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Abstract

The multivariate Gaussian distribution models random
processes as vectors of Gaussian samples with a fixed cor-
relation matrix. Such distributions are useful for modelling
real-world multivariate time-series such as equity returns,
where the returns for businesses in the same sector are
likely to be correlated. Generating random samples from
such a distribution presents a computational challenge due
to the dense matrix-vector multiplication needed to intro-
duce the required correlations. This paper proposes a
hardware architecture for generating random vectors, util-
ising the embedded block RAMs and multipliers found in
contemporary FPGAs. The approach generates a new n
dimensional random vector every n clock cycles, and has a
raw generation rate over 200 times that of a single Opteron
2.2GHz using an optimised BLAS package for linear alge-
bra computation. The generation architecture is an ideal
source for both software simulations connected via high
bandwidth connection, and for completely FPGA based
simulations. Practical performance is explored in a case
study in Delta-Gamma Value-at-Risk, where a standalone
Virtex-4 xc4vsx55 solution at 400 MHz is 33 times faster
than a quad Opteron 2.2GHz SMP. The FPGA solution also
scales well for larger problem sizes, allowing larger port-
folios to be simulation.

1. Introduction

The multivariate Gaussian distribution is a key compo-
nent of many simulations, as it allows correlations between
different random factors to be captured. For example, a
multivariate Gaussian distribution can be used to model the
correlation between changes in the FTSE and NASDAQ
indices, or to model relationships between outside temper-
ature and demand for frozen food. A particular benefit is
the ability to capture complex sets of correlations between
large numbers of random factors, for example those within
a complex portfolio containing tens or hundreds of assets.

However, generating random samples from the multi-

variate Gaussian distribution is computationally demand-
ing, as it relies on a matrix-vector multiply to capture the
correlations. Traditionally thisO(n2) growth with vector
size has been addressed using large clusters, as seen in the
large compute farms used in banks to calculate overnight
Value-at-Risk. This paper offers an alternative, showing
that reconfigurable hardware can be used as an effective
means of accelerating multivariate Gaussian random vec-
tors, and that complete FPGA based simulations can be
built up around this core component.

The contributions of this paper are:

• An analysis of hardware performance for Gaussian
vector generation. This establishes limits on the size
of vectors that can be generated in hardware in terms
of available multiplier and RAM resources.

• An abstract architecture for implementing vector gen-
eration in FPGAs, designed to serially generate vec-
tors of sizeN overN cycles. In the Virtex-4 xc4vsx55
this architecture can operate at 500MHz, and provides
performance over 200 times that of a 2.2GHz Opteron.

• A case study implementing a Delta-Gamma Value-at-
Risk simulation in an xc4vsx55 part on the RC2000
platform, demonstrating a 132 times speed-up over a
single Athlon 2.2GHz, and reducing simulation time
from 37 to 1.1 seconds when simulating a 448 asset
portfolio.

2. Algorithm and Analysis

The univariate Gaussian distributionX ∼ Norm(µ ,σ2)
is described through its Probability Density Function
(PDF):
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Extended to the multivariate case, the distributionXN ∼
Norm(m,S) describes the PDF of a vector of lengthN:
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The vectorm contains the mean of each component in the
vector, i.e.E(XN). The matrixS describes the covariance
matrix between components. The diagonal elementsSi,i

describe the marginal variances of the vector components
(the variance of the component when treated as a univariate
PDF), while the off-diagonal elements describe the degree
of correlation components. Large values ofSi, j indicate
high levels of correlation, so if componenti increases then
it is likely that componentj will also increase, while nega-
tive values make it likely that if one decreases the other will
increase (and vice-versa). For example, one might expect
the correlation between the stock returns of Microsoft and
Oracle to have a significant correlation as they are in sim-
ilar markets, but the correlation of Microsoft and British
Petroleum stock returns would be lower.

