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Abstract—In this paper, we present a novel technique for
transmitting data over the power supply pins of an FPGA. Using
this power side channel communication, a core inside the FPGA
is able to send data to a receiver outside of the FPGA. Possible
applications include monitoring, debugging, and watermarking.
For the communication, we do not need any further resources,
like IO pins or modifications of the board. We characterize the
communication channel over the power pins and build a channel
model. Furthermore, we present an encoding/decoding method
which is independent of the board type and FPGA combination.
With this approach, we achieve data rates up to 500 kbit/s.
Finally, we provide a case study, which extends existing power
watermarking techniques to the new encoding/decoding method
and show experimental decoding results.

I. INTRODUCTION

Communication over power supply facilities today features
many applications. It is widely used as power line commu-
nication over conductors that are at the same time used as
electric power supply. For example, applications like home
surveillance (e.g., baby monitor) or home control (e.g., remote
control of roller blinds, heating, etc.) often use power line
communication. Furthermore, internet access over power line,
so called Broadband over Power Lines (BPL), and small
home networks using PowerLAN have emerged in the last
years. As main advantage of such systems, the available
infrastructure, like cables and wires, can be additionally used
for communication without the need for new communication
media.

However, communication over power lines on printed
circuit boards (PCBs) or inside integrated circuits is very
uncommon. Information on cryptographic operations inside
embedded systems can be gathered by power side-channel
attacks. Usually, the goal is to get the secret key or information
about the implementation of the cryptographic algorithm.

Power analysis attacks are based on the observation that
different instructions cause variations in the activities on the
signal lines, which result in differences in a device’s power
consumption. With simple power analysis (SPA) [1], the mea-
sured power consumption is directly mapped to the different
operations in a cryptographic algorithm. With this technique,
program parts in a microprocessor, for example DES rounds
or RSA operations, can be identified. Since the execution of
these program parts depends on a key bit, the key bits can be
restored. Differential power analysis (DPA) [1] is an enhanced
method which uses statistical analysis, error correction and
correlation techniques to extract exact information about the
secret key.

Our goal is to bring these two aspects together and, based
on their synergy, show that it is possible to transmit data
from a core which is implemented on an FPGA over the
power pins to the outside where the data can be decoded.
No additional ports or pins are required. This idea to use the
power pins for off-chip communication might be beneficial
for a multitude of scenarios, for example if a communication
possibility must be added late in the development phase and no
further dedicated pins of the FPGA are available. Furthermore,
the data can be sent from cores which are located deep
inside the design hierarchy. Using the standard approach, the
communication signals must be connected on each hierarchy
level up to the top-module and then to the pins. This can
affect many components which must be adapted. Using power
communication, this effort is not necessary.

Further applications for using this unidirectional commu-
nication channel are a) monitoring, b) debugging facilities,
and c) power watermarking [2], [3]. For monitoring purposes,
the core can send measurements or status information over the
power channel. For debugging, a dedicated debug circuit inside
the core can record signal values after a special trigger and is
able to send these values to an external device that measures
the power or voltage of the FPGA, decodes, and displays these
values. Watermarking means that a unique signature which
clearly identifies the author is embedded into an IP core. A
product developer might obtain an unlicensed version of the
IP core and integrate this core into his product. Proof of the
authorship can be established by extracting and comparing the
signature from the product. The basic idea behind the power
watermarking approach is to extract the core signature from
the FPGAs power consumption pattern.

The remaining work is organized as follows: Section II
describes the basic concepts for analysis of the core voltage.
Section III discusses the power communication channel of
FPGAs and Section IV describes the encoding/decoding of
the transmitted data. Section V shows the experimental results
for the communication channel measurements, and in Section
VI, a case study using a power watermarking application is
given. Finally, Section VII concludes the paper.

II. CONCEPT

There is no way to measure the relative power consumption
of an FPGA directly, only through measuring the relative
supply voltage or current, or indirectly by measuring the
temperature. We have decided to measure the core voltage
as close as possible to the voltage supply pins, such that
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the smoothing from the plane and block capacitances are
minimal and no shunt is required. Most FPGAs have ball
grid array (BGA) packages and the majority of them have
vias to the back of the PCB for the supply voltage pins.
So, the voltage can be measured on the rear side of the
PCB with an oscilloscope. The voltage can be sampled using
a standard oscilloscope, and analyzed and decoded using a
program developed to run on a PC (see Figure 1).
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Fig. 1. Communication over the power channel: From a data source inside
the core, a power pattern is generated that can be scanned at the voltage
supply pins of the FPGA. An algorithm decodes the transmitted data from
the trace.

