
LA-UR- DC(-DG;;;'~~
Approved for public release;
distribution is unlimited.

Title: I Non-Preconditioned Conjugate Gradient on Cell and FPGA
based Hybrid Supercomputer Nodes

Author(s): I David DuBois, Andrew DuBois, Thomas Boorman, Carolyn
Connor

Intended for: I 	 The Seventeenth Annual IEEE Symposium on
Field-Programmable Custom Computing Machines
2009

Los Alamos
NATIONAL LABORATORY

=~- EST. 194] --­

Los Alamos National Laboratory, an aHirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution , or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher'S right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Non-Preconditioned Conjugate Gradient on Cell and FPGA based Hybrid

Supercomputer Nodes

David DuBois, Andrew DuBois, Thomas Boorman, Carolyn Connor
Los Alamos National Laboratory

dhd@lanl.gov, ajd@lanl.gov, tmb@lanl.gov, connor@lanl.gov

Abstract

This work presents a detailed implementation of a
double precision, Non-Preconditioned, Conjugate
Gradient algorithm on a Roadrunner heterogeneous
supercomputer node. These nodes utilize the Cell
Broadband Engine Architecture™ in conjunction with
x86 Opteron™ processors from AMD. We implement a
common Conjugate Gradient algorithm, on a variety of
systems, to compare and contrast performance.
Implementation results are presented for the
Roadrunner hybrid supercomputer, SRC Computers,
Inc. MAPStation SRC-6 FPGA enhanced hybrid
supercomputer, and AMD Opteron only. In all hybrid
implementations wall clock time is measured,
including all transfer overhead and compute timings.

1. Introduction

The Conjugate Gradient Method (CG) is a member
of a family of iterative solvers known as Krylov
subspace methods used primarily on large sparse linear
systems arising from the discretization of partial
differential equations (PDEs). CG is effective for
systems of the form:

Ai=b,
where A is a square n x n sparse matrix [2].

CG uses successive approximations to obtain a
more accurate solution at each step. It is considered a
non-stationary method generating a sequence of
conjugate (or orthogonal) vectors. These vectors are
the gradients of a quadratic function, when minimized,
is equivalent to solving the linear system [I].

Each iteration of the CG involves one Sparse
Matrix-Vector Multiplication (SMVM), three vector
updates, and two inner products. The SMVM is the
time dominant computational kernel executed per
iteration of the CG [4] [8][10].

For general purpose processors, the SMVM
perfonns poorly for three primary reasons [5]. First,
the lack of data locality causes large numbers of misses
within the caches of the memory hierarchy. Second,
the mUltiple load/store units on many processors have a
tendency to miss while trying to load the same cache
line. Finally, SMVM codes execute a large number of
loads compared to the number of floating point
operations they perform placing a heavy load on the
load/store units, and on integer ALUs that compute the
addresses. For most current generation processors,
these load/store units are often the bottleneck in
SMVM leaving the floating-point units underutilized.

In general the vector-vector (DOT, DAXPY) and
vector-matrix (SMVM) operations utilized during the
computation of the CG exhibit poor floating point
utilization. This is due to the high application
ByteslFlop requirements when compared to the
processor supplied Bytes/Flop [8][11].

In this work we present a comparison of various
architectures on a common, non-preconditioned, CG
algorithm. We acknowledge that preconditioning is of
paramount importance for efficient implementations of
iterative methods such as the CG; however, our focus
is to compare the per-iteration performance of the CG
algorithm on these platforms, not the efficacy of the
preconditioner.

The platforms we investigate include two hybrid
supercomputers nodes: IBMILANL Roadrunner
TriBlade [14], SRC-6 MAPStation [12], along with
traditional AMD Opteron nodes.

The TriBlade consists of an AMD Opteron blade
and two Cell QS22 blades[16]. The Opteron blade
contains two dual-core processors, while the Cell
blades each contain two Cell eDP (enhanced Double
Precision) processors. Each Opteron core is connected
to an individual Cell chip via a dedicated PCIe
connection.