To generate random samples fromXN it is necessary to
form a vectorr of independent univariate Gaussian sam-
ples from some infinite sourcer1, r2, .... The desired corre-
lation structure is then applied tor by multiplication with
a lower triangular matrixA, whereS= AAT . The means
of the components are then adjusted by adding the vector
m. Thus the generation of thek-th vectorxk is calculated
as follows [3]:

rk = (rkN+1, rkN+1, ..., rkN+N)T (3)

xk = Ar k +m (4)

If Equation 4 is expanded the structure of the computa-
tion becomes clearer:
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which can be grouped into independent equations:

x1 = a1,1r1 +m1 (6)

x2 = a2,1r1 +a2,2r2 +m2 (7)

x3 = a3,1r1 +a3,2r2 +a3,3r3 +m3 (8)

xN = aN,1r1 +aN,2r2 +aN,3r3 + . . .+aN,NrN +mN (9)

We will now explore the minimal cost of generating
Gaussian samples by looking at the minimum number of
resources needed. Four types of resources are consid-
ered: multipliers, adders, coefficient storage, and coeffi-
cient bandwidth. We concentrate on the dominatingO(N2)
costs, and ignore most linear and constant costs.

For the purposes of the analysis it will be assumed that
the input width of individual multipliers provides suffi-
cient precision. In practice the 18-bit multipliers in modern
FPGA architectures provide ample precision, but we do not
offer rigorous justification of this assumption in this paper.
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Figure 1. Estimate resource usage for parallel and
serial vector generation.

Equation 4 is essentially a matrix-vector multiply and
add, whereA is lower-triangular. A lower triangular ma-
trix has at mostN(N+1)/2 non-zero coefficients, so in to-
tal A andm require the storage ofN(N+3)/2 coefficients.
During the generation of each random vector all (lower-
diagonal) coefficients ofA are accessed once, then each
coefficient is used as input to one multiplication. Adding
together the terms (includingm) requires the same number
of additions, soN(N + 1)/2 multiplies, adds, and coeffi-
cient accesses are needed per generated vector.

If one vector is to be generated per cycle then the only
practical way to storeA andm is in registers, as each coef-
ficient is accessed once per cycle. Under this schedule the
performance requirements grow rapidly, making it practi-
cal only for smallN. However, if vectors are generated
serially such thatN cycles are used to generate each vector,
it is possible to store coefficients in RAM.

The top half of Table 1 shows the equations for abstract
computational resource usage, then the bottom half relates
them to implementation, in terms of registers for the par-
allel version, and memories for the serial version. The
constantswc, ws, andwr denote the width of coefficients,
adders, and RAM elements respectively, whilelr andpr are
the length and number of ports of each block RAM.

Figure 1 shows these estimates applied to the Virtex-
4 xc4vsx55, usingwc = 18, ws = wr = 36, lr = 1024, and
pr = 2. It shows that the largest vector that can be generated
in the parallel case is around 30, but the RAM based serial
generator can support up to 512.

For comparison purposes we also estimate the perfor-
mance of software, again considering only the dominating
O(N2) costs. As software is almost unlimited in the size
of matrix that can be stored in memory, the performance
when operating out of different memory hierarchies is con-
sidered. Each leveli can holdl i coefficients, and provides
a peak bandwidth ofbi coefficients per second. For sim-
plicity it is assumed that when the coefficients cannot be



1/cycle N−1 / cycle
Multiplies/cycle N(N+1)/2 (N+1)/2
Total coefficients N(N+3)/2 N(N+3)/2
Coefficients/cycle N(N+1)/2 (N+1)/2
Adds/cycle N(N+1)/2 (N+1)/2
Registers (bits) (wc +ws)N(N+1)/2 ws(N+1)/2
Block RAMs (storage) - wcN(N+1)/2/lr/wr

Block RAMs (bandwidth) - wc(N+1)/2/pr/wr

Table 1. FPGA resource usage for parallel and serial vector generation.

held totally in one level then they are all held in the next
level. The CPU is assumed to be capable ofm multiply-
accumulates per second. The performance of the CPU for
N length vectors per second is then estimated as:

i = min
i

: N(N+3)/2≤ l i (10)

VN = min(
2bi

(N(N+3)
,

2m
N(N+1)

) (11)

When implementing the vector generation in an FPGA,
it is possible to replicate instances if each generator takes
up less than half the space. So the total expected FPGA
performance in vectors per second is:

VN = b1/pNc f/N (12)

where f is the clock frequency, andpN is the proportion of
the FPGA taken up by a single vector generator of sizeN.

Figure 2 shows the expected performance for an
Opteron and an xc4vsx55. The predicted software perfor-
mance uses the following figures for the cache and floating-
point performance:l1 = 214; b1 = 3.52×1010; m= 8.8×
109; l2 = 218; b2 = 5.75×109; l3 = ∞; b3 = 3.2×109. Both
memory and operation bounds are shown for the Opteron,
with the memory forming the lower bound on performance.
For small matrix sizes the software should operate mainly
within the first-level cache, suggesting a hardware speedup
of only about 20 times, while for larger sizes the coeffi-
cients must be stored in main memory, leading to a poten-
tial 100 times speedup.

