
LA-UR- DC(-DG;;;'~~ 
Approved for public release; 
distribution is unlimited. 

Title: I Non-Preconditioned Conjugate Gradient on Cell and FPGA 
based Hybrid Supercomputer Nodes 

Author(s): I David DuBois, Andrew DuBois, Thomas Boorman, Carolyn 
Connor 

Intended for: I 	 The Seventeenth Annual IEEE Symposium on 
Field-Programmable Custom Computing Machines 
2009 

Los Alamos 
NATIONAL LABORATORY 

=~- EST. 194] --­

Los Alamos National Laboratory, an aHirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution , or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher'S right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Non-Preconditioned Conjugate Gradient on Cell and FPGA based Hybrid 

Supercomputer Nodes 


David DuBois, Andrew DuBois, Thomas Boorman, Carolyn Connor 
Los Alamos National Laboratory 


dhd@lanl.gov, ajd@lanl.gov, tmb@lanl.gov, connor@lanl.gov 


Abstract 

This work presents a detailed implementation of a 
double precision, Non-Preconditioned, Conjugate 
Gradient algorithm on a Roadrunner heterogeneous 
supercomputer node. These nodes utilize the Cell 
Broadband Engine Architecture™ in conjunction with 
x86 Opteron™ processors from AMD. We implement a 
common Conjugate Gradient algorithm, on a variety of 
systems, to compare and contrast performance. 
Implementation results are presented for the 
Roadrunner hybrid supercomputer, SRC Computers, 
Inc. MAPStation SRC-6 FPGA enhanced hybrid 
supercomputer, and AMD Opteron only. In all hybrid 
implementations wall clock time is measured, 
including all transfer overhead and compute timings. 

1. Introduction 

The Conjugate Gradient Method (CG) is a member 
of a family of iterative solvers known as Krylov 
subspace methods used primarily on large sparse linear 
systems arising from the discretization of partial 
differential equations (PDEs). CG is effective for 
systems of the form: 

Ai=b, 
where A is a square n x n sparse matrix [2]. 

CG uses successive approximations to obtain a 
more accurate solution at each step. It is considered a 
non-stationary method generating a sequence of 
conjugate (or orthogonal) vectors. These vectors are 
the gradients of a quadratic function, when minimized, 
is equivalent to solving the linear system [I]. 

Each iteration of the CG involves one Sparse 
Matrix-Vector Multiplication (SMVM), three vector 
updates, and two inner products. The SMVM is the 
time dominant computational kernel executed per 
iteration of the CG [4] [8][10]. 

For general purpose processors, the SMVM 
perfonns poorly for three primary reasons [5]. First, 
the lack of data locality causes large numbers of misses 
within the caches of the memory hierarchy. Second, 
the mUltiple load/store units on many processors have a 
tendency to miss while trying to load the same cache 
line. Finally, SMVM codes execute a large number of 
loads compared to the number of floating point 
operations they perform placing a heavy load on the 
load/store units, and on integer ALUs that compute the 
addresses. For most current generation processors, 
these load/store units are often the bottleneck in 
SMVM leaving the floating-point units underutilized. 

In general the vector-vector (DOT, DAXPY) and 
vector-matrix (SMVM) operations utilized during the 
computation of the CG exhibit poor floating point 
utilization. This is due to the high application 
ByteslFlop requirements when compared to the 
processor supplied Bytes/Flop [8][11]. 

In this work we present a comparison of various 
architectures on a common, non-preconditioned, CG 
algorithm. We acknowledge that preconditioning is of 
paramount importance for efficient implementations of 
iterative methods such as the CG; however, our focus 
is to compare the per-iteration performance of the CG 
algorithm on these platforms, not the efficacy of the 
preconditioner. 

The platforms we investigate include two hybrid 
supercomputers nodes: IBMILANL Roadrunner 
TriBlade [14], SRC-6 MAPStation [12], along with 
traditional AMD Opteron nodes. 

The TriBlade consists of an AMD Opteron blade 
and two Cell QS22 blades[ 16]. The Opteron blade 
contains two dual-core processors, while the Cell 
blades each contain two Cell eDP (enhanced Double 
Precision) processors. Each Opteron core is connected 
to an individual Cell chip via a dedicated PCIe 
connection. 

