
FARM: A Prototyping Environment for Tightly-Coupled, Heterogeneous
Architectures

Tayo Oguntebi, Sungpack Hong, Jared Casper, Nathan Bronson, Christos Kozyrakis, Kunle Olukotun
Stanford University

{tayo, hongsup, jaredc, nbronson, kozyraki, kunle}@stanford.edu

Abstract—Computer architectures are increasingly turning
to parallelism and heterogeneity as solutions for boosting
performance in the face of power constraints. As this trend
continues, the challenges of simulating and evaluating these
architectures have grown. Hardware prototypes provide deeper
insight into these systems when compared to simulators, but
are traditionally more difficult and costly to build.

We present the Flexible Architecture Research Machine
(FARM), a hardware prototyping system based on an FPGA
coherently connected to a multiprocessor system. FARM sub-
stantially reduces the difficulty and cost of building hardware
prototypes by providing a ready-made framework for commu-
nicating with a custom design on the FPGA. FARM ensures
efficient, low-latency communication with the FPGA via a
variety of mechanisms, allowing a wide range of applications to
effectively utilize the system. FARM’s coherent FPGA includes
a cache and participates in coherence activities with the
processors. This tight coupling allows for realistic, innovative
architecture prototypes that would otherwise be extremely
difficult to simulate. We evaluate FARM by providing the
reader with a profile of the overheads introduced across the
full range of communication mechanisms. This will guide the
potential FARM user towards an optimal configuration when
designing his prototype.

Keywords-prototyping; coherent FPGA; FPGA communica-
tion; HyperTransport; accelerators; coprocessors

I. INTRODUCTION

Computer architecture researchers are aggressively ex-
ploring new avenues for delivering performance in future
systems. Many of these architectures, such as the hetero-
geneous ones, are fundamentally different from existing
hardware and difficult to accurately model using traditional
simulators. Cell phone chips, encryption engines, CPU-
GPU hybrids, and on-chip NICs are all examples of special
functions that are tightly coupled with CPUs. New hardware
prototypes are therefore extremely useful, being faster and
more accurate than simulators. In addition to providing
better insight into the system and being able to run larger and
more realistic pieces of code (such as an OS), prototyping
allows researchers to find bugs and design holes earlier in
the development cycle.

In this paper, we present a unique prototyping environ-
ment called the Flexible Architecture Research Machine
(FARM). FARM is based on an FPGA that is coherently
tied to a multiprocessor system. Effectively, this means that

the FPGA contains a cache and participates in coherence
activities with the processors via the system’s coherence
protocol. Throughout this paper we refer to an FPGA
connected coherently as a “coherent FPGA.” Coherent FP-
GAs allow for prototyping of some interesting segments
of the architectural design space. For example, architec-
tures requiring rapid, fine-grained communication between
different elements can be easily represented using FARM.
Ideas involving modifications to memory traffic, coherence
protocols, and related pursuits can also be implemented and
observed at the hardware level, since the FPGA is part of
the coherence fabric (Section V). The close coupling also
obviates the need for soft cores or other processors on the
FPGA in many cases, since general computation can be done
on the (nearby) processors. Section II provides details about
the system architecture and implementation of FARM. In
addition to prototyping, FARM’s architecture is naturally
well-suited to exploring accelerated architectures, with the
FPGA functioning as the accelerator (or coprocessor).

Using a tightly-coupled coherent FPGA, whether as an
accelerator or for prototyping, presents communication and
sharing challenges. One must provide efficient and low-
latency methods of communication to and from the FPGA.
When functioning in the capacity of an accelerator, in
particular, it is very necessary to understand the behavior
of the communication mechanisms offered by FARM. The
mechanisms include: traditional memory-mapped registers
(MMRs), a streaming interface, and a coherent cached in-
terface. Section III details these methods of communication
and suggests how one important application characteristic,
frequency of synchronization, could affect the choice of
communication mechanism.

System designers must understand the tradeoffs and over-
heads that accompany each communication type when using
it to accelerate applications with various characteristics,
especially differing levels of synchronization between the
FPGA and the processors. In particular, knowledge of the
execution overhead introduced by using a dedicated remote
accelerator would suggest a minimum for the speedup ben-
efits gained when using that accelerator. Furthermore, this
overhead is not constant, but rather a function of the type
of communication chosen as well as other characteristics,
such as latency and synchronization. Section IV explores



these issues by presenting the performance of a synthetic
benchmark on FARM for all communication mechanisms
and various other factors. Such data should influence users
of FARM-like systems when deciding on implementations
of heterogeneous prototypes or coprocessors.