Note that these figures are approximations, as both plat-
forms are unlikely to achieve this performance in prac-
tice. The software version is extremely unlikely to achieve
perfect utilisation of memory and bandwidth and function
units, while the hardware figures for smaller vectors as-
sume that the Input/Output constraints in outputting larger
numbers of vectors at once are not a problem. However,
in both cases the estimates for larger matrix sizes might be
expected to become asymptotically accurate, particularlyin
the FPGA case.
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Figure 2. Comparison of expected performance of
xc4vsx55 and Opteron 2.2GHz.

3. Architecture

In this section the mapping of a vector generator into re-
configurable hardware is presented. Following the analysis
in the preceding section the architecture implements the se-
rial model, generating a lengthN vector everyN cycles. A
platform-independent architecture is presented, but partic-
ular attention is paid to the Virtex-4 architecture, and how
to achieve the maximum possible clock rate.

The calculations for implementing Equation 4 in hard-
ware can be broken into four stages:

Univariate Gaussian vector generation.Every N cycles
a new vector of independent univariate Gaussian sam-
ples must be generated.

Coefficient management.The coefficients of matrixA
must be extracted from RAM in the correct order, and
a means of loading new matrices must be provided.

Multiplication. The univariate Gaussian components and
matrix coefficients are multiplied together.

Summation. The products are summed to provide the
components of the output vector in successive cycles.

3.1. Univariate Gaussian vector generation

To produce each output vector,N independent Gaussian
samples must be generated. In a naive implementation this
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Figure 3. Generation and distribution of univariate
Gaussian samples.

could be achieved usingN separate generators, with each
generator producing a new random sample at the start of
each vector and holding it constant for the remainingN−1
cycles. This concept is shown on the left hand side of Fig-
ure 3. Although simple, this is very wasteful, as Gaussian
random number generators are relatively large and expen-
sive, typically requiring a number of block-RAMs and of-
ten a number of multipliers [9, 7, 10].

It is much more efficient to use just one univariate
Gaussian generator, observing that, if the generator pro-
duces one random sample per cycle, then while one vector
is being generated and output, the next univariate input vec-
tor can be generated in parallel. It then becomes a problem
of distributing the univariate vector elements to the appro-
priate multipliers. The solution used here is to use a long
shift-register, with its input connected to the univariategen-
erator, and having each register stage close to a multiplier
site. This arrangement is shown in the right side of Fig-
ure 3. During theN cycles of multivariate generation the
shift-chain is serially loaded withN fresh univariate sam-
ples. When calculation of the next multivariate vector be-
gins, the contents of the shift-register are transferred inpar-
allel to registers located by each multiplier.

As well as only requiring one Gaussian generator, this
arrangement is also very appropriate for high-speed de-
signs, as only local routing is required between registers
in the shift-register. The shift-chain can be organised so
that alternating columns in the chain shift up and down, as
it doesn’t matter what order the samples reach the multi-
pliers, as long as they are only used at a single multiplier.
Short horizontal connections at the top and bottom can then
be used to create a single global shift-chain.

The exact method used to generate the univariate sam-
ples is relatively unimportant, at least in terms of resource
usage, as only one instance is needed. The generator used
in this paper employs piecewise linear approximations [14],
as this method does not require any multipliers and is very

easy to pipeline.

3.2. Coefficient management

Coefficient management consists of two tasks: extract-
ing elements ofA in the correct order during calculations,
and providing a means of loading in new elements when
the matrixA changes. During theN cycles taken to gener-
ate each vector, each multiplier requires at mostN differ-
ent coefficients. Depending on the aspect ratio of available
RAMs, this may require a memory port per multiplier, or
with wide RAMs it may be possible to pack multiple coef-
ficients into a single word. The entries in the RAM can be
arbitrarily re-ordered to allow efficient indexing schemes,
so it is not necessary for the coefficient layout in RAM to
reflect the logical structure ofA.