The MAPStation utilizes Intel Xeon Processors 
along with a SRC MAP processor which contains two 
user logic Xilinx FPGAs [12]. Carte [12][13], SRC's 
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Programming Environment is used giving the 
programmer access to the user programmable logic of 
the MAP processor and the microprocessor through a 
single C or Fortran program. 

The Opteron only implementation utilized a Hewlett 
Packard HP xw9400 workstation [IS]. The system 
utilized Microsoft Vista as the base Operating System 
along with Microsoft Visual C++ 2008 for 
development. 

Our implementation makes no assumptions about 
the structure of the sparse matrix with the exception 
that it is designed to process up to 7 elements per row. 
If any row contains fewer than 7 nonzero elements it 
must be padded with zeros to the full 7 elements in 
length. Due to alignment restrictions with the Cell 
processor an extra element of zero padding is required. 

Due to the small, fixed number of elements per row 
the sparse matrix ELLPACK-ITPACK [3] format was 
chosen. This format is efficient for the matrix-vector 
multiply operation and performs well on vector style 
archi tectures. 

Each of the implementations presented in this paper 
make full use of loop unrolling, and loop fusion 
whenever possible. This helps with cache reuse in the 
processor only case and allows for more efficient data 
layout, management, and vectorization in the other 
cases. 

Our FPGA based implementation makes heavy use 
of architectural features provided by both the SRC-6 
hardware architecture and the Carte Software 
development environment [12][13]. Concepts 
presented here can carryover to other FPGA based 
systems but the actual implementation presented here 
is specific to the SRC-6 MAPStation. Our previous 
work on SMVM and CG for the SRC-6 MAPStation 
provides details of the FPGA implementation and 
results [7][8][9]. 

2. Background 

2.1. CG and ELLPACK-ITPACK 

Sparse matrices, derived from PDEs, occur in many 
scientific application areas, especially Physics and 
Mechanical Engineering where a physical phenomenon 
needs to be mathematically described. PDEs are used 
to describe phenomena such as fluid flow, the growth 
of crystals, gravitation, diffusion, and the behavior of 
electromagnetic fields. 

The solution to a nonsingular linear system: 

Ai=b 
lies in a Krylov space whose dimension is the degree 
of the minimal polynomial of A. If this minimal 
polynomial of A has a low degree, a Krylov method 

has the opportunity to converge rapidly [6]. Also, 
iterative methods such as CG scale well to very large 
problem sizes, parallelize easily, and have a shorter 
time to solution compared to direct methods (e.g., 
Gaussian elimination). These are the dominant reasons 
why Krylov methods are selected for these types of 
problems and are particularly well suited for use on 
large-scale scientific simulation codes that in tum are 
defined by sparse linear systems. 
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Figure 1. ELLPACK-ITPACK Format 

In Figure I we illustrate how a simple 4x4 matrix is 
represented in ELLPACK-ITPACK format. The non­
zero elements of A_matrix are packed starting from 
left to right to generate the coefficient array A. The 
original column indices are then stored in the column 
index array ja. With ELLPACK-ITPACK, the row or 
rows with the maximum number of non-zero elements 
determines how many elements must be stored per row 
in the compressed format. In this example all rows 
with fewer than 3 non-zero entries are zero-filled to the 
full 3 elements per row. 

2.2. IBMlLANL Roadrunner Hardware 

On June 10, 2008 Roadrunner became the first 
general purpose system to reach the petaflop milestone 
becoming the world's fastest supercomputer [14]. This 
petascale computer is unique in that it leverages high­
performance commodity processors (Cell) to achieve 
extremely high levels of performance and excellent 
power efficiency [20]. 

Roadrunner is a heterogeneous cluster of clusters, 
each of which is Cell accelerated. Each compute node 
is composed of node-attached Cells, rather than a 
simple cluster of Cells. The fundamental building 
block is a Connected Unit (CU). Each CU is composed 
of 180 compute nodes and 12 110 nodes all connected 
via a high speed switch fabric. The full Roadrunner 
system is composed of 18 CUs. 

The TriBlade is the fundamental building block for 
each CU. Each TriBlade consists of an AMD Opteron 
blade along with two Cell QS22 blades. 

In all the Roadrunner system is made up of 6,500 
AMD dual core Opteron processors, 12,240 Cell 
processors with a total peak (theoretical) performance 
in excess of 1.3 petaflops. A total of 98 TeraBytes of 



memory is equally distributed between the Opteron and 
Cell nodes of the system. 

