which are currently not
supported. We further plan to develop various applications
to illustrate the benefit of our approach, such as a software
defined radio demonstrator that shows relocation of wave-
forms in multiple non-identical target regions.

Acknowledgements

The support of Xilinx is gratefully acknowledged. The
authors would in particular like to thank Adam Donlin,
Brandon Blodget and Patrick Lysaght for their contribu-
tions.

References

[1] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and
P. Sundararajan. A self-reconfiguring platform. In Field-
Programmable Logic and Applications, LNCS 2778, pages
565–574. Springer, 2003.

[2] G. Brebner. A virtual hardware operating system for the
Xilinx XC6200. In Proceedings of the 6th International
Workshop on Field-Programmable Logic, Smart Applica-
tions, New Paradigms and Compilers (FPL’96), pages 327–
336. Springer-Verlag, 1996.

[3] E. Horta and J. W. Lockwood. PARBIT: A tool to transform
bitfiles to implement partial reconfiguration of field pro-
grammable gate arrays (FPGAs). Technical Report WUCS-
01-13, Washington University, Department of Computer
Science, 2001.

[4] M. Hübner, T. Becker, and J. Becker. Real-time LUT-
based network topologies for dynamic and partial FPGA
self-reconfiguration. In Proceedings of the 17th Symposium
on Integrated Circuits and Systems Design (SBCCI), pages
28–32. ACM Press, 2004.

[5] H. Kalte, G. Lee, M. Porrmann, and U. Rückert. REPLICA:
A bitstream manipulation filter for module relocation in par-
tial reconfigurable systems. In 19th International Parallel

and Distributed Processing Symposium. IEEE Computer So-
ciety, 2005.

[6] H. Kalte and M. Porrmann. REPLICA2Pro: Task reloca-
tion by bitstream manipulation in Virtex-II/Pro FPGAs. In
CF ’06: Proceedings of the 3rd conference on Computing
frontiers, pages 403–412. ACM Press, 2006.

[7] J. Liang, R. Tessier, and D. Goeckel. A dynamically-
reconfigurable, power-efficient turbo decoder. In Field-
Programmable Custom Computing Machines. IEEE Com-
puter Society Press, 2004.

[8] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridg-
ford. Enhanced architectures, design methodologies and
CAD tools for dynamic reconfigurtion on Xilinx FPGAs. In
Field Programmable Logic and Applications, pages 12–17.
IEEE, 2006.

[9] J. Mignolet, V. Nollet, P. Coene, D. Verkest, and
V. Lauwreins. Infrastructure for design and management of
relocatable tasks in a heterogeneous reconfigurable system-
on-chip. In Proceedings of Design, Automation and Test in
Europe (DATE), pages 986–991. IEEE Computer Society,
2003.

[10] N. P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, and
W. Luk. A reconfigurable platform for real-time embedded
video image processing. In Field-Programmable Logic and
Applications, LNCS 2778, pages 606 – 615. Springer, 2003.

[11] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and
P. Lysaght. Modular dynamic reconfiguration in Virtex FP-
GAs. IEE Proceedings Computers and Digital Techniques,
153(3):157–164, 2006.

[12] H. Styles and W. Luk. Compilation and management
of phase-optimized reconfigurable systems. In Field-
Programmable Logic and Applications, pages 311–316.
IEEE, 2005.

[13] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Goeckel,
and W. Burleson. A reconfigurable, power-efficient adap-
tive Viterbi decoder. IEEE Transactions on VLSI Systems,
13(4):484–488, 2005.

[14] M. Wirthlin and B. Hutchings. Improving functional density
using run-time circuit reconfiguration. IEEE Transactions
on VLSI Systems, 6(2):247–256, 1998.

[15] Xilinx. MicroBlaze Microcontroller Reference Design User
Guide v1.5, September 2005.

[16] Xilinx. PowerPC 405 Processor Block Reference Guide,
July 2005.

[17] Xilinx Inc. Xilinx Logic Core: OPB HWICAP v1.3, March
2004.

[18] Xilinx Inc. Virtex-5 Configuration Guide v2.1, October
2006.

[19] Xilinx Inc. Virtex-4 Configuration Guide v1.5, January
2007.

[20] Xilinx Inc. Virtex-5 Family Platfrom Overview LX and LXT
Platforms v2.2, January 2007.