In this work each Virtex-4 block RAM supplies two co-
efficients to two multipliers, with the RAM organised as a
1024 by 18 RAM. The two sets of coefficients are packed
into the top and bottom halves of the RAM, and addressed
using a single counter, with the most-significant bit set to
0 for one port, and to 1 for the other port. During the first
cycle of vector generation the counter is reset to zero, then
during successive cycles it is incremented by one.

The task of loading new coefficients should be a rela-
tively infrequent operation compared to the actual gener-
ation of vectors, and so does not need to be heavily opti-
mised. A very convenient and efficient method of updating
coefficients is to re-use the shift-chain used to distribute
univariate Gaussian numbers. During coefficient update,
coefficients are serially loaded onto the shift-chain, until
all N coefficients for a row are ready. The controller then
starts the standard vector generation process, causing the
address counters for all RAMs to start incrementing. At the
appropriate cycle the controller then asserts a write strobe,
causing the value of the shift-chain to be written into the
memory location associated with that cycle.

Loading in this way means that entire rows can be writ-
ten at once, with each row requiringN cycles to fill the
shift-chain, and between 1 andN cycles to reach the correct
point in vector generation for the row to be written. Each
row can thus be written in 2N cycles, so the entire matrix
can be loaded in 2N2 cycles. Assuming the xc4vsx55 para-
meters ofN = 512 and a 500 MHz clock, this means that a
new matrix can be loaded in just over one millisecond.

3.3. Multiplication

The multiplication stage multiplies together the coeffi-
cients and random numbers, producing the terms that will
be summed together in the next stage. If the multiplier units
provide no additional functionality (for example, Virtex-II
block-multipliers [16]) then no further processing is per-
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Figure 4. Architecture of MAC based multivariate
Gaussian generator.

formed at this stage. However, modern FPGA architectures
provide more complex DSP blocks, fusing multipliers and
wide adders together, such as the Stratix-II DSP [2] and
Virtex-4 DSP48 [17] blocks. These blocks allow some of
the terms to be summed at the same time as they are pro-
duced, reducing the number of adders that must be imple-
mented in general logic.

In the case of the Stratix-II, the DSPs support local addi-
tion of the four 36-bit values produced by four 18 by 18-bit
multipliers in the DSP. This pushes two levels of addition
into the DSP block, so if the output ofn multipliers must
be combined this means that only(n/4)−1 of the required
n−1 adders must be implemented in general logic.

However, the Virtex-4 DSP48 supports a 48-bit wide
carry path that runs the entire height of DSP columns, al-
lowing each DSP to perform an 18x18-bit multiply, and
combine the 36-bit result with the 48-bit result of the
DSP block below. This means that in a device withw
DSP columns each containingh DSP devices, potentially
(h−1)w additions can be implemented in dedicated addi-
tion hardware, so if allhw DSPs are used in vector genera-
tion onlyw−1 additions need to be implemented in general
logic. However, the pipelining of the DSP carry path means
that the data processing must be rescheduled to allow the
DSP adders to be used.

Fortunately the fact that matrixA is triangular allows
the calculations to be rescheduled to take advantage of this
dedicated carry path. Consider Equation 6 (ignoringm as
this can be processed in the final stage): only one of the
elements (xN) requiresN multiplications and uses allN el-

ements of the random vectorr . If this calculation is started
in the first cycle of vector generation, then over the fol-
lowing N− 1 cycles the remaining terms can be accumu-
lated, and will eventually be output as the last element of
the vector. In contrast there is one element that only con-
tains one multiplication, which can be executed in the first
cycle and output as the first element. In general the calcu-
lations can be organised so that in cyclek of the vector gen-
eration process, the element derived fromk multiplications
andk−1 additions can be output. This way of scheduling
the calculation takes advantage of the fact thatA is lower
triangular, and hence contains a large number of zeroes.

Figure 4 shows how this schedule maps to the DSPs.
On the left hand side is the univariate Gaussian distribution
chain, which will be captured (in parallel) intor1..r4 at the
beginning of vector generation. In the middle are the co-
efficient RAMs, and counters for selecting the coefficients
in the correct order. Finally the DSP column contains the
buffersr1..r4, which are held constant during each gener-
ated vector, the MAC units which performr iai +c, and the
registers on the data carry path. The right hand side shows
the calculations performed in each MAC in each cycle. In
the first cycle the termsai,ir i are all calculated, andx1,1 can
be output. In following cycles the elements with more and
more terms reach the top of the column, until finally the
lastn-term element reaches the top.