2.2.1. TriBlade 

A TriBlade is composed of an IBM LS21 Opteron 
Blade, two IBM QS22 Cell Blades, and a forth blade 
which provides the communications fabric for the 
computer node. The forth blade connects each QS22 
blade through four PCI Express x8 links to the Opteron 
blade and provides the node with an Infiniband 4x 
DDR cluster interconnect. 

2.2.2. IBM BladeCenter QS22 

The IBM BladeCenter QS22 utilizes the IBM 
PowerCell™ 8i processor. The following summarizes 
the capacities of the QS22: 
• 	 Two 3.2 GHz IBM PowerXCell 8i processors 
• 	 Up to 32 GB of PC2-6400 800 MHz DDR2 

Memory 
• 	 460 (peak) single-precision gigaflops per blade 
• 	 217 (peak) single-precision gigaflops per blade 
• 	 IBM Enhanced 110 Bridge chip 

2.2.3. Cell 	 Broadband Engine Architecture 
(PowerXCell 8i) 

The Cell Broadband Engine Architecture (CBEA) is 
a single-chip multiprocessor [21]. Nine processing 
elements operate on a shared, coherent memory as 
shown in Figure 2. Unlike current homogeneous multi­
core solutions, the CBEA utilizes a heterogeneous 
configuration consisting of two types of computing 
elements: the PowerPC Processing Elements (PPE) and 
the Synergistic Processor Element (SPE, Figure 3). A 
single CBEA processor contains one PPE and eight 
SPEs. 

The PPE is a 64-bit PowerPC architecture core and 
can run both 32-bit and 64-bit Operations Systems 
(OS) and applications. SPEs are optimized for running 
SIMD applications, and operate as independent 
processor elements, each running an individual 
application program or threads. In this configuration 
the PPE provide OS support and top-level thread 
control for an application while the SPEs provide the 
accelerated application performance. 

The SPEs access memory via Direct Memory 
Access (DMA) commands moving data and 
instructions between main storage and a private local 
memory called Local Storage (LS). All SPE instruction 
and data load/store requests access this private LS 
rather than shared main storage. This memory 
hierarchy of storage (register file, LS, main storage), 

coupled with asynchronous DMA transfers between LS 
and main storage, explicitly parallelizes computation 
with the transfers of data and instructions. 
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Figure 2. Cell Broadband Engine Architecture 
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Figure 3. Synergistic Processor Element (SPE) 

2.2.4. IBM B1adeCenter LS21 

The IBM BladeCenter LS21 supplies up to two 
dual-core 2200 series AMD Opteron processors in a 
single width card [17] . For the Roadrunner system the 
AMD Opteron HE processors run at 1.8 GHz and are 
standard low-power Opteron processors (68 W max). 
Each LS21 contains 16 GB of ECC, DDR-2 memory 
and no hard disk. 

2.3. IBMlLANL Roadrunner Software 

The compute portion of a TriBlade consists of two 
QS22 boards and a single LS21 board. Each runs its 
own operating system image and "shares" a common 
user application. 

Applications written and executed on the 
Roadrunner system are designed and written in a 
different manner than previous parallel processing 
applications. 

The maj ority of a user application runs on the AMD 
Opteron processors of the LS21. Message Passing 
Interface (MPI) is used to communicate with other 
processors in a typical Single Program, Multiple Data 
(SPMD) fashion. Computationally-complex logic is 



offloaded to a "subordinate" Cell processor when 
needed. 

Key to obtaining performance on the Roadrunner 
system is detennining which processes get off loaded 
to the Cell processors. IBM provides two techniques 
for perfonning asynchronous offioads. These 
techniques are the Data Communication and 
Synchronization (DaCS) library [18] and the 
Application Library Format (ALF) [19]. The CO 
implementation presented in this work uses DaCS 
exclusively. 

3. 	 Implementation 

All implementations utilize the CG implementation 
outlined in the pseudo-code of Figure 5. The following 
vectors and matrices are used: 
• 	 r - residual vector 
• 	 b- known vector 
• 	 d -search direction vector 
• 	 x - initial guess/current step/result vector 
• 	 q - temporary vector 
• 	 A - known, sparse, symmetric, positive-definite 

matrix 
• 	 ja- column index array (not explicitly shown in 

Figure 5) 
The value E is an error tolerance, where E <1 and 

should be set so that the algorithm terminates 

whenllr(l)11 ~ Ellr (O) II· 

All implementations take advantage of fused loops 
whenever possible. The first sets of fused loops are the 
dot product calculation (4) and the computation of the 
SMVM (4). The second sets of fused loops are the 
calculation of the dot product for the onew value (7) and 
the update of the direction vector (8). 