The MAPStation utilizes Intel Xeon Processors
along with a SRC MAP processor which contains two
user logic Xilinx FPGAs [12]. Carte [12][13], SRC's

mailto:connor@lanl.gov
mailto:tmb@lanl.gov
mailto:ajd@lanl.gov
mailto:dhd@lanl.gov

Programming Environment is used giving the
programmer access to the user programmable logic of
the MAP processor and the microprocessor through a
single C or Fortran program.

The Opteron only implementation utilized a Hewlett
Packard HP xw9400 workstation [IS]. The system
utilized Microsoft Vista as the base Operating System
along with Microsoft Visual C++ 2008 for
development.

Our implementation makes no assumptions about
the structure of the sparse matrix with the exception
that it is designed to process up to 7 elements per row.
If any row contains fewer than 7 nonzero elements it
must be padded with zeros to the full 7 elements in
length. Due to alignment restrictions with the Cell
processor an extra element of zero padding is required.

Due to the small, fixed number of elements per row
the sparse matrix ELLPACK-ITPACK [3] format was
chosen. This format is efficient for the matrix-vector
multiply operation and performs well on vector style
archi tectures.

Each of the implementations presented in this paper
make full use of loop unrolling, and loop fusion
whenever possible. This helps with cache reuse in the
processor only case and allows for more efficient data
layout, management, and vectorization in the other
cases.

Our FPGA based implementation makes heavy use
of architectural features provided by both the SRC-6
hardware architecture and the Carte Software
development environment [12][13]. Concepts
presented here can carryover to other FPGA based
systems but the actual implementation presented here
is specific to the SRC-6 MAPStation. Our previous
work on SMVM and CG for the SRC-6 MAPStation
provides details of the FPGA implementation and
results [7][8][9].

2. Background

2.1. CG and ELLPACK-ITPACK

Sparse matrices, derived from PDEs, occur in many
scientific application areas, especially Physics and
Mechanical Engineering where a physical phenomenon
needs to be mathematically described. PDEs are used
to describe phenomena such as fluid flow, the growth
of crystals, gravitation, diffusion, and the behavior of
electromagnetic fields.

The solution to a nonsingular linear system:

Ai=b
lies in a Krylov space whose dimension is the degree
of the minimal polynomial of A. If this minimal
polynomial of A has a low degree, a Krylov method

has the opportunity to converge rapidly [6]. Also,
iterative methods such as CG scale well to very large
problem sizes, parallelize easily, and have a shorter
time to solution compared to direct methods (e.g.,
Gaussian elimination). These are the dominant reasons
why Krylov methods are selected for these types of
problems and are particularly well suited for use on
large-scale scientific simulation codes that in tum are
defined by sparse linear systems.

0201 II 201 II 30

3 4 0 51 13 4 51 II 2 4
A matrix =1 IA =1 Ija =

6 7 0 2 06 7 0 0

8 000 800 o 0

Figure 1. ELLPACK-ITPACK Format

In Figure I we illustrate how a simple 4x4 matrix is
represented in ELLPACK-ITPACK format. The non­
zero elements of A_matrix are packed starting from
left to right to generate the coefficient array A. The
original column indices are then stored in the column
index array ja. With ELLPACK-ITPACK, the row or
rows with the maximum number of non-zero elements
determines how many elements must be stored per row
in the compressed format. In this example all rows
with fewer than 3 non-zero entries are zero-filled to the
full 3 elements per row.

2.2. IBMlLANL Roadrunner Hardware

On June 10, 2008 Roadrunner became the first
general purpose system to reach the petaflop milestone
becoming the world's fastest supercomputer [14]. This
petascale computer is unique in that it leverages high­
performance commodity processors (Cell) to achieve
extremely high levels of performance and excellent
power efficiency [20].

Roadrunner is a heterogeneous cluster of clusters,
each of which is Cell accelerated. Each compute node
is composed of node-attached Cells, rather than a
simple cluster of Cells. The fundamental building
block is a Connected Unit (CU). Each CU is composed
of 180 compute nodes and 12 110 nodes all connected
via a high speed switch fabric. The full Roadrunner
system is composed of 18 CUs.