A. Related Work

The FARM prototyping environment follows in the tradi-
tion of previous FPGA-based hardware emulation systems
such as the Rapid Prototyping engine for Multiprocessors
(RPM) [1]. RPM focused on prototyping multiprocessor
architectures where FPGAs are used primarily for gluing
together symmetric cores, but not much for computation.
RAMP White [2] is a similar approach, prototyping an
entire SMP system with an FPGA, including CPU cores
and a coherency controller. We differ in that our approach
is more directed at evaluating heterogeneous architectures,
where the FPGA prototypes a special-purpose module (e.g.
an energy-efficient accelerator) attached to high-performance
CPUs. Convey Computer Corporation’s HC-1 is a high-
performance computing node that features a coprocessor
with multiple FPGAs and a coherent cache [3]. Convey’s
machines are different in that they optimize for memory
bandwidth in high-performance, data-parallel applications.
The coprocessor’s cache is usually only used for things
like synchronizing the start sequence. Recently, AMD re-
searchers have also implemented a coherent FPGA [4].
AMD’s and our system use different versions of the Uni-
versity of Heidelberg’s cHT core to handle link-level details
of the protocol1, but AMD does not give a thorough analysis
of system overheads for various configurations and usages.

Indeed, there has not been much discussion on how these
coherent FPGA systems can be well-utilized, and what
kinds of applications can benefit from them. In this paper
we discuss issues such as system utilization and present
some key considerations to account for when building with
these systems. We also provide the detailed design and
implementation of our system.

The major contributions of this paper are:
• We present FARM, a novel prototyping environment

based on the use of a coherent FPGA. We detail its
design, implementation, and characteristics.

• We describe useful mechanisms for processor-FPGA
communication and evaluate these mechanisms on
FARM with varying application characteristics.

II. FARM

This section presents the design details of FARM. We
begin with a description of the system architecture and the
hardware specifications of our particular implementation. We
then describe the usage of the FPGA in FARM and detail the

1The cHT core was provided by the University of Heidelberg [5] under an
AMD NDA. We made modifications and extensions to the core to improve
functionality, increase performance and integrate with the FARM platform.

Figure 2. Photo of the Procyon system with a main board, CPU board,
and FPGA board.

design and structure of some of our key units. We also reveal
our implementation of the coherent HyperTransport protocol
layer and describe methods and strategies for efficiently
communicating coherently with CPUs.

A. FARM System Architecture

FARM is implemented as an FPGA coherently connected
to two commodity CPUs. The three chips are logically con-
nected using point-to-point coherent HyperTransport (HT)
links. Figure 1 shows a diagram of the system topology,
along with bandwidth and latency measurements, as well as
the high level design of the FARM hardware. Memory is
attached to each CPU node (not shown). Latency measure-
ments in the figure represent one-way trip time for a packet
from transmission to reception, including de-serialization
and buffering logic.

We used the Procyon system, developed by A&D Tech-
nology Inc. [6], as a baseline in the construction of the
FARM prototype. Procyon is organized as a set of three
daughter boards inter-connected by a common backplane
via HyperTransport. Figure 2 shows a photograph of the
Procyon system. The first board is a full system board fea-
turing an AMD Opteron CPU, some memory, and standard
system interfaces such as USB and GigE NIC. The second
board houses another Opteron CPU and additional memory.
The third board is an FPGA board with an Altera Stratix
II EP2S130 and support components used for programming
and debugging the FPGA. The photograph shows the FPGA
board, secondary CPU board, and full system board from
left to right, respectively. Table I gives a detailed listing of
FARM’s hardware specifications.



1.8GHz
Core 0
64K L1

512KB
L2 Cache

2MB
L3 Shared Cache

512KB
L2 Cache

…

Hyper
Transport

512KB
L2 Cache

2MB
L3 Shared Cache

512KB
L2 Cache

…

Hyper
Transport

32 Gbps

32 Gbps

1.8GHz
Core 3
64K L1

1.8GHz
Core 4
64K L1

1.8GHz
Core 7
64K L1

AMD Barcelona ~60 ns
6.4 Gbps,

6.4 Gbps cHTCore™
Hyper Transport (PHY, LINK)

AlteraStratix II FPGA (132k Logic Gates)

Configurable
Coherent Cache

Data Transfer Engine

Cache Interface

Data Stream Interface

User ApplicationMMR

~380 ns

Figure 1. Diagram of the Procyon system with the FARM hardware on the FPGA.

