
LA-UR- CIl-fJO;;l8 0 

Approved for public release; 
distribution is unlimited. 

Title: I In-situ FPGA Debug Driven by On-Board Microcontroller 

Author(s): I Zachary K. Baker, CCS-1 

Intended for: I 	 IEEE Symposium on Field-Programmable Custom Computing 
Machines 
April 6-8, 2009 
Napa, CA 

-QAlamos 
NATIONAL LABORATORY 
--- EST.1943 --­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



In-situ FPGA Debug Driven by On-Board Microcontroller 

Zachary K. Baker 

Los Alamos National Laboratory 


Los Alamos, NM 87545 

Email: {zbaker}@lanl.gov 


Abstract 

Often we are faced with the situation that the be­
havior of a circuit changes in an unpredictable way 
when chassis cover is attached or the system is not 
easily accessible. For instance, in a deployed envi­
ronment, such as space, hardware can malfunction in 
unpredictable ways. What can a designer do to as­
certain the cause of the problem? Register interroga­
tions only go so far, and sometimes the problem being 
debugged is register transactions themselves, or the 
problem lies in FPGA programming. This work pro­
vides a solution to this; namely, the ability to drive a 
JTAG chain via an on-board microcontroller and use 
a simple clone of the Xilinx Chipscope core without a 
Xilinx JTAG cable or any external interfaces required. 
We have demonstrated the functionality of the proto­
type system using a Xilinx Spartan 3E FPGA and a Mi­
crochip PIC18j2550 microcontroller. This paper will 
discuss the implementation details as well as present 
case studies describing how the tools have aided satel­
lite hardware development. 

1 Introduction 

Visibility in a design is a priceless commodity dur­
ing debug. Providing that visibility outside the normal 
channels of a register system and application behav­
ior can be the difference between unexplained failures 
and mission success. At Los Alamos National Lab, 
aggressive launch schedules force engineers to solve 
problems quickly, thus requiring unique tools. One of 
the key tools we have recently found to be invaluable 
is a suite a JTAG tools to provide in-situ debug. 

We provide a variety of tools to the debug engineer 

to provide an increased amount of debug control and 
visibility than would otherwise be available. This is 
possible because we can read and write an arbitrary 
address space. This allows us to set the system to a 
particular state, set parameters, trigger actions, as well 
as provide programmed input/output (PIO) to allow for 
access to a secondary, indirect address space. This is 
particularly useful for debugging large data-driven ap­
plications. For instance, through PIO, we provide ac­
cess to the entire seven banks of QDR SRAM in our 
system from the linux command line. Because it is 
meant for interactive debug, the slow JTAG debug con­
nection is not a problem - the system runs more than 
fast enough for human use. 

In order to accomplish this, we implement a JTAG 
controller in an embedded controller. In our case, we 
assume this is a SPARC implemented in a RTAX 1000 
such that we have a radiation-tolerant processor pro­
viding reliable operation. The controller implements 
software routines to run the JTAG 110 pins. The soft­
ware is based on Xilinx Application Note #058, which 
demonstrates how to implement a SVF file player (Se­
rial Vector Format), which can be used to query m 
codes or program the FPGA. This functionality is ex­
tended to support the extended user-mode JTAG com­
mands required to support the debug core. Because the 
set of extended commands is built within the normal 
TAP controller architecture, it is a minimal extension 
to the original source (see Figure 1). 

2 Implementation Details 

The internal debug core resides in user logic. Thus, 
the FPGA must be programmed for the internal debug 
to function, however, mCODE and FPGA program­

mailto:zbaker}@lanl.gov


ming can be accomplished through the JTAG con­
troller without the internal code in place. The debug 
core is based on the Xilinx BSCAN component, which 
gives user logic access to the boundary scan. The ini­
tial code implemented this functionality was based on 
the Gnat application note, but extended significantly to 
include read/write register access as well as the more 
elaborate triggering and snapshot system required for 
the internal digital logic analyzer. The Gnat applica­
tion note includes firmware examples that proved to be 
unreliable in practice. This code was extended to im­
prove its reliability using error correction among other 
techniques. 