The consumed power of an FPGA can be divided into
two parts, namely the static and the dynamic power. The
static power consumption is caused by the leakage current
from CMOS transistors and does not change over time if the
temperature stays constant. The dynamic power consists of the
power related to short circuit currents and the power required
of reloading the capacitances of transistors and wires. The
short circuit current occurs when the PMOS and the NMOS
transistors are both in conducting state for a short time during
the switching activity. As shown in [4], the main part of an
FPGA’s dynamic power results from capacitance reloading.
Both parts of the dynamic power consumption depend on the
switching frequency [5].

What happens to the core voltage, if many switching ac-
tivities occur at the same time, at the rising edge of a clock
signal? The core supply voltage drops and rises (see Figure 2).
In the frequency domain, the clock frequency with harmonics
and even integer divisions are present. The real behavior of the
core voltage depends on the individual FPGA, the individual
printed circuit board and the individual voltage supply circuits.

In our approach, we alter the amplitude of the interferences
in the core voltage. The basic idea is to add a power pattern
generator (e.g., a set of shift registers), and clock it either with
the operational clock or an integer division of thereof. Further,
we control these power pattern generators according to the
characteristics of the data sequence which should be sent. A
logical ’1’ lets the power consumer operate one cycle (e.g.,
perform a shift), a ’0’ causes no operation. We detect higher
amplitudes in the voltage profile over time corresponding

Fig. 2. A measured voltage signal from the voltage supply pin of an FPGA.
The core supply voltage drops and rises. Note that the DC component is
filtered out.

to the ones and smaller amplitudes according to the zeros.
Note that the amplitude for the no-operation state is not zero,
because the operational logic and the clock tree are still active.

III. COMMUNICATION CHANNEL

The transmission of a signal, generated from a source of
data, over the supply voltage to a testing point outside of the
FPGA, which can be accessed by an oscilloscope, presents
an unidirectional communication system. The source is the
power pattern generator inside the core, and the sink is a
device that decodes the signal after it has been measured,
digitized and recorded with an oscilloscope. This communi-
cation channel transforms the signal, and adds noise. If we
know how to characterize the channel, we are able to build
better encoding/decoding systems. Therefore, the behavior of
the communication channel must be approximated in a channel
model.

In current digital communication systems as well as in our
technique, the source encoding is usually a binary encoding of
the data to be transmitted. From the source encoded data, the
transmission sequence is generated by channel encoding. The
digital modulation then translates the encoded data sequence
into single, successively transmitted symbols.

A symbol σ is the smallest unit which carries information.
The sequence of different symbols, generated by modulation,
is called signal. The signal is transmitted over and altered
by the communication channel. After reception, the signal is
demodulated and decoded to restore the source encoded data.

On a real communication channel, the signal is disturbed
by interferences, noises, line losses, delays, etc., which com-
plicates the decoding of the signal. With a certain probability
pE > 0, the symbol cannot be correctly decoded. For example,
when using a binary modulation where the bit ’1’ corresponds
to the symbol σ1 and a ’0’ corresponds to the symbol σ0, the
decoder must first calculate the probability that the currently
received symbol was sent as σ0 or σ1. After that, the decoder
can decide in favour of one symbol. To lower pE , the channel
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code can add redundancy which increases the probability of
correct decoding. The decision which channel code and mod-
ulation can be used depends on the communication channel as
well as the sending and receiving characteristics. Thus, it is
necessary to develop a channel model which adapts the actual
communication and disturbance as close as possible.

For using the power channel for communication, the map-
ping of a bit sequence s = {0, 1}n into a sequence of symbols
{σ0, σ1}n is called encoding: {0, 1}n → Zn, n ≥ 0 with the
alphabet Z = {σ0, σ1}. Here each bit {0, 1} is assigned to
a symbol. Each symbol σi is a triple (ei, δi, ωi), with the
event ei ∈ {γ, γ̄}, the period length δi > 0, and the number
of repetitions ωi > 0. The event γ is power consumption
through a shift operation and the inverse event γ̄ is no power
consumption. The period length is given in terms of a number
of clock cycles. For example, the encoding through 32 shifts
with the period length 1 (one shift operation per cycle) if
the data bit ’1’ should be sent, and 32 cycles without a
shift operation for the data bit ’0’ is defined by an alphabet
Z = {(γ, 1, 32), (γ̄, 1, 32)}

A. Impulse Response

Every linear, time invariant system or channel can be
characterized by its impulse response. The impulse response
h(t) is the reaction of the system to an infinitely brief signal
with an infinitely high amplitude – an impulse. Let x(t) the
input signal and y(t) the output signal of the system, then
the output signal can be calculated by the convolution of x (t)
with the impulse response h(t):

y(t) =
∫ ∞
−∞

h(τ) · x(t− τ) dτ. (1)

With known impulse response, the original signal x(t) can
be reconstructed from the received signal, if the signal/noise
ratio is not too low. To determine h(t), an impulse must be
generated on the input and the output must be measured. A
Dirac-pulse is defined as an infinitely short signal with an
infinitely high amplitude [6]. To measure the impulse response
in a real system, an approximation of the Dirac-pulse must be
used. A single short and high rectangular signal is suitable in
most cases.