CPU Type AMD Barcelona 4-core (2 CPUs) DRAM 3GB (2GB on main system board)
Clock Freq 1.8 GHz HT Link Type HyperTransport: 16-bit links

L1 Cache Private: 64KB Data, 64KB Instr CPU-CPU HT Freq HT1000 (1000 MT/s)
L2 Cache Private: 512KB Unified CPU-FPGA HT Freq HT400 (400 MT/s)
L3 Cache Shared: 2MB FPGA Device Stratix II EP2S130

Physical Topology 3 boards connected via backplane Logical Topology Single chain of point-to-point links

Table I
HARDWARE SPECIFICATIONS OF THE FARM SYSTEM.

Our FARM device driver is somewhat unique in that
it is the driver for a coherent device, which looks quite
different to the OS than a normal non-coherent device. To
allow for flexibility in communication with the FPGA, the
driver reconfigures the system’s DRAM address map (in the
MTRRs and PCI configuration space) to map a section of
the physical address space above actual physical memory
to “DRAM” on the FPGA. We must keep this memory
hidden from the OS to prevent it from being used for normal
purposes. Using the mmap mechanism, these addresses are
mapped directly into the user program’s virtual address
space. The FPGA then acts as the memory controller for this
address space, allowing the user program to read and write
directly to the FPGA. This memory region can be marked
as uncacheable, write-combining, write-through, or write-
back. Our original design marked this “FARM memory” as
uncacheable to allow for communication with FARM that
bypassed the cache. However, the Barcelona CPUs impose
very strict consistency guarantees on uncacheable memory,
so we instead mark this section as write-combining in FARM
(see Section III). The FARM device driver is also used to
pin memory pages and return their physical address in order
to facilitate coherent communication from the FPGA to the
processor. An alternative, albeit more complicated, solution
would be to maintain a coherent TLB on the FPGA.

Reconfigurability in a prototype built with FARM is
provided via the attached FPGA. The FPGA houses modules
that allow for general coherent connectivity to the processors
as well as a means by which the coprocessor or accel-
erator can use these modules. As shown in Figure 1, the
FARM platform implements a version of AMD’s proprietary
coherence protocol, called coherent HyperTransport (cHT).
With some exceptions, the cHT definition is a superset of

HyperTransport that allows for the interconnection of CPUs,
memory controllers, and other coherent actors. Coherent Hy-
perTransport implements a MOESI coherence protocol. The
cHT core, also described in the introduction, handles only
link-level details of the protocol such as flow control, CRC
generation, CRC checking, and link clock management. Pri-
marily, the core interfaces between the serialized incoming
HT data (in LVDS format) and the standard cHT packets
which are exchanged with the logic behind the core. We
designed and implemented the custom transport layer logic,
the Data Transfer Engine (DTE), to process these packets.
The DTE handles: enforcement of protocol-level correctness;
piecing together and unpacking HT commands; packing
up and sending HT commands; and HT tag management.
The DTE also handles all the details of being a coherent
node in the system, such as responding to snoop requests.
In addition, the FARM platform includes a parameterized
set-associative coherent cache. We will provide design and
implementation details for the DTE and the cache later in
this section. Finally, there is also a small memory mapped
register (MMR) file for status checking and other small-scale
communication with the processors.

The FARM platform provides three communication in-
terfaces for the hardware being prototyped by the user on
the FPGA, or the user application: an MMR interface, a
stream interface, and a coherent cache interface. A detailed
comparison of these interfaces can be found in Section III.

We use dual-clock buffers and (de-)serialization blocks
to partition the FPGA into three different clock domains:
the HyperTransport links, the cHT core, and the rest of the
acceleration logic (everything “above” the cHT core). In our
base configuration: the user application and cHT core run at
100 MHz and the HyperTransport links at 200 MHz.



cHT Bus
cHT

Core

DTE

Co-

herent

Cache

MMR

Snoop 

Handler

Data 

Requester

Data Handler

Stream-in 

Traffic Handler
to user App

Figure 3. Block diagram of data transfer engine (DTE) components.
Arrows represent requests and data buses.