For the FPGA implementation substantial logic 
resources are required to implement the SMVM. As 
such, it was decided to compute the initial SMVM 
operation ( 1) on the Xeon processor of the 
MAPStation. For this reason, all implementations 
report the wall clock runtime after this operation. 

The sparse matrix has a fixed structure and all 
implementations take advantage of loop unrolling 
when computing the SMVM. The C-code in Figure 4 
illustrates the unrolling. 

A synthetic sparse system indicative of a 3D regular 
mesh using a 7 point stencil was used for testing. This 
test system contains a reasonable amount of spatial and 
temporal locality so that it doesn't unfairly bias the 
Cell, FPGA, or Opteron implementation. Although the 
synthetic sparse system implements a regular structure, 
all implementations are designed to handle any 
sparsisity pattern of the 7 elements per row. 

for (n=O; n<nrows; n++) { 
*y = A[O]*X[ja[O]] + 

A[l]*X[ja[l]] + 
A[2]*X[ja[2]] + 
A[3]*X[ja[3]] + 
A[4]*X[ja[4]] + 
A[5]*X[ja[5]] + 
A[6]*X[ja[6]] ; 

A+=8; ja+=8; II For Cell 
A+=7; ja+=7; II Others 
Y++i 

Figure 4. SMVM 

,. ~ 1i (I) 
-':~b-r 

d¢=r 
gnew ¢= rTr (2) 
go ¢= Onew 

i¢=O 
While i < i max and gnew > £ 2g odo 

q¢= Ad (3) 
a _accum ¢= d Tq (4) 
a¢=~ 

a_accum 

x ¢= x+ad (5) 

r¢= -,: -aq (6) 

Oo/d ¢= Onew 


P¢= t5new 
t5o/d 

Onew ¢= -,:T-,: (7) 

d ¢= -,: + pd (8) 
i¢=i+l 

end while 

Figure 5. CG Pseudo-Code 

A synthetic sparse system indicative of a 3D regular 
mesh using a 7 point stencil was used for testing. This 
test system contains a reasonable amount of spatial and 
temporal locality so that it doesn't unfairly bias the 
Cell, FPGA, or Opteron implementation. Although the 
synthetic sparse system implements a regular structure, 
all implementations are designed to handle any 
sparsisity pattern of the 7 elements per row. 

For testing purposes the error tolerance value (£) 
was set so that the problem would not converge to a 
solution allowing us to run for the full number of 
iterations requested. All implementations take the 
value of the system rank and i max as input parameters 
allowing control over the synthetic system size and the 
number of iterations to execute. 



3.1. Cell 

The Cell implementation focused on moving as 
much of the vector-vector and vector-matrix 
processing down to the SPU as possible. The SPUs 
operate as function accelerators for the Power 
Processing Unit (PPU). All functions, SMVM, DOT, 
NORM, and DAXPY are fully implemented by the 
SPUs. The problem is evenly divided among the 
requested number of SPU's with each SPU processing 
a contiguous block, where the block size is the system 
rank divided by the number of SPUs. The PPU handles 
the execution flow and sequencing. 

The SPU's, once started, enter an event loop 
waiting for function requests from the PPU. These 
requests, along with the required parameters, are all 
passed via the mailbox communication mechanism. 
To reduce the function call overhead the SPU vector 
functions are executed inline. The SPUs return results 
via the mailbox communication mechanism. 

Careful attention was paid to the general SPU 
programming tips IBM has published. The CG 
implementation specifically utilized the following 
recommendations: 
• 	 Local Store: Design for the local store (LS) size. 

The LS holds up to 256 KB for program, stack, 
local data structures, and DMA buffers. 

• 	 DMA Transfers: 
o 	 Use SPU-initiated DMA transfers. 
o 	 Overlap DMA with computation by 

double buffering. 
o 	 Use double buffering to hide memory 

latency. 
• 	 Loops: Unroll loops to reduce dependencies and 

increase dual-issue rates. This exploits the large 
SPU register file. 