For measuring the power communication channel, such a
single short pulse is used. We use several power consumers
which are all active only for a short time. A set of shift reg-
isters with common clock input is suitable for the generation
of the impulse. To obtain a high amplitude, the toggle rate in
each shift register must be maximized. This can be done by
initializing the shift registers with the sequence ”010101 . . . ”
and feeding back the output to the input to perform a cyclic
shift. If all shift registers are enabled for exactly one clock
cycle, this causes maximum power consumption in minimal
time.

The resulting signal is recorded and digitized outside the
FPGA with a digital oscilloscope. To reduce the noise and
disturbances in the result, several responses of different im-
pulses are recorded and then averaged. The resulting signal is
the impulse response for this board and FPGA. Note, that the
impulse response is different for each combination of FPGA
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Fig. 3. The impulse response obtained by a shift of a huge shift register,
implemented with 128 SRL16 primitive cells in the Spartan-3 FPGA on the
Digilent Spartan-3 starter board [7] with the experimental setup from Section
V.

and board, because the power switching characteristic depends
mainly on different capacitances inside the FPGA as well as
on the board. Furthermore, the power supply circuit has also
a high influence on the impulse response. Figure 3 shows an
example impulse response for the Digilent Spartan-3 starter
board [7].

Experimental results (see Section V) show that the im-
pulse responses of different boards look similar, but are not
completely the same. Using mathematical approximation, the
impulse response can be generalized to find a function which
can be parameterized over as few parameters as possible
and which hopefully covers all possible FPGA and board
combinations. After transformation of the measured impulse
responses into the frequency domain, only few independent
frequency components can be identified in the spectrum.
Each of those components is approximated through a basic
frequency component and an envelope function. A good start-
ing point for approximating the envelope is the probability
density function of the χ2

n-distribution The χ2
n-distribution

is a common continuous probability distribution of a sum
of squares of n independent random variables. The density
function of the χ2

n-distribution P (n, t) is especially suitable
for approximation, because it has only one extra parameter n
besides the time t:

P (n, t) =
t

n
2−1 · e−t

n

2
n
2 · Γ(n2 )

∀n, t > 0, (2)

where the gamma function Γ(x) is defined as:

Γ(x) =
∫ ∞

0

tx−1e−t dt. (3)

A frequency component hi(t) can therefore be approximated
by:

hi(t) = αi · P (ni, t) · sin(2πfit+ φi), (4)

with four parameters that need to be adapted: ni, αi, fi,
and φi. The approximated impulse response consists of the
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combination of l different frequency components:

h(t) =
l∑
i=1

hi(t) (5)

As our experimental results in Section V show, only two
or three different frequency components are necessary to
get a good approximation. The different parameters can be
adapted using a genetic algorithm [8] on the measured impulse
response from a given FPGA and board combination. We used
the minimization of the average square error as optimization
goal. Note that the number of used shift registers influences
the impulse response as well. However, we show later that
the usage of more or less shift registers only influences the
amplitude α of the signal which can be adapted by a constant
factor.

B. Synchronization
For measuring the impulse response as well as for the

decoding the transmitted data later, several repeated equal
data sequences can be accumulated to reduce the noise and
disturbances which are not related to the sequence. For this
approach, it is important that the individual sequences to be
accumulated are exactly aligned over the time axis. This can
be done by synchronizing the oscilloscope sample clock with
the shift clock inside the FPGA.

Another way to get exact, noise-reduced data is by mul-
tiple oversampling inside the oscilloscope for recording the
measurements. Here, a subsequent resynchronization on the
measured data might be necessary.

To check this, the different sequences are plotted on top
of each other. If the sequences match exactly, no resyn-
chronization is necessary. If there is a shift over time, a
resynchronization must be done. It is only necessary to look
for the positions of the maxima if a sequence consists of only
one event. A resynchronization is necessary, if the positions of
the maxima drift away over time and can be done by inserting
or removing samples for compensating the deviation.