3.4. Final Summation

Single-cycle logic-based adders are performance limited
by the critical path through the carry-chain. If an adder of
lengthw is implemented using a carry-chain with a delay
per full-adder ofdc, then the maximum clock-rate that can
be supported is 1/(wdc). In Virtex-4 dc = 0.07 ns, so the
maximum performance atw = 45 is 317MHz, even before
considering factors such as LUT delay and routing inputs
to the LUTs. Clearly to achieve 500MHz performance the
adder carry-chains must be pipelined, but current synthesis
tools do not automatically pipeline adders, even when given
tight timing constraints and ample registers for retiming.

The solution used in this work is to use relationally
placed adders with explicitly pipelined carry chains. Each
w-bit adder is broken into segments of lengths, each of
which adds together twos-bit numbers and supports a
carry-in and carry-out. Each adder is implemented using
k = dw/se segments, and the carry-out of each segment is
registered before being routed in to the carry-in of the next
segment. The pipelined carry-chain means that segments
must be skewed in time, with the least-significant segments
arriving first. This skew is achieved using a triangle of reg-
isters attached to the adder inputs, in this case the output of
DSP48 blocks. The final sum is de-skewed using another
triangle of registers.
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Figure 5 shows the skewed-adder system forw = 9 and
s = 3. Note that each adder-stage includes an additional
stage of registers placed right next to the addition logic;
this is included as it allows the adder inputs to have the
absolute minimum routing delay, allowing each segment to
be slightly longer. The cost of each triangle of registers
is sk(k+ 1)/2 FFs (Flip-Flops), and for ann input adder
tree a total ofn+ 1 trees are required. Assumingn is a
binary power,n−1 skewed adder stages are required, each
of which uses(3s+ 1)k LUT-FF pairs (including FFs for
input buffering). Thus the total cost of an adder tree in
LUT-FF pairs is:

1
2
(s(n(k+7)+k−5)+2n−2)k (13)

In the xc4vsx55 architecture the values= 9 is chosen,
requiringk = 5 segments. When all DSP48 columns are
used for vector generationn= 8, so a total of 2195 LUT-FF
pairs (∼ 4% of total resources) are consumed in the sum-
mation tree. Note that the area could be decreased by re-
moving the extra buffering stages and using longer addition
segments, but this would make meeting 500MHz timing
constraints much more difficult. Another solution would
be to dedicate the top DSP48 of each column to addition,
and to stagger the initiation of new vector calculations in
successive columns. This would remove almost all logic
needed for addition, but would also reduce the maximum
possible vector size to 504.
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3.5. Implementation and Evaluation

The generator described above is implemented in
Virtex-4 specific VHDL, designed to give maximum per-
formance. The design uses two main building blocks, one
to describe the multiply and accumulate element shown
in Figure 4, and another to describe the pipelined adder
components in Figure 5. Both are individually tuned and
relatively placed to ensure 500MHz performance could
be achieved. The blocks are then instantiated and con-
nected using parametrised container components, creat-
ing columns of multiply-accumulate elements, and trees
of adders. The containers apply absolute placement con-
straints to the blocks, and are individually synthesised
to EDIF blocks. The set of EDIF multiply-accumulate
columns and adder tree are then combined in a top-level
design, which is placed and routed for the xc4vsx55-12.
All inputs and outputs are routed to pins, with an interme-
diate layer of buffering registers clocked at the same rate
as the vector generator. Four different top-level designs are
created, using four, two and one replicated instances of the
vector generator, capable of handling vectors up to 128,
256, and 512 respectively.

The Xilinx 8.1 toolchain is used throughout, using XST
for synthesis, and Xilinx primitives to instantiate almost
all registers and other components. Shift-register inference
and optimisation of primitives is disabled during synthe-
sis, as XST attempted to optimise registers into SRL16s,
without realising that they were deliberately introduced for
timing reasons. Timing driven placement is employed,
but other advanced map options such as retiming are not
needed. Place and route at the default effort level is found
to be sufficient.



The maximum clock rate of the design is reported by
Xilinx tools as 500MHz, which is the maximum supported
by the block RAMs and DSPs, so the practical performance
ceiling has been achieved. Figure 6 shows the performance
of the generator as vector size is increased. The two steps in
performance are due to the switch between 4, 2 and 1 repli-
cated instances as the matrix size (and the size of each in-
stance) gets larger. The theoretical maximum performance
derived in the preceding section is also shown above the
practical performance. The difference between theoretical
and achieved performance changes most significantly at the
steps between the boundary sizes for replicated instances,
with a best-case realised performance of 1/2 the theoretical
maximum when the vector size equals the maximum vector
size, and a worst-case of 1/4 for the next larger size.