The TriBlade is the fundamental building block for
each CU. Each TriBlade consists of an AMD Opteron
blade along with two Cell QS22 blades.

In all the Roadrunner system is made up of 6,500
AMD dual core Opteron processors, 12,240 Cell
processors with a total peak (theoretical) performance
in excess of 1.3 petaflops. A total of 98 TeraBytes of

memory is equally distributed between the Opteron and
Cell nodes of the system.

2.2.1. TriBlade

A TriBlade is composed of an IBM LS21 Opteron
Blade, two IBM QS22 Cell Blades, and a forth blade
which provides the communications fabric for the
computer node. The forth blade connects each QS22
blade through four PCI Express x8 links to the Opteron
blade and provides the node with an Infiniband 4x
DDR cluster interconnect.

2.2.2. IBM BladeCenter QS22

The IBM BladeCenter QS22 utilizes the IBM
PowerCell™ 8i processor. The following summarizes
the capacities of the QS22:
• 	 Two 3.2 GHz IBM PowerXCell 8i processors
• 	 Up to 32 GB of PC2-6400 800 MHz DDR2

Memory
• 	 460 (peak) single-precision gigaflops per blade
• 	 217 (peak) single-precision gigaflops per blade
• 	 IBM Enhanced 110 Bridge chip

2.2.3. Cell 	 Broadband Engine Architecture
(PowerXCell 8i)

The Cell Broadband Engine Architecture (CBEA) is
a single-chip multiprocessor [21]. Nine processing
elements operate on a shared, coherent memory as
shown in Figure 2. Unlike current homogeneous multi­
core solutions, the CBEA utilizes a heterogeneous
configuration consisting of two types of computing
elements: the PowerPC Processing Elements (PPE) and
the Synergistic Processor Element (SPE, Figure 3). A
single CBEA processor contains one PPE and eight
SPEs.

The PPE is a 64-bit PowerPC architecture core and
can run both 32-bit and 64-bit Operations Systems
(OS) and applications. SPEs are optimized for running
SIMD applications, and operate as independent
processor elements, each running an individual
application program or threads. In this configuration
the PPE provide OS support and top-level thread
control for an application while the SPEs provide the
accelerated application performance.

The SPEs access memory via Direct Memory
Access (DMA) commands moving data and
instructions between main storage and a private local
memory called Local Storage (LS). All SPE instruction
and data load/store requests access this private LS
rather than shared main storage. This memory
hierarchy of storage (register file, LS, main storage),

coupled with asynchronous DMA transfers between LS
and main storage, explicitly parallelizes computation
with the transfers of data and instructions.

: X20 _~_..nc
, . , ,
, ., ,
• COR2'
:,-xc...ei~:

~""~:"::':':":;~::':8' '::
. ,..
• . .-_._-_ -_··· __ ··_·w··········· ·

WE 	 PowerPC~ra.-..

IU.M Anovoo. AIocation~1
[)[ft =.:.-~~::..~
lEI 	 CeI~£.w,iM""~

8PE 	 ~PIac:.uora.1IWf'I. _ a.-...~au.

X2D 	 XJO to DCA2",
FWO 	 PlMtlutAutO.. xtO Anrrbu ~ K) (XIOJ Ct«
IOIF Kl_

wtC 	,~c.:.r.oItl

Figure 2. Cell Broadband Engine Architecture

Synergistic PIoc:...", Eltmont (!PE)

S~I9'tic P,C<eOOOf Un. (SPU)

ILoo>l Slo"HLS) I

Men'lOry Flow Controller (MFe)

ID~IA Con~oIl., I

Figure 3. Synergistic Processor Element (SPE)

2.2.4. IBM B1adeCenter LS21

The IBM BladeCenter LS21 supplies up to two
dual-core 2200 series AMD Opteron processors in a
single width card [17] . For the Roadrunner system the
AMD Opteron HE processors run at 1.8 GHz and are
standard low-power Opteron processors (68 W max).
Each LS21 contains 16 GB of ECC, DDR-2 memory
and no hard disk.

2.3. IBMlLANL Roadrunner Software

The compute portion of a TriBlade consists of two
QS22 boards and a single LS21 board. Each runs its
own operating system image and "shares" a common
user application.