B. Module Implementation

The DTE and the cache are two vital units allowing
the accelerator to communicate with the processors, process
snoops, and store coherent data. In this section, we briefly
describe the design and structure of these modules as im-
plemented on our FPGA.

1) Data Transfer Engine: The DTE’s primary responsi-
bility is ensuring protocol-level correctness in HyperTrans-
port transactions. Figure 3 shows a block diagram of the
components of the DTE. A typical transaction is the fol-
lowing: If the data requester on the FPGA requests data
from remote memory (owned by one of the Opteron CPUs),
snoops and responses must be sent among all coherent
nodes of the system (assuming no directory) to ensure that
any dirty cached data is accounted for. In this example,
because the FPGA is the requester, the DTE’s data handler
is responsible for counting the responses from all caches as
well as the data’s home memory controller and selecting the
correct version of the data. Evictions from the FPGA’s cache
to remote memory are also fed to the cHT core via the data
requester. In addition, snoops incoming to the FPGA are
processed by the snoop handler in the DTE. The DTE also
handles incoming traffic for stream and MMR interfaces. In
doing so, the DTE acts as a pseudo-memory controller for
memory requests belonging to the FPGA’s memory range.
Coherent HyperTransport supports up to 32 simultaneously
active transactions by assigning tags to each transaction,
so the design must be robust to transaction responses and
requests arriving out of order. The DTE handles this by using
tag-indexed data structures and tracking tags of incoming
and outgoing packets in the data stream interface.

2) Configurable Coherent Cache: Figure 4 shows the
block diagram of our coherent cache module. The cache
is composed of three major subblocks. The core is where
the traditional set-associative memory lookup happens; the
write buffer keeps track of evicted cache lines until they are
completely written back to memory; and the prefetch buffer
is an extended fill buffer to increase data fetch bandwidth.
There are three distinct data paths from the cache to the
DTE: fetching data, writing data back, and snooping. All
data transfers happen at cache line granularity. The user

DTE

User

AppConfigurable

Cache Core

Prefetch Buffer 

Write 

Buffer 

snoop

Coherent Cache

Fetch Data

Figure 4. Block diagram of coherent cache components. Arrows represent
direction of data flows, rather than that of requests.

application can request that the cache prefetch a line and
read or write to memory using a normal cache interface.

Our normal cache interface supports simple in-order reads
and writes at word granularity.2 This is a valid compromise
of design complexity (and power, area, and verification)
against application performance since we seldom expect
complex out-of-order computation behind our cache. How-
ever, the user application can initiate multiple data fetch
transfers through the prefetch interface. Unlike the normal
interface, the prefetch interface is non-blocking as long as
there is an empty slot in the buffer. This design is based on
the observation that in many cases the user application can
pre-compute a set of addresses to be accessed.

The cache module is responsible for maintaining the
coherence of the data it has cached. First, the cache answers
incoming snoop requests by searching for the line in all three
subblocks simultaneously. Snoop requests have the highest
priority since their response time is critical to system-wide
cache miss latency. Second, the module must maintain the
coherence status of each cached line. For simplicity, our
current implementation assumes that cache lines are either
modified or invalid; exclusive access is requested for each
line brought in to the cache. This simplification is based on
the observation that for our current set of target applications,
the cache is most often used for producer-consumer style
communication where non-exclusive access to the line is
not beneficial.

The cache uses physical addresses, not virtual addresses.
This saves us from implementing address translation logic,
a TLB, and a page-table walker in hardware and from
modifying the OS to correctly manage the FPGA’s TLB.
Instead we rely on the software to use pinned pages provided
by our device driver for shared data.

C. FPGA Resource Usage

Table II shows an overview of the resource usage on
the FPGA. We made an effort to minimize the usage of
FPGA resources by FARM modules in order to maximize
free resources for the user application. Note that the cache

2In actuality, our cache is not strictly in-order but supports hit-under-
miss. That is, the interface stalls at the second miss, not the first.



FARM modules
4Kbit Block RAMs 144 (24%)
Logic Registers 16K (15%)
LUTs 20K
FPGA Device Stratix II EPS130
FPGA Speed Grade -3 (Fastest)

Table II
SUMMARY OF FPGA RESOURCE USAGE.

module has several configuration parameters, including total
size and associativity of the cache, size of each cache line,
and others. These parameters are configured at synthesis
time to meet area, frequency and performance constraints
for application. The numbers for FARM modules in the table
reflect a 4KB, 2-way set associative cache.