Underneath the performance curves for hardware are
the predicted and realised curves for an Opteron 2.2GHz.
The realised software performance is measured using the
ACML BLAS [1], a set of vector and matrix libraries
specifically optimised for AMD processors, using features
such as SIMD and cache management instructions. Perfor-
mance is measured on a Linux based quad-core Opteron
server, with no other computational tasks running, and en-
suring each run is measured over at least 10 seconds of
wall-clock time.

The maximum speed-up over software of 246 is
achieved when four instances operate on 128 element vec-
tors, and the minimum speed-up of 110 with vectors of size
257 (at the point where it is necessary to move from a two
instance design to a one instance design). For the largest
supported vector size of 512 the speed-up is 208 times.

These results demonstrate performance when an entire
device can be dedicated to vector generation. In the next
section an application is developed that incorporates the
vector generation architectures into a real design, allowing
practical speed-up to be measured.

4. Case Study

In this section the Gaussian vector generator is used in
a real-world application, a Delta-Gamma asset simulator
for Value-at-Risk. The simulator is implemented using an
xc4vsx55-10 in a Celoxica RC2000 platform, so the max-
imum clock rate reduces to 400MHz when compared with
the 500MHz that could be achieved using the xc4vsx55-12
in the previous section.

In many financial simulations a large collection of un-
derlying assets is modelled as having correlated Gaussian
returns. A portfolio over these underlying assets can then
be modelled, where the portfolio incorporates both direct
positions, as well as options on the underlyings. Profit and
loss due to direct positions clearly vary in proportion to
changes in the underlying, but profit and loss on options de-

pend on factors such as the strike price and time to expiry
of the option. Accurately pricing the option may require
significant calculations, for example the commonly used
Black-Scholes pricing operator requires evaluations of the
Gaussian CDF and many other functions [4].

A simple way of approximating changes in portfolio
value over short time periods is to consider only the first
and second derivatives of portfolio assets with respect to
changes in the underlying. Thus ifs is the vector of original
positions, andx is a random vector of correlated changes in
the underlying assets, then the new price is

p =
N

∑
i=1

si +δixi +
γi

2
x2

i (14)

whereδ is the vector of first derivatives,γ is the vector
of second derivatives. Rearranging this to extract just the
change in price gives:

d =
N

∑
i=1

xi(δi +
γi

2
xi) (15)

By simulating millions of different randomx vectors the
probability distribution ofd can be estimated, and used to
evaluate the portfolio. For example, picking the 5th per-
centile amongst all values ofd gives the 5% Value-at-Risk,
which is the amount of money that would be lost in the 5
worst days out of every 100. The computationally intensive
process is in the calculation ofd, so the remainder can be
implemented in software.

To allow full-speed operation in hardware these calcu-
lations are performed in static floating-point, with man-
tissa scaling pre-calculated per asset. This is possible as
the range ofr is already known (via the marginal standard-
deviation and mean of each component), establishing an
upper bound on the magnitude of each element. Thus the
45 bit values produced by the correlated vector generator
can be reduced with shifters down to 18 bit, even when
the standard-deviations of asset returns have very different
magnitudes.

A second scaling is applied prior to the summation of
price changes, allowing assets with very different sensitivi-
ties to be accommodated. The final Delta-Gamma calcula-
tion is then:

d =
N

∑
i=1

2−ki
([

2− j i xi
][

δ ′
i + γ ′i

(

2− j i xi
)])

(16)

wherej is a vector of integers that determine the initial scal-
ing of r , k is a vector of integers that determine scaling be-
fore summation, andδ ′ andγ ′ are the portfolio sensitivities
after applying the scaling.

Figure 7 shows the pipeline used to implement the
Delta-Gamma pricing operator, including the widths of



data-paths. DSP48s are used to implement all the multi-
pliers and adders, while pipelined LUT-based multiplexors
are used to implement the shifters. The final sum is per-
formed using a DSP48 in accumulation mode, with the ac-
cumulator reset to zero at the beginning of each new vec-
tor. All calculation components are placed relative to each
other to provide a relatively compact pipeline, while the
registers used for pipelining and synchronising datapaths
are unplaced.