In all recent Xilinx Spartan and Virtex devices, 
there are at least two BSCAN components. We use 
the second component in the chain, such that the first 
is available for other debug tools. For instance, Xilinx 
Chipscope uses first component, thus, we can simul­
taneously use both Chipscope and our tools. Because 
the Xilinx core is not as flexible in regards to its abil­
ity to both write and read user registers, it is sensible 
to instantiate both cores in a system to cover difficult 
debugging chores. 

Our debug core is based on a simple triggering sys­
tem, which includes a trigger pattern, a trigger mask, 
and an arm bit. The snapshot system is based on 
a Block-RAM along with a double-registered input. 
This allows for captures that should not negatively af­
fect the timing behavior of a design. After the trig­
ger and trigger mask is set, the arm bit is set. The 
JTAG controller must then poll the done bit to deter­
mine when to download the capture. Download is ac­
complished through simple PIO on the snapshot buffer. 

Figure 3 shows an example capture of a counter 
attached to the inputs of the debug core. The trig­
ger was set to x"OOOOOOO I" and the mask was set to 
x"FFFFFFFF", which means that all of the input bits 
must match the input trigger pattern. The output dis­
play mechanism is determined entirely by the software 
implementation downstream of the JTAG controller; in 
our case, the output data is dumped to an Octave dis­
play package. 

3 	 Integrating Microcontroller with FPGA 
Device 

The schematic of our microcontroller implemen­
tation follows. The controller attachment from the 
microcontroller is achieved through the use of either 
open-collector outputs or high-Z outputs. This is re­
quired so that the normal behavior of the Xilinx JTAG 
controller is not compromised when attached (this is 
also addressed in the FPGA programming, see below). 
If the microcontroller is not capable of switching off 
its outputs (to a high-Z state), then an external driver 
with an enable must be used. In Figure 2, the connec­
tions of the JTAG controller to the JTAG pins of the 
FPGA slave is illustrated. TMS and TDI have inter­
nal pull-ups in Xilinx FPGAs. However, TCLK does 
not and must be driven high . Thus, in either the open­
collector or high-Z option is used, TCLK must be ar­
ranged so that it can be cut off to allow an external 
controller to drive the chain. Alternatively, if it proves 
impossible to prevent the microcontroller from driving 
the chain, a resistor of sufficient size can be inserted 
serially between the controller and the JTAG socket, 
such that the external controller can safely overpower 
the embedded controller. Of course, this will limit the 
current drive capability of the microcontroller and thus 
limit the frequency at which TCLK can be driven, but 
will not impact the overall functionality of the system, 
as the JTAG chain can be driven at DC clock rates. 

The logic analyzer core is based on the register 
functionality handled directly from the BSCAN prim­
itive. This can be used for generalized register reads 
and writes in addition ~o the logic analyzer. We allo­
cated a block of register addresses for replicating ac­
cess to the control system normally handled through 
the rad-hard flight computer. 

This is highly useful in a debug scenario as it can 
be used independently of the normal communication 
control channel. This allows in-situ system monitoring 
while normal activities proceed. 

4 	 Case Studies 

We have already have some success using the tools 
for debug. In particular, the simple register interface 
has proven to be an irreplaceable tool in solving diffi­
cult debug problems. We will present three case stud­

2 



ies wherein the tools have proven useful. 

Case I. In our first debug challenge, we were ex­
periencing intermittent register write failures. It was 
rare enough to disregard any obvious problem, and, 
at 30 MHz and easily meeting the timing constraints 
it was fairly unlikely the problem was in timing. We 
have seen some interesting problems where the lan­
guage construct used to describe the array of stdJogic 
vectors has resulted in measureably different behavior 
in certain conditions, and thus were not certain which 
of the gate arrays were to blame. In this case, we were 
able to connect to the system via JTAG, then write a set 
of test registers and read them back. This was working 
fine, so we moved to reading and writing in the other 
permutations in combination with the failing normal 
register system. This allows us to determine that the 
problem lay solely in the data connection between the 
two chips. The problem was solved through the repla­
ment of the grid array interposer, which have a limited 
number of cycles before they begin to fail. 

Case 2. In our second problematic debug challenge, 
we struggled to explain the behavior of an applica­
tion that worked fine when the FPGA was programmed 
via JTAG but certain application functions failed when 
programmed via the select MAP interface. The select 
MAP programming was successful, but it was clear 
something was being corrupted in the programming 
sequence. At this point, PROMs for both the FPGA 
bitfiles as well as the software PROM had been burned, 
toward an early deadline. This was important because 
it forced us to try to minimize the changes to either 
PROM. The situation was made even more intriguing 
by the fact that any attempt to dump state for debug­
ging would cause the failure to disappear. 

However, by connecting to the system through the 
JTAG interface, we were able to dump the registers and 
determine that one of the registers was corrupted be­
tween programming and the application being armed. 
We then forced an application break and dumped the 
memory location that was the source of the register 
write. The memory was corrupted as well. Even­
tually, we determined that the decompression routine 
was corrupting a single byte outside of its allocated 
space, which eventually was written to the FPGA. Be­
cause the JTAG interface provided access to FPGA ap­
plication space, we were able to track down a software 
corruption on the other end of the PCI bus. 

Case 3. In our development of a airborne persistent 
surveillance platform, we wished to develop multiple 
hardware components in parallel, namely, a high speed 
serial connection between a microprocessor and the 
FPGA, and the QDR SRAM interfaces. Without the 
microprocessor connection, we had no way to com­
municate with the FPGA to test the QDR interfaces. 
By connecting to the system via JTAG, we were able 
to move test images in and out of the QDRs without 
use of the normal flight communication path. While 
the JTAG connection is much slower, it allowed us to 
make progress where it otherwise be impossible. 

&beddM 
~tro&r 

rTrAG ScckdJ 
XilinxFPGA 

'JMS 
11)1 

1 
TIlO 

BSCAN l
1CK 

1 
rRogisle< !nted'"",J 

T 
( Logic: An:llyZ'.Cr ear" J 

Figure 1. High-level FPGA connection to JTAG 
controller 

.;;-I...............~I"""""""""~ 
';;NI r ~- J ~ 
'" I 
,_ I 

I
I 

I
I 

.;;~I.. ~ I======~====~-

.. ~ I 

"~I 
.. ~ I 
.. ~ I 

Figure 3. Example capture from embed­
ded logic analyzer using microcontroller­
implemented JTAG controller 

3 

http:An:llyZ'.Cr


~1~ 

"'I~ 
~-­

• • ...... 	

JTAG I CONFIG ...~ 
'" ....~~_. 1l1'-----'P..'OIoo>..., 

1il::1RlUJ1SX1o X~E_V0100 ~~t=:d 
""""'" ~ 	 =. 

I 	 ­
Figure 2. Schematic for use of PIC 18f2550 microcontroller with a general JTAG chain 

n.os ~ 

EEE s.&..-.IItd 11-'9. ' Compfilld. IJer;b 

I~~~ 

~ b~ L-IH1t'IfIOH """'-­
::1 -	 -""-' 
~\~~} =- .n . 1DO 

. ~ u..-!" ""- 1 D
~ 1DCOIlQI2I ...... 1- . 

! 

t i j I 
~~........ I 


Figure 4. Xilinx internal boundary scan state 
machine for Virtex 4 [2] 

5. Conclusions 

In this paper, we present a system for in-situ de­
bug using an on-board microcontroller acting as the 
JTAG controller. The system provides an approach for 
debugging difficult problems in remote environments. 
The system includes a variety of useful functionality, 
including: 

• 	 JTAG programming without an external program­
mer 

• 	 Readable/writeable address space 

• 	 Debug channel is separate from normal commu­
nication channels 

• 	 Linux command-line control over FPGA user 
fabric 

Acknowledgements 

We would like to acknowledge Joshua Monson's 
work on the JTAG user fabric. 

References 

[I] Using 	 the lTAG Interface as a General-
Purpose Communication Port, 2005. http: 
//www.xilinx.com/support/documentation/ 
user_guides/ug071 . pdf . 

[2] 	 Xilinx UG071 Virtex-4 Configuration Guide, 
2006. http://www.xilinx.com/support/ 
documentation/user_guides/ug071.pdf . 

[3] 	 PIC 18F245512550/4455/4550 Product Family, 2007. 
http://www.microchip.com/wwwproducts/ 
Devices.aspx?dDocName=enOl0280. 

[4] 	 Xilinx In-System Programming Using an 
Embedded Microcontroller, 2007 . ht tp: 
//www .xilinx.com/support/documentation/ 
application~otes/xapp058.pdf. 

4 


http://www.microchip.com/wwwproducts
http://www.xilinx.com/support
www.xilinx.com/support/documentation