• 	 SIMD Strategy 
• 	 Load/Store: 

o 	 Scalar loads and stores are slow, with 
long latency. 

o 	 SPUs only support quadword loads and 
store. 

o 	 Load or store scalar arrays as quad words, 
and perform your own extraction and 
insertion to eliminate load and store 
instructions. 

• 	 Branches: Eliminate nonpredicted branches. 
• 	 Multiplies: Keep array elements sized to a power­

of-2 to avoid multiplies when indexing. 
• 	 Dual-Issue: 

o 	 Choose intrinsic carefully to maximize 
dual-issue rates or reduce latencies. 

o 	 Use software pipeline loops to improve 
dual-issue rates. 

A primary concern with implementing the CG on 
the CBE is how to effectively compute the SMVM. 
The limited size of each SPU Local Store (LS) makes 
it impossible to store the source vector locally. Since 
we impose no limitation on the structure of the sparse 
matrix, the indirect addressing of the source vector 
must be dealt with if reasonable performance is to be 
achieved. 

Several approaches were tried with limited success. 
The first was a direct implementation of a gather on the 
elements of the source vector using the Memory Flow 
Controller (MFC) DMA lists. While this 
implementation has the benefit of being direct and 
easily realized, the performance was poor. The 
overhead of setting up DMAs for individual double 
precision elements is extremely high. This method also 
suffers from not allowing for reuse of previously 
gathered items. 

The preferred implementation utilized a software­
managed cache. Two different cache implementations 
were tested. The first was our purpose-designed 
software cache with the second being an 
implementation supplied by IBM in the Cell 
Broadband Engine SDK Libraries starting with 
Version 2.l. 

Both software-managed cache solutions were useful 
in boosting performance of the SMVM operation. A 
software-managed cache allows the user to control 
various aspects of the cache design. Parameters such as 
set associatively, number of lines, and line size allow 
the user to tune the performance of the cache for a 
given problem. 

While a software-managed cache has many benefits, 
it does come with certain costs. Of particular 
importance is the space utilized by the cache. Since the 
SPU Local Store holds both the code and data, one 
must be careful to balance the impacts of a large 
software-managed cache. Another difficulty with the 
software-managed cache is the computational overhead 
(additional branches) required by more complex cache 
implementations. 

In order to maximize performance of the SMVM, a 
large software-managed cache was employed. This 
cache allows the SMVM to make use of locality 
(spatialltemporal) exhibited by the structure of the 
coefficient matrix A. A direct map cache 
implementation was selected for this problem because 
it requires minimal overhead for detecting if an 
element is resident and updating is simple. 

The sparse matrix column mapping array (ja) 
defines the actual column mapping of the non-zero 
sparse elements within the original matrix. These 
indices are used to indirectly access elements from the 
source vector during the SMVM operation. The 
software cache maps these indices to a series of lines 
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of data. Each line contains a linear sequence of double 
precision elements from the source array. 

The cache is structured as 8 lines of l6Kbyte 
elements (or 2K doubles). This large line size provided 
the best performance on the test cases we used. It is 
possible that for highly unstructured data, this large 
cache line size could provide less than optimal 
performance. In these cases, the various parameters of 
the cache can be easily modified to suit the problem. In 
other cases, a completely different implementation of 
the software cache can be employed. If thrashing 
becomes an issue an n-way set associative cache could 
be useful. The cache tag management makes use of 
vector intrinsic and vector storage to improve 
performance. 

The cache is split up into two related arrays; the tag 
(tagO) and data arrays (X _ cacheO) . By defining the tag 
array as an array of vector elements, we can speed up 
operations on this array using SPU vector intrinsic 
operations. This implementation offered approximately 
a 20-30% improvement in overall performance versus 
a scalar array implementation. 

A structural diagram of the software cache is 
presented in Figure 6 below. The diagram shows the 
mapping of the index values to the various components 
of the cache. 

IBM supplies alternative versions of SPU software­
managed caches. These were evaluated, and it was 
found that these versions did not provide the same 
level of performance as our purpose-designed, direct 
map version. Another drawback of the IBM cache 
design for this problem is that the memory required for 
the cache is not directly accessible to the user code. 
Since large amounts of memory must be dedicated to 
the cache this becomes a problem when memory space 
is at a premium as is the case with the SPU LS. Since 
our direct map cache memory is global to the SPU, it 
can be reused and we make use of this to reduce our 
data storage memory footprint, thus enabling more 
code space. 