Applications written and executed on the
Roadrunner system are designed and written in a
different manner than previous parallel processing
applications.

The maj ority of a user application runs on the AMD
Opteron processors of the LS21. Message Passing
Interface (MPI) is used to communicate with other
processors in a typical Single Program, Multiple Data
(SPMD) fashion. Computationally-complex logic is

offloaded to a "subordinate" Cell processor when
needed.

Key to obtaining performance on the Roadrunner
system is detennining which processes get off loaded
to the Cell processors. IBM provides two techniques
for perfonning asynchronous offioads. These
techniques are the Data Communication and
Synchronization (DaCS) library [18] and the
Application Library Format (ALF) [19]. The CO
implementation presented in this work uses DaCS
exclusively.

3. 	 Implementation

All implementations utilize the CG implementation
outlined in the pseudo-code of Figure 5. The following
vectors and matrices are used:
• 	 r - residual vector
• 	 b- known vector
• 	 d -search direction vector
• 	 x - initial guess/current step/result vector
• 	 q - temporary vector
• 	 A - known, sparse, symmetric, positive-definite

matrix
• 	 ja- column index array (not explicitly shown in

Figure 5)
The value E is an error tolerance, where E <1 and

should be set so that the algorithm terminates

whenllr(l)11 ~ Ellr (O) II·

All implementations take advantage of fused loops
whenever possible. The first sets of fused loops are the
dot product calculation (4) and the computation of the
SMVM (4). The second sets of fused loops are the
calculation of the dot product for the onew value (7) and
the update of the direction vector (8).

For the FPGA implementation substantial logic
resources are required to implement the SMVM. As
such, it was decided to compute the initial SMVM
operation (1) on the Xeon processor of the
MAPStation. For this reason, all implementations
report the wall clock runtime after this operation.

The sparse matrix has a fixed structure and all
implementations take advantage of loop unrolling
when computing the SMVM. The C-code in Figure 4
illustrates the unrolling.

A synthetic sparse system indicative of a 3D regular
mesh using a 7 point stencil was used for testing. This
test system contains a reasonable amount of spatial and
temporal locality so that it doesn't unfairly bias the
Cell, FPGA, or Opteron implementation. Although the
synthetic sparse system implements a regular structure,
all implementations are designed to handle any
sparsisity pattern of the 7 elements per row.

for (n=O; n<nrows; n++) {
*y = A[O]*X[ja[O]] +

A[l]*X[ja[l]] +
A[2]*X[ja[2]] +
A[3]*X[ja[3]] +
A[4]*X[ja[4]] +
A[5]*X[ja[5]] +
A[6]*X[ja[6]] ;

A+=8; ja+=8; II For Cell
A+=7; ja+=7; II Others
Y++i

Figure 4. SMVM

,. ~ 1i (I)
-':~b-r

d¢=r
gnew ¢= rTr (2)
go ¢= Onew

i¢=O
While i < i max and gnew > £ 2g odo

q¢= Ad (3)
a _accum ¢= d Tq (4)
a¢=~

a_accum

x ¢= x+ad (5)

r¢= -,: -aq (6)

Oo/d ¢= Onew

P¢= t5new
t5o/d

Onew ¢= -,:T-,: (7)

d ¢= -,: + pd (8)
i¢=i+l

end while

Figure 5. CG Pseudo-Code

A synthetic sparse system indicative of a 3D regular
mesh using a 7 point stencil was used for testing. This
test system contains a reasonable amount of spatial and
temporal locality so that it doesn't unfairly bias the
Cell, FPGA, or Opteron implementation. Although the
synthetic sparse system implements a regular structure,
all implementations are designed to handle any
sparsisity pattern of the 7 elements per row.

For testing purposes the error tolerance value (£)
was set so that the problem would not converge to a
solution allowing us to run for the full number of
iterations requested. All implementations take the
value of the system rank and i max as input parameters
allowing control over the synthetic system size and the
number of iterations to execute.

3.1. Cell

The Cell implementation focused on moving as
much of the vector-vector and vector-matrix
processing down to the SPU as possible. The SPUs
operate as function accelerators for the Power
Processing Unit (PPU). All functions, SMVM, DOT,
NORM, and DAXPY are fully implemented by the
SPUs. The problem is evenly divided among the
requested number of SPU's with each SPU processing
a contiguous block, where the block size is the system
rank divided by the number of SPUs. The PPU handles
the execution flow and sequencing.

The SPU's, once started, enter an event loop
waiting for function requests from the PPU. These
requests, along with the required parameters, are all
passed via the mailbox communication mechanism.
To reduce the function call overhead the SPU vector
functions are executed inline. The SPUs return results
via the mailbox communication mechanism.

Careful attention was paid to the general SPU
programming tips IBM has published. The CG
implementation specifically utilized the following
recommendations:
• 	 Local Store: Design for the local store (LS) size.

The LS holds up to 256 KB for program, stack,
local data structures, and DMA buffers.

• 	 DMA Transfers:
o 	 Use SPU-initiated DMA transfers.
o 	 Overlap DMA with computation by

double buffering.
o 	 Use double buffering to hide memory

latency.
• 	 Loops: Unroll loops to reduce dependencies and

increase dual-issue rates. This exploits the large
SPU register file.

• 	 SIMD Strategy
• 	 Load/Store:

o 	 Scalar loads and stores are slow, with
long latency.

o 	 SPUs only support quadword loads and
store.

o 	 Load or store scalar arrays as quad words,
and perform your own extraction and
insertion to eliminate load and store
instructions.

• 	 Branches: Eliminate nonpredicted branches.
• 	 Multiplies: Keep array elements sized to a power­

of-2 to avoid multiplies when indexing.
• 	 Dual-Issue:

o 	 Choose intrinsic carefully to maximize
dual-issue rates or reduce latencies.

o 	 Use software pipeline loops to improve
dual-issue rates.

A primary concern with implementing the CG on
the CBE is how to effectively compute the SMVM.
The limited size of each SPU Local Store (LS) makes
it impossible to store the source vector locally. Since
we impose no limitation on the structure of the sparse
matrix, the indirect addressing of the source vector
must be dealt with if reasonable performance is to be
achieved.

Several approaches were tried with limited success.
The first was a direct implementation of a gather on the
elements of the source vector using the Memory Flow
Controller (MFC) DMA lists. While this
implementation has the benefit of being direct and
easily realized, the performance was poor. The
overhead of setting up DMAs for individual double
precision elements is extremely high. This method also
suffers from not allowing for reuse of previously
gathered items.

The preferred implementation utilized a software­
managed cache. Two different cache implementations
were tested. The first was our purpose-designed
software cache with the second being an
implementation supplied by IBM in the Cell
Broadband Engine SDK Libraries starting with
Version 2.l.

Both software-managed cache solutions were useful
in boosting performance of the SMVM operation. A
software-managed cache allows the user to control
various aspects of the cache design. Parameters such as
set associatively, number of lines, and line size allow
the user to tune the performance of the cache for a
given problem.

While a software-managed cache has many benefits,
it does come with certain costs. Of particular
importance is the space utilized by the cache. Since the
SPU Local Store holds both the code and data, one
must be careful to balance the impacts of a large
software-managed cache. Another difficulty with the
software-managed cache is the computational overhead
(additional branches) required by more complex cache
implementations.

In order to maximize performance of the SMVM, a
large software-managed cache was employed. This
cache allows the SMVM to make use of locality
(spatialltemporal) exhibited by the structure of the
coefficient matrix A. A direct map cache
implementation was selected for this problem because
it requires minimal overhead for detecting if an
element is resident and updating is simple.

The sparse matrix column mapping array (ja)
defines the actual column mapping of the non-zero
sparse elements within the original matrix. These
indices are used to indirectly access elements from the
source vector during the SMVM operation. The
software cache maps these indices to a series of lines

I

of data. Each line contains a linear sequence of double
precision elements from the source array.

The cache is structured as 8 lines of l6Kbyte
elements (or 2K doubles). This large line size provided
the best performance on the test cases we used. It is
possible that for highly unstructured data, this large
cache line size could provide less than optimal
performance. In these cases, the various parameters of
the cache can be easily modified to suit the problem. In
other cases, a completely different implementation of
the software cache can be employed. If thrashing
becomes an issue an n-way set associative cache could
be useful. The cache tag management makes use of
vector intrinsic and vector storage to improve
performance.

The cache is split up into two related arrays; the tag
(tagO) and data arrays (X _ cacheO) . By defining the tag
array as an array of vector elements, we can speed up
operations on this array using SPU vector intrinsic
operations. This implementation offered approximately
a 20-30% improvement in overall performance versus
a scalar array implementation.

A structural diagram of the software cache is
presented in Figure 6 below. The diagram shows the
mapping of the index values to the various components
of the cache.

IBM supplies alternative versions of SPU software­
managed caches. These were evaluated, and it was
found that these versions did not provide the same
level of performance as our purpose-designed, direct
map version. Another drawback of the IBM cache
design for this problem is that the memory required for
the cache is not directly accessible to the user code.
Since large amounts of memory must be dedicated to
the cache this becomes a problem when memory space
is at a premium as is the case with the SPU LS. Since
our direct map cache memory is global to the SPU, it
can be reused and we make use of this to reduce our
data storage memory footprint, thus enabling more
code space.

All operations required for computing the SMYM
utilize vector intrinsic to enhance performance. It was
found that better performance was gained by
restructuring the way data was accessed from local
store. By accessing the 14 operands required to
compute two consecutive SMYM results and then
shuffling the data to fully utilize the dual issue
capability, performance improved by approximately
30%. Computation and communications are fully
double buffered and overlapped.

Similarly to the SMYM all other vector-vector
operations utilize vector intrinsic to enhance
performance. They are all utilize double buffering and
fully overlap computation and communication.

Software Cache Structure

31

I TAG

TAGYaJo

Tag Array - TagO r± I
I...
 •r;­
~SLOT=O ~ ~ "2I-­...
 r,-'- ­ r-;-
~

'e~ SLOT=l ~ r.-~
~ ~ ~

~

jaln) index value

t,. 13 12 I."
1M _/I11IIIIIIDf I
~

Lft_ \\tJIj-I

•
•
•
•
•
•
•
•

I
1 2 "'(lMDoIIoII-1 2 -1 2 -1 2 -1 2

1 2 -
1 2 -
1 2 IN7(lMDUIooI

DATA Cache - X_cacheO

2M 2M 2l1li

2M ..2M

2l1li

2M

2M

-
2M ..2M 2l1li

2M

2M 2M 2l1li

2M 2M 2l1li

2M 2M 2l1li

Figure 6. Software Cache

3.2. FPGA

Full details of the FPGA implementation of both the
SMVM and CG can be found in our previous work
[7][8][9]. Through careful placement of array data in
the On-Board Memory (OBM) of the MAP processor,
optimal use of the aggregated memory bandwidth was
achieved. Functional parallelism was exploited to
overlap independent computations and gain substantial
speed-ups.

3.3. Opteron

The Opteron implementation makes use of the loop
fusion and unrolling optimizations discussed earlier.
The choice of the HP wx9400 was due to the improved
AMD Opteron performance over the Opterons used on
the Roadrunner TriBiade.

4. Results

In Figure 7 we present the results of our CG
implemented on the hybrid Cell and FGP A platforms
along with an Opteron only system. We have also
included a "projected" result for the SRC-7, the latest
machine from SRC. The SRC-7 projected results were
calculated using only the 50% system clock rate
increase over the SRC-6 (i.e., 150 MHz vs. 100 MHz)
and with the assumption that the current FPGA circuit
configuration would place and route at this new
frequency in the new Altera Stratix II devices used on
the SRC-7 .

For the hybrid nodes, the effects of data transfers
tolfrom the accelerator (FPGAICell) subsystem is
apparent for small system size. Both Cell and FPGA
based systems must transfer much of the system down
to the accelerator (x,AJa,b) and return the solution
vector once completed (x). For the Cell we utilized
Opteron initiated DaCS RDMA transfers with pinned
buffers on the PPU since this mode of operation has
the best sustained performance for large data transfers.

While both accelerators transfer data at roughly the
same raw data rate (1.2 GB/s) from the host processor,
the Cell based system must deal with endian issues.
The Opteron uses a little-endian representation while
the Cell uses big-endian. For this implementation we
chose to utilize the PPU for doing the endian
conversion. In this problem where we transfer a large
chunk of data and then process for long periods the
performance gain is negligible compared to the
increased complexity of implementing on the SPU.

The Cell processor obtains a significant
performance advantage (up to 3X) over all the other
processors (except the SRC-7 "projected" results) for
larger problem sizes with matrix ranks of 110,592 or
greater. This performance advantage comes from
Cell's superior sustained memory bandwidth that we
have determined separate from this work to be ~18
GB/s for large matrix ranks. This sustained memory
bandwidth was exploited via the use of double buffered
DMAs to overlap data movement and computation,
and via the software data cache that was tailored to the
data requirements of the CG. The performance increase
of Cell over the Opteron only system demonstrates the
advantages of programmer controlled explicit data
movement vs. the fixed caching hierarchies of
commodity processors for this type of problem.

CG Performance
1 "')0

ll')Q

- SRC·7

I~)o

0''''

!
'" 60Q

4i)O •
,J:.)(l

'11. 40" BU.. U768 UO~9 1. l 6HH sumJiG 1-&01(91.8

MotrUtR.nlt

Figure 7. CG Performance

The SRC-7 projected results show what we consider
to be the minimum performance of the CG on this new

FPGA platform. It is possible that the SRC-7 could
obtain 2X or more of the performance of the SRC-6
results because of its increased system bandwidths.
These results are speculative at the moment, but do
show that FPGA based systems have the potential to
provide better performance compared to current
commodity processors.

5. 	 Conclusion

In this paper we have presented an implementation
of a non-preconditioned Conjugate Gradient algorithm
on a hybrid Cell processor system. We have shown that
the Cell processor is capable of significant sustained
memory bandwidth which we exploited to obtain up to
3X the performance compared to a commodity Opteron
processor and an older FPGA-based system. The Cell
processor requires the programmer to handle all data
movements and placements explicitly which adds
programming complexity but directly allowed for this
performance increase.

6. 	 References

[I] 	 Barrett, R., Berry, M., Chan, T., Demmel, 1., Donato, 1.,
Dongarra, 1., Eijkhout, V., Pozo, R., Romine, c., and
Yen der Vorst, H., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM,
1994, Philadelphia, P A.

[2] 	 Fettig, Kwok, Saied. "Scaling Behavior of Linear
Solvers on Large Linux Clusters," National Center for
Supercomputing Applications at the University of
Illinois at Urbana-Champaign, 2002.

[3] 	 Mills, R.T., D'Azevedo, E.F., and M.R. Fahey.,
"Progress Towards Optimizing the PETSc Numerical
Toolkit on the Cray XI," Cray Users Group, May, 2005.
Available:
http ://www .ccS.orn I.gov/-rm i lls/pu bslcllg2005 .od f

[4] 	 Shewchuk, 1. R. 1994 An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain.
Technical Report. UMI Order Number: CS-94-125.,
Carnegie Mellon University.

[5] 	 Toledo, S., "Improving Memory-System Performance
of Sparse Matrix-Vector Multiplication," IBM Journal
of Research and Development, 41 (6):711-725, 1997.

[6] 	 lise, Ipsen and Meyer, "The Idea Behind Krylov
Methods," American Mathematical Monthly,
volume 105, number 10, pages 889-899, 1998.

[7] 	 DuBois, D., DuBois, A., Boorman, T., Connor, c.,
Poole, S., An Implementation of the Conjugate

Gradient Algorithm on FPGAs. In Proceedings of
the 2008 IEEE Symposium on Field­
Programmable Custom Computing Machines
(FCCM 2008) (Stanford, Palo Alto, California,
USA April 14-15, 2008)

[8] 	 DuBois, D., DuBois, A, Connor, c., Poole, S.,
SMVM. In Proceedings of the 2008 IEEE
Symposium on Field-Programmable Custom
Computing Machines (FCCM 2008) (Stanford,
Palo Alto, California, USA. April 14-15, 2008)

[9] 	 DuBois, D., DuBois, A, Boorman, T., Connor, c.,
Poole, S., An Implementation of the
SMVMJConjugate Gradient Algorithm on
FPGAs.TRETTS SFR

[10] deLorimier, M. 	 and DeHon, A, "Floating-point
Sparse Matrix-vector MUltiply for FPGAs," In
FPGA '05: Proceedings of the 2005 ACMJSIGDA
13th International Symposium on Field­
Programmable Gate Arrays, pages 75-85, New
York, NY, USA, 2005 . ACM Press.

[1)] Welle in, G., Hager, G., Zeiser, T., "Basic principles
of modem processors: Memory Hierarchy
Optimization of Data Access." (April, 2005).
Avalable:
http://www.rrze.unierlangen.de/ausbildung/vorlesu
ngenl04-25 2005 ptfs.pdf

[12] SRC Computers, Inc, 	 Product Page, July, 1999­
2008. Available:
http: //www.srccomp.comlproductslproducts.asp

[13] SRC 	 Computers, Inc. SRC C Programming
Environment v2.1 Guide. SRC Computers, Inc.
August 31, 2005.

[14] Komornicki, A., Mullen-Schulz, 	G., Roadrunner:
Hardware and Software Overview, IBM Redbook
Form Number:REDP-4477-00, (January 23,
2009). Available :
http://www.rcdbooks.ibm.comlabstracts/redp44 77.
html

[15] Hewlett-Packard Development Company, L.P., HP
xw9400 Workstation Product information
datasheet, (October 2008) . Available:
http://hl00)O.wwwl.hp.comlwwpc/pscmiscivac/u
slproduct pdfs/xw9400 datasheet Oct08.pdf

[16] IBM 	 Corporation, BladeCenter QS22 Product
Datasheet, (2008). Available:
(ftp:l/ftp.software .ibm.comicommonlssi/pmlsp/nlb
Id030 19usenIBLD03019USEN.PDF

[17] IBM 	 Corporation, BladeCenter LS21 Product
Datasheet, (2008). Available: http: //www­
03.ibm.comlsystemslbladecenter/hardware/servers
/ls21 /specs.html

[18] IBM Corporation, DaCS Hybrid-x86 Prog Guide
API v3.0, (10/19/2007). Available: http://www­
ol.ibm.comlchips/techlib/techl ib.nsf/techdocsl AD
FED 392 EOED2D4C0025 73 53006B2 744/$filelDa
CS Hybrid-x86 Prog Guide API v3 .0.pdf

[19] IBM Corporation, ALF for Cell BE Programmer's
Guide and API Reference, (10/19/2007).
Available: http://www­
ol.ibm.comlchips/techlib/techlib.nsfftechdocs/418
38EDB5A) 5CCCD002573530063D465/$file/ALF

Prog Guide API v3.0.pdf

[20] Los 	 Alamos National Laboratory, Roadrunner-
Science at the Petascale, (October
2008).Available:
http://www.lanl.gov/asc/docs/rr_factsheet.pdf

[21] IBM 	 Corporation, Cell Broadband Engine
Programming Handbook, Including the
PowerXCell 8i Processor, (May 12, 2008).
Available: http: //www­
ol.ibm.comlchips/techlib/techlib.nsf/techdocs!l74
1 C509C5F64B3300257460006FD68D/$file/CeIlB
E PXCell Handbook v1.11 12May08 pub. pdf

http://www
http://www.lanl.gov/asc/docs/rr_factsheet.pdf
http://www
http://www
http://www
ftp:l/ftp.software.ibm.comicommonlssi/pmlsp/nlb
http://hl00)O.wwwl.hp.comlwwpc/pscmiscivac/u
http://www.rcdbooks.ibm.comlabstracts/redp44
http://www.srccomp.comlproductslproducts.asp
http://www.rrze.unierlangen.de/ausbildung/vorlesu