III. COMMUNICATION MECHANISMS

FARM supports multiple communication mechanisms tai-
lored for different situations. Applications may use tra-
ditional memory-mapped registers (MMRs), a streaming
interface for pushing large amounts of data to the FPGA
with low overhead, or a coherent cache for communicating
with the FPGA as if it were another processor in a shared
memory system.

MMRs are traditionally used for infrequent short commu-
nication, such as configuration, because of the time required
to read and write to them. FARM allows for much faster
access to the MMRs because of the FPGA’s location as a
point-to-point neighbor of the processors. Specifically, we
measured the total time to access an MMR on farm to be
approximately 672 ns, nearly half the measured 1240 ns to
read a register on an ethernet controller directly connected
to the south bridge via PCIe x4. This lower latency allows
MMRs in FARM to be used for more frequent communica-
tion patterns like polling. More detailed measurements show
that most of the 672 ns is spent handling the access inside the
FPGA, indicating that this latency could be further reduced
by upgrading to a faster FPGA.

Currently, FARM’s MMRs uses uncached memory, which
provides strong consistency guarentees. However, this means
that access to multiple MMRs will not overlap and the total
access time will grow linearly with the number of registers
accesses, just like those to normal PCI registers. With FARM
it is just as simple to put the MMRs in the write-combining
space, which has weaker consistency guarantees but would
allow multiple outstanding accesses (although still disallow
caching) and thus provide much faster multi-register access.
Section IV uses uncached memory for the MMRs, as the
uncached semantics are closer to the expected use of MMRs.

FARM’s streaming interface is an efficient way for the
CPU to push data to the FPGA. To facilitate streaming
data, a physical address range marked as write-combining
is mapped to the FPGA. Writes to this address range are
immediately acknowledged and piped directly to the user

Service Location FARM FARM
of cache miss w/o FPGA
Memory 495 ns 189 ns
Other cache (on-chip) 495 ns 145 ns
Other cache (off-chip) 500 ns 195 ns
FPGA cache (1-hop) 491 ns N/A
FPGA cache (2-hop) 685 ns N/A

Table III
COMPARISON OF CACHE MISS LATENCY

CPU DRAM FPGA

(a) Through DRAM (Conventional)

CPU DRAM FPGA

(b) Through Coherent Cache

(1)

(2)

(3)

(1)

(2)

Figure 5. Comparison of DMA schemes.

application module. The internal pipeline passes 64 bits of
data and 40 bits of address to the user application per clock.

On the CPU, write requests to the streaming interface are
queued in the core’s write-combining buffer and execution
continues without waiting for the request to be completed.
Consecutive accesses to the same cache line are merged
in the write-combining buffer, reducing off chip bandwidth
overhead. Thus, to avoid losing writes, every streamed write
must be to a different, ideally sequential, address. The CPU
periodically sends requests from the buffer to the FPGA
or an explicit flush can be performed to ensure that all
outstanding requests are sent to the FPGA.

Finally, the coherent cache allows for shared memory
communication between the CPUs and FPGA. Since the
cache on the FPGA is kept coherent, the FPGA can trans-
parently read data either directly from a CPU’s cache or
from DRAM, and vice versa. The communication latency is
simply the off-chip cache miss latency, which is summarized
in Table III. In the table, the column labelled FARM shows
the cache miss latency measured on the current FARM
system. Except when the requesting CPU is two hops away
from the FPGA, this latency is fairly constant because the
FPGA’s response to the snoop dominates any other latency.
For comparison we also provide measurements using the
same system with the FPGA removed. This increase in
latency would be intolerable for an end product, but is
reasonable for a prototype platform and would be mitigated
by using a faster FPGA.

The coherent communication mechanism is especially
beneficial when performing a pull-type data transfer (i.e.
DMA), or when polling for an infrequent event. Figure 5
illustrates two different ways of performing a DMA from the
CPU to the FPGA. Figure 5.(a) is the conventional DRAM-
based method, where (1) a CPU first creates data in its own
cache, (2) the CPU moves the data to DRAM, and (3) the



Interface Description Proposed Usage Aprox. Bandwidth
MMR CPU writes to FPGA’s MMR Initialization or change of configuration 25 MB/s
MMR CPU reads from FGPA’s MMR Polling (likely to hit) 25 MB/s
Stream CPU writes into FPGA’s address space Data push 630 MB/s
Coherent CPU reads from FPGA’s cache Data pull or Polling (likely to miss) 630 MB/s
Coherent FPGA reads from CPU’s cache (i.e. coherent DMA) Data pull or Polling (likely to miss) 160 MB/s

Table IV
SUMMARY OF COMMUNICATION MECHANISMS.