All operations required for computing the SMYM 
utilize vector intrinsic to enhance performance. It was 
found that better performance was gained by 
restructuring the way data was accessed from local 
store. By accessing the 14 operands required to 
compute two consecutive SMYM results and then 
shuffling the data to fully utilize the dual issue 
capability, performance improved by approximately 
30%. Computation and communications are fully 
double buffered and overlapped. 

Similarly to the SMYM all other vector-vector 
operations utilize vector intrinsic to enhance 
performance. They are all utilize double buffering and 
fully overlap computation and communication. 

Software Cache Structure 
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Figure 6. Software Cache 

3.2. FPGA 

Full details of the FPGA implementation of both the 
SMVM and CG can be found in our previous work 
[7][8][9]. Through careful placement of array data in 
the On-Board Memory (OBM) of the MAP processor, 
optimal use of the aggregated memory bandwidth was 
achieved. Functional parallelism was exploited to 
overlap independent computations and gain substantial 
speed-ups. 

3.3. Opteron 

The Opteron implementation makes use of the loop 
fusion and unrolling optimizations discussed earlier. 
The choice of the HP wx9400 was due to the improved 
AMD Opteron performance over the Opterons used on 
the Roadrunner TriBiade. 

4. Results 

In Figure 7 we present the results of our CG 
implemented on the hybrid Cell and FGP A platforms 
along with an Opteron only system. We have also 
included a "projected" result for the SRC-7, the latest 
machine from SRC. The SRC-7 projected results were 
calculated using only the 50% system clock rate 
increase over the SRC-6 (i.e., 150 MHz vs. 100 MHz) 
and with the assumption that the current FPGA circuit 
configuration would place and route at this new 
frequency in the new Altera Stratix II devices used on 
the SRC-7 . 



For the hybrid nodes, the effects of data transfers 
tolfrom the accelerator (FPGAICell) subsystem is 
apparent for small system size. Both Cell and FPGA 
based systems must transfer much of the system down 
to the accelerator (x,AJa,b) and return the solution 
vector once completed (x). For the Cell we utilized 
Opteron initiated DaCS RDMA transfers with pinned 
buffers on the PPU since this mode of operation has 
the best sustained performance for large data transfers. 

While both accelerators transfer data at roughly the 
same raw data rate (1.2 GB/s) from the host processor, 
the Cell based system must deal with endian issues. 
The Opteron uses a little-endian representation while 
the Cell uses big-endian. For this implementation we 
chose to utilize the PPU for doing the endian 
conversion. In this problem where we transfer a large 
chunk of data and then process for long periods the 
performance gain is negligible compared to the 
increased complexity of implementing on the SPU. 

The Cell processor obtains a significant 
performance advantage (up to 3X) over all the other 
processors (except the SRC-7 "projected" results) for 
larger problem sizes with matrix ranks of 110,592 or 
greater. This performance advantage comes from 
Cell's superior sustained memory bandwidth that we 
have determined separate from this work to be ~18 
GB/s for large matrix ranks. This sustained memory 
bandwidth was exploited via the use of double buffered 
DMAs to overlap data movement and computation, 
and via the software data cache that was tailored to the 
data requirements of the CG. The performance increase 
of Cell over the Opteron only system demonstrates the 
advantages of programmer controlled explicit data 
movement vs. the fixed caching hierarchies of 
commodity processors for this type of problem. 
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Figure 7. CG Performance 

The SRC-7 projected results show what we consider 
to be the minimum performance of the CG on this new 

FPGA platform. It is possible that the SRC-7 could 
obtain 2X or more of the performance of the SRC-6 
results because of its increased system bandwidths. 
These results are speculative at the moment, but do 
show that FPGA based systems have the potential to 
provide better performance compared to current 
commodity processors. 

5. 	 Conclusion 

In this paper we have presented an implementation 
of a non-preconditioned Conjugate Gradient algorithm 
on a hybrid Cell processor system. We have shown that 
the Cell processor is capable of significant sustained 
memory bandwidth which we exploited to obtain up to 
3X the performance compared to a commodity Opteron 
processor and an older FPGA-based system. The Cell 
processor requires the programmer to handle all data 
movements and placements explicitly which adds 
programming complexity but directly allowed for this 
performance increase. 
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