Each vector of random asset returns produces one to-
tal pricing change, and this is the result that needs to be
passed back to software for further processing. If a port-
folio of sizeN is generated at frequencyf then simulated
price changes are generated at a ratef/N, so in large port-
folios (which present a significant computation challenge
in software) the frequency of results that are transferred
back to software will be significantly lower thanf . The
results can thus be transferred into a slower clock-domain
without data-loss.

This implementation targets the RC2000 platform, so
the slower clock-domain needs to support both the RC2000
local-bus interface, and the logic that implements the pro-
tocol used to communicate with host software. This section
is implemented in Handel-C and a clock rate of 50MHz is
chosen, with the faster clock domain operating at 400MHz
via two levels of DCMs.

Ideally the clock-domain bridges would have been im-
plemented using the Virtex-4 built-in FIFO16, but due
to the LUT-based workaround needed for correct opera-
tion [15], the faster clock domain could not reach max-
imum speed. Instead a simple register-based protocol is
used to transfer single words, where the faster clock do-
main holds all data changes constant for at least three cy-
cles. The slower clock domain registers the output of
the faster domain’s transfer register every cycle, and de-
tects new data using a single validity bit within transferred
words. Incoming data are captured the cycle after the va-
lidity bit is asserted, ensuring that all bits of the trans-
ferred word have been retrieved correctly. This system
requires six cycles in the slower clock domain per trans-
ferred word, but the data-transfer rate between the clock-
domains is slow enough that this is not a bottleneck. With
the 50MHz clock domain this allows a minimum vector
size ofN = 48.

Figure 8 shows the high-level layout of the simulator in
the xc4vsx55. The left half of the device is dedicated to
full-height columns of matrix-multiply components, con-
taining 256 DSPs. The right half of the device uses three-
quarter height columns of matrix-multiply components,
containing another 192 DSPs, allowing for generation of
vectors up to length 448. The columns are synthesised to
eight EDIF components from a single VHDL description,
parametrised for column height, absolute placement, and
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Figure 7. Delta-Gamma approximation pipeline.

whether the shift-chain goes up or down the column. The
adder tree is synthesised from another VHDL description,
with absolute placement for the adders.

The bottom right corner is reserved for the Delta-
Gamma pipeline, and the Gaussian random number gen-
erator, both of which are implemented as relatively placed
components, and are then absolutely placed within the de-
vice at synthesis time. The figure also shows the control
logic and RC2000 interface in the same area, but this is
more conceptual. Actual placement is left to the tools, and
as a result the logic for these components is distributed
throughout the entire device.

The synthesised components are all gathered together in
a top-level design and placed and routed as a single design.
No top-level placement or area constraints are used, as all
timing-critical components are already absolutely placed.
A 400MHz clock-constraint is placed on the main process-
ing clock, and is met.

Table 2 shows the resources used in the design, broken
down by component. The LUT and FF resource usage of all
components is higher than strictly necessary, particularly in
the Delta-Gamma pipeline, since the focus is on achieving
the maximum possible clock rate without requiring large
amounts of design time. The majority of the resources are
used in the vector generator, as even though the amount of
logic per DSP is very small (approximately 19 LUTs and



Vector Gaussian Delta
Generator Generator Gamma Control Total

DSP 448 (87.5) - - 4 (0.7) - - 452 (88.2)
RAM 226 (58.9) 4 (1.0) 4 (1.0) 19 (3.7) 253 (65.9)
LUT 9006 (18.3) 955 (1.9) 822 (1.6) 504 (1.0) 11287 (23.0)
FF 18771 (38.1) 1278 (2.6) 1935 (3.9) 803 (1.6) 22787 (46.4)
Slice 12673 (51.6) 947 (3.8) 1523 (6.1) 1210 (4.9) 16353 (66.5)

Table 2. Resource usage for Delta-Gamma simulator, with percentage of xc4vsx55 resources shown in
brackets.
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Figure 8. Layout of components in xc4vsx55
based RC2000.
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Figure 9. Time taken to perform 1 million portfolio
evaluations.

34 FFs per cell), it is replicated at each location. Many
resources could be saved by sharing local control logic and
address counters across multiple DSP units, but this would
make achieving timing closure much more difficult.