.
CPU FPGA

(a) Non-coherent polling  

CPU FPGA

(b) Coherent polling

(1) (1)

0

(2)

1

1

(2)

0

Figure 6. Comparison of non-coherent and coherent polling.

FPGA reads the data from DRAM. Note that during the data
preparation steps, (1) and (2), the CPU is kept busy. FARM’s
coherence allows the method shown in Figure 5.(b), where
(1) the CPU leaves the data and proceeds while (2) the FPGA
reads the data directly from the CPU’s cache.

The coherent interface is also beneficial when polling
infrequent events [7]. Figure 6 illustrates this by comparing
(a) non-coherent polling through MMR reading and (b)
coherent polling through a shared address. In both cases,
the event to be polled is represented as a star, and the CPU
polls it before and after the event, denoted as (1) and (2)
respectively. In Figure 6.(a), (1) and (2) have the same MMR
reading latency, while in (b), (1) has the negligible latency
of a cache hit and (2) has up to twice the cache miss latency.
Thus, when the event is infrequent, the majority of checks
performed by the CPU are simply a cache hit and do not
stall the CPU at all.

Table IV summarizes communication mechanisms based
on FARM’s three interfaces and their proposed usages. The
MMR bandwidth numbers are for MMRs are in uncached
memory. The roundtrip latency to the FPGA is the limiting
factor for the MMR bandwidth. The bandwidth of the FPGA
reading from the CPU’s cache is limited by the bandwidth
of the cHT core because the data read pathway has not
been optimized. Measurements indicate that optimizing this
pathway could bring this number up to at least 320 MB/s.

IV. MICROBENCHMARK ANALYSIS

Designers using FARM systems would benefit from un-
derstanding how key application characteristics affect the
overhead introduced by the system. For example, it is clear
that one would avoid the fully synchronous MMR write
for frequent communication with the FPGA. Less obvious,
however, is the choice between using streaming versus DMA

1 main (numIter, commType, N, M, K)
2 for i = 1 to numIter
3 for j = 1 to K
4 InitCommunication(commType, M);
5 DoComputation(N);
6 Synchronize(commType);
7
8 InitCommunication(commType, M)
9 switch (commType)

10 case MMR: DoMMRWrite(M);
11 case STREAM: DoStreamWrite(M);
12 case DMA: InitiateDMA(M);
13
14 DoComputation(N)
15 for j = 1 to N
16 nop();
17
18 Synchronize(commType)
19 switch (commType)
20 case MMR:
21 nop(); // MMR is always synchronous
22 case STREAM:
23 FlushWriteCombiningBuffer();
24 case DMA:
25 WaitForDMADone();

Figure 7. Microbench for characterizing communcation mechanisms.

for moving data to the FPGA. Side effects such as CPU
involvement, which would be considerably more for the
streaming case, complicate matters further.

To adequately address questions such as these, we con-
structed a microbenchmark that allows for variation of key
parameters affecting communication overhead. Figure 7 dis-
plays its pseudocode. Three parameters control the behavior
of the communication:

• N controls the frequency of communication. That is,
communication happens every N CPU operations.

• M controls the granularity of communication by spec-
ifying how much data (in bytes) is transferred per
communication.

• K controls the frequency of synchronization. Syn-
chronization occurs after every K sets of communi-
cation/computation segments. If K is ∞, we assume
synchronization happens only once: at the end of the
application.

Figure 8 explores the effects of communication granular-
ity, communication frequency, and synchronization on com-
munication overhead. The vertical axis is communication
overhead measured in cycles per byte received by the FPGA
(lower is better). We first examine the case of asynchronous
communication (i.e. K is ∞) in graph (a).



0

1

2

3

4

5

6

7

8

9

10

100 1000 10000 100000

Communication Granularity, M (Bytes)

M
ea

su
re

d 
Co

m
m

un
ica

tio
n 

Ov
er

he
ad

 (C
yc

les
/B

) 

STREAM (N=16384) DMA(N=16384)

STREAM(N=2048) DMA(N=2048)

STREAM(N=1024) DMA(N=1024)

STREAM(N=256) DMA(N=256)

0

1

2

3

4

5

6

7

8

9

10

100 1000 10000 100000

Communication Granularity, M (Bytes)

M
ea

su
re

d 
Co

m
m

un
ica

tio
n 

Ov
er

he
ad

 (C
yc

les
/B

) 

STREAM(N=256, K=inf) DMA(N=16384,K=inf)

STREAM(N=256,K=5) DMA(N=16384,K=5)

STREAM(N=256, K=1) DMA(N=16384,K=1)

(a) Effect of communication granularity(M) and frequency(N) (b) Effect of synchronization frequency (K)

Figure 8. Analysis of communication mechanisms using microbenchmark in Algorithm 7. The detailed meaning of parameter M,N,K can be found there.

For the streaming interface (solid lines), the results for
all communication frequencies are asymptotic, with the
overhead approaching 2.8 cycles/B for large M . After taking
into account the CPU clock frequency (1.8GHz), this value
is close to the 630 MB/s bandwidth limit reported in
Table IV. As we decrease M , however, we see the overhead
decrease and surpass the bandwidth limit. This is because
for smaller amounts of data, the overhead can be hidden
by the CPU’s out-of-order window. Figure 9.(a) provides a
visualized explanation of this effect. For frequent communi-
cation (N=256), there is not enough computation to hide
the communication latency, which explains the increased
overhead for this data point compared to the other three.

For DMA communication of data from the CPU’s cache
to the FPGA(dashed lines), we immediately see that the
overhead is increased due to the bandwidth explained in
Section III. Note, however, that the general behavior of the
curves is similar to that of the streaming case. Figure 9.(b)
provides further insight into DMA behavior. The figure on
the left depicts the case where N=16384 and M=1024.
In this scenario, the actual DMA transfer time is fully
overlapped with the subsequent computation. When this is
the case, the overhead is simply the time taken to setup the
DMA. For very small M , the small amount of computation
per DMA is not enough to amortize this setup time. As
the amount of data per communication goes up, the setup
time is amortized and the overhead per byte goes down.
If we increase M to the point that data transfer time
becomes longer than computation time (seen on the right
of Figure 9.(b)), we see a dramatic increase in the overhead.
As in the streaming case, the overhead converges to the
bandwidth of the DMA transfer (See Table IV).

Figure 8.(b) explores the effect of synchronization fre-
quency. Smaller K means more frequent synchronization.

We take two data points from graph (a) for both streaming
(N=256) and DMA (N=16384), and we vary K. For the
streaming interface, synchronization means flushing of the
write-combining buffer. For coherent DMA, synchroniza-
tion requires waiting (busy wait) until all queued DMA
operations have finished. For very large communication
granularity (M ), the overhead is bounded by the bandwidth
in both cases and synchronization does not matter. For
smaller M , however, both communication methods exhibit
an increase in overhead. For the streaming interface, flushing
the write buffer cripples the CPU’s out-of-order latency-
hiding effect, hence the increased overhead for K=1. For
DMA, synchronization adds the fixed overhead of setting
up the DMA.

V. POTENTIAL APPLICATIONS

In this section we briefly explore what other applications
could be efficiently prototyped with FARM. We have already
used FARM to prototype a software transactional memory
accelerator that requires the use of FARM’s low-latency fine-
grained communication to track accesses to shared data. We
therefore assert that FARM can also be used for similar
applications that require fine-grained communication, such
as hardware-assisted data race detection [8] or runtime
profiling [9].

While FARM does not have the freedom to change
the processor, it will still be possible to design intelligent
peripheral devices. Coherent access to the CPU’s cache can
simplify the design of previous intelligent I/O devices such
as Underwood et.al.’s accelerator for MPI queue process-
ing [10] (see also Mulkherjee et.al.’s work [7]). FARM could
also be used to prototype intelligent memory systems for
performance [11] or for security [12]. Such a system would
extend the memory controller described in Section II-B1



...

Computation Communication

Computation

Computation

Computation

CPU’s
Reordering
Window
Size

...

Communication

Computation

...
DMA init

Computation
(i)

Computation
(i+1)

DMA TX
(i)

DMA init

DMA TX
(i+1)

DMA init

Computation
(i)

Computation
(i+1)

DMA TX
(i-k)

DMA init

DMA TX
(i-k+1)

... ...

... ...

(a) Stream interface’s case (b) DMA interface’s case
Figure 9. Visualized explanation of graph 8. For stream interface’s case, when granularity(M) is large the communication overhead is solely determined
by the bandwidth limit, while CPU’s instruction reordering can hide it for small M. Similar explanation applies to DMA’s case, where communication
overhead can be completely hidden depending on the choice of M and N.

with the required intelligence using additional information
available through the coherent interface.

In addition, FARM can help prototype advanced coher-
ent protocols. For example, one could prototype directory
structures such as Acacio et.al.’s [13], or snoop filtering
techniques like Moshovos’ RegionScount [14]. Note that
such extensions of the underlying broadcasting coherence
protocol (cHT) have been proposed in the original de-
sign [15] but actual implementations have been rare.

Finally, FARM also benefits the traditional computation-
oriented FGPA applications like FFT computation or matrix
multiplication, either by reduced communication latency or
convenient communications interfaces.

VI. CONCLUSION

In this paper we presented FARM, a hardware prototyping
system based on an FPGA coherently connected to multiple
processors. In addition, we described and characterized
several different mechanisms for communicating with the
FPGA in FARM. FARM provides tools that enable re-
searchers to prototype a broad range of interesting appli-
cations that would otherwise be expensive and difficult to
implement in hardware.

VII. ACKNOWLEDGEMENTS

This work was supported by the Stanford Pervasive
Parallelism Lab, Dept. of the Army AHPCRC W911NF-
07-2-0027-1, National Science Foundation CNS0720905,
DOE/Sandia 942017, and DARPA/Sun 630003198.

We also thank A&D Technology, Inc. for donating the
Procyon systems to us and for their excellent support.

REFERENCES

[1] L. Barroso, S. Iman, and J. Jeong, “RPM: A rapid prototyping engine
for multiprocessor systems,” IEEE Computer, 1995.

[2] J. Wawrzynek et al., “Ramp: Research accelerator for multiple
processors,” IEEE Micro, vol. 27, no. 2, pp. 46–57, 2007.

[3] C. C. Corp. Instruction set innovations for convey’s hc-1
computer. [Online]. Available: http://www.conveycomputers.com/
Resources/Convey.Hot%20Chips.Brewer.pdf

[4] I. AMD. Maintaining cache coherency with amd opteron processors
using fpga’s. [Online]. Available: http://ra.ziti.uni-heidelberg.de/
coeht/pages/events/20090211/parag beeraka.pdf

[5] U. of Heidelberg (Germany). UoH cHT-Core (coherent HT Cave
Core). [Online]. Available: http://www.hypertransport.org/default.
cfm?page=ProductsViewProduct&ProductID=84

[6] A & D Technology, Inc. Procyon, the ultra-high-performance simula-
tion and control platform. [Online]. Available: http://www.aanddtech.
com/products/realtime measurement simulation control/procyon/

[7] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood, “Coherent
network interfaces for fine-grain communication,” in ISCA ’96: Pro-
ceedings of the 23rd Annual Int’l Symp. on Computer Architecture,
1996, pp. 247–258.

[8] P. Zhou, R. Teodorescu, and Y. Zhou, “Hard: Hardware-assisted
lockset-based race detection,” in HPCA ’07: Proceedings of the 13th
International Symposium on High-Performance Computer Architec-
ture, 2007.

[9] C. B. Zilles and G. S. Sohi, “A programmable co-processor for profil-
ing,” in HPCA ’01: Proceedings of the 7th International Symposium
on High-Performance Computer Architecture, 2001, p. 241.

[10] K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Murphy, and
R. Brightwell, “A hardware acceleration unit for mpi queue pro-
cessing,” in IPDPS ’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium, 2005, p. 96.2.

[11] C. J. Hughes and S. V. Adve, “Memory-side prefetching for linked
data structures for processor-in-memory systems,” J. Parallel Distrib.
Comput., vol. 65, no. 4, pp. 448–463, 2005.

[12] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi,
“Security as a new dimension in embedded system design,” in Design
Automation Conference, 2004. Proceedings. 41st, 2004, pp. 753–760.

[13] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato, “A new
scalable directory architecture for large-scale multiprocessors,” in
HPCA ’01: Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, 2001, p. 97.

[14] A. Moshovos, “Regionscout: Exploiting coarse grain sharing in
snoop-based coherence,” in ISCA ’05: Proceedings of the 32nd
annual international symposium on Computer Architecture, 2005.

[15] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The amd
opteron processor for multiprocessor servers,” IEEE Micro, vol. 23,
no. 2, pp. 66–76, 2003.