C. Channel Approximation
The measured signal y(t) can be approximated with the help

of the impulse response:

y(t) = c ·
(∫ ∞
−∞

h(τ) · x(t− τ) dτ
)

+ n(t). (6)

x(t) is the input signal, consisting of Dirac-pulses which
encode the signature. For each dirac-pulse, a scaled impulse
response is inserted. The scaling factor c depends on the
amplitude of the pulse which therefore corresponds to the
number of currently active shift registers. The assumption that
the amplitude of the pulses depends linearly on the number
of shift registers has been confirmed by experiment. Figure 4
shows the measured amplitude of the impulse response caused
by different numbers of active shift registers.

Furthermore, the noise component n(t) has influence on
the decoding quality. The quality of the signal y(t) can be
measured by the SNR. If the SNR is low, it is difficult or
impossible to correctly decode the corresponding symbol. The
SNR is therefore an indicator of how reliable the decoding of
a given signal is.
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Fig. 4. The amplitudes of the impulse responses caused by different numbers
of active shift registers in the Spartan-3 FPGA on the Digilent Spartan-3
starter board. With more than 32 SRLC16E in use, the peak voltage is directly
proportional to the number of shift registers. If less than 32 SRLC16E are
used, the peak amplitude is in the same range as the noise amplitude, which
falsified the measurement.

D. Intersymbol Interference
If the symbols superpose, for example when choosing a

too small symbol period length, then intersymbol interference
(ISI) occurs. This has the same effect as noise and decreases
the quality of the decoding and results in a higher bit error rate.
If a certain symbol σ0 has the length τ0 and the time slots for
transmitting the symbols τ ′ are shorter than the symbol length
(τ ′ < τ0), then the symbol σ0 interferes with

⌊
τ0
τ ′

⌋
subsequent

symbols.
IV. ENCODING AND DECODING

In this paper, we present a method for decoding data through
correlation. To achieve good correlation results, the encoding
of the signature should be interference-free. To avoid ISI,
the time slots for sending the symbols τ ′ must be larger
then the symbol length τσ . So that the impulse response
h(t) can be used directly for correlation, all symbols should
consist only of one pulse. Therefore, we use the encoding:
Z = {(γ, δ, 1), (γ̄, δ, 1)}. The symbol length is equal to the
length of h(t), and a time slot is τ ′ = δ · 1

fclk
. A necessary

condition for an interference free code is: δ ≥ τσ · fclk.
The question is how to estimate the symbol length τσ which

is also the length of the impulse response. The length of h(t)
depends on the combination of FPGA and board which can
be measured and approximated (see Section III). However,
the FPGA and board combination is sometimes not known at
design time. This is possible if the sending core is published as
netlist core, e.g., as a power watermarked core. In this case, it
is up to the core customer to choose the FPGA and the board.
Due to this reason, a safety margin should be considered.
Experimental results in Section V show that between 80 and
100 ns after the start of the symbol, 90% of the energy is
emitted and after 125 ns, over 95%. If we assume clock
frequencies fclk < 200 MHz, then the number of clock cycles
δ = 25 used for sending one symbol should be sufficient.
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The cross-correlation Zx,y(t) of two functions x(t), y(t) is
defined as:

Zx,y(t) =
∫ ∞
−∞

x∗(t) · y(t+ τ) dτ. (7)

In equation 7, x∗(t) denotes to the complex conjugate of
x(t). The cross-correlation is a measure of the similarity of
functions x(t) and y(t), if y(t) is shifted over the time axis
t. The maximum of Zx,y(t) denotes the time with the highest
similarity.

To decode the data, the signal is correlated with the ap-
proximated impulse response h(t). If the signature bit ’1’ was
sent, then the correlation result has a peak at this position,
otherwise when a ’0’, was sent, no peak occurs. For better
decoding, the signal and the impulse response are mixed down
into the base band of one frequency component of h(t), e.g.,
h1(t). Then, the mixed down signal and impulse response
are correlated. Figure 5 shows such a correlation result. A
possible decoding algorithm can look at the positions of the
symbols in order to find peaks. If the first symbol position
is known, the other positions can be calculated based on the
encoding scheme and the clock frequency. The symbols on
these positions can be decoded by making a threshold decision.
If the signal value is higher than a certain threshold, the
decoder decides on a ’1’, otherwise on a ’0’. However, after
transmission of several bits with the value ’1’, the absolute
peak values are increasing slowly. Therefore, the threshold
value must be adapted dynamically based on the precedented
values.
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Fig. 5. Detection of the data bits through down mixing into the base
frequency of the impulse response component with the most energy content
(here fi = 43 MHz) and correlation with the down mixed hi(t). Detection
is done by searching the maxima and applying a dynamic threshold decision.
The sample times for the decisions are depicted with dotted lines.

Obviously, better results could be achieved if more fre-
quency components are integrated into the decoding process.
If this is necessary, the decoding is done for each component
alone and the decoded data is compared. If bits differ, then
these bits are less reliable.

In our methodology