Figure 9 compares software and hardware performance,

by measuring the time taken to simulate 106 portfolio re-
turns. The hardware execution time includes the time taken
to load the correlation matrix (24ms). For smaller port-
folios the hardware is less than 10 times faster than the
Quad Athlon, as very few of the hardware’s multipliers
can be applied to the problem. However, as the portfolio
size increases the relative performance of the hardware in-
creases, achieving a maximum speed-up for the maximum
supported portfolio of 448 assets. This is 33 times the speed
of a quad Athlon, or 132 times faster than a single Athlon,
at less than a fifth of the clock rate.

5. Related Work

Previous work on random number generation in FPGAs
has focussed on the univariate building blocks, particularly
the uniform distribution [6, 11, 12], which provides under-
lying randomness to applications, and the Gaussian distri-
bution [7, 9, 10]. Recent work provides methods for gener-
ating arbitrary continuous univariate distributions [13], and
also provides efficient methods for generating the Gaussian
distribution. This paper builds on this work, motivated by
the ease with which high-speeds can be achieved with var-
ious fast methods for generating univariate distributions.

The core of the multivariate Gaussian generator is the
dense matrix-vector multiply, and a key contribution of this
paper is the observation that when the matrix remains con-
stant for large numbers of vectors, the parallel multipliers
and RAMs make this very efficient. If the matrix changes
frequently then the method becomes inefficient compared
to software, as the bottleneck becomes the speed at which
the coefficients of the matrix can be retrieved from an exter-
nal source. However, if the matrices are sparse, the FPGA
can again compete with software by using custom logic
for decoding the matrix structure [5]. Dense matrix-matrix
multiplications provide many opportunities for caching and
re-use, so block RAMs can be used to increase effective
memory bandwidth. For this reason previous work on lin-
ear algebra in FPGAs has focussed on dense matrix-matrix
operations, often aiming to provide a drop-in accelerator
for BLAS [8, 18].



6. Conclusion

This paper has presented an architecture for the gener-
ation of multivariate Gaussian random numbers in modern
reconfigurable architectures. The key insight is in show-
ing how the large number of multipliers and local memo-
ries can be organised to efficiently perform a dense matrix-
vector multiply, as long as the matrix remains constant for
many different vectors. A particularly efficient mapping
for Virtex-4 DSP48 blocks is then demonstrated, which can
provide a speed-up of 200 times over an equivalent soft-
ware vector generator.

This vector generator is then demonstrated in a case-
study for simulating Value-at-Risk, a common finan-
cial application. The application is implemented using
an RC2000 device containing an xc4vsx55-10 part, and
through manual placement a design capable of running at
400MHz with a maximum portfolio size of 448 assets is
achieved. The hardware accelerated simulator provides a
practical speed-up of 33 times over a quad Athlon worksta-
tion, reducing the time taken to simulate a 448 asset port-
folio from 37 seconds down to 1.1 seconds.

The results of this paper demonstrate two benefits of
using reconfigurable logic for compute-intensive applica-
tions, such as computational finance. First, a single FPGA
is able to replace the equivalent of 33 quad-core computers
in a cluster, 132 CPU cores in total. This means that all the
heat, power, space and capital outlay required for a 32U
rack could in principle be replaced with a single computer
containing one FPGA. Obviously not all applications will
see this level of improvement, but other financial simula-
tions are likely to see similar improvements.

The second key benefit is the reduction in latency that
an FPGA accelerated solution can provide. Figure 9 shows
computational latency dropping from 37 seconds to 1 sec-
ond when comparing a quad core computer to an FPGA.
This is a great advantage in time-sensitive applications such
as trader-support; a potential position may only be open for
a few seconds, so it is important to reduce the latency ob-
served by the user to the bare minimum.

It is of course possible to use a networked cluster of
CPUs, but this introduces the problem of distributing and
scheduling tasks across multiple nodes. Such clusters are
also too big and expensive to dedicate one to each user;
clusters are shared resources, and in periods of peak de-
mand users will actually find latency increasing. An FPGA
accelerator can be installed in every users computer, pro-
viding a dedicated computational resource with guaranteed
latency and availability.

Future work will focus on integrating more compli-
cated pricing operators such as Black-Scholes option valu-
ation [4], exploring more complicated types of correlations
and probability distributions, and examining the interme-

diate levels of parallelism between fully parallel and fully
serial generators.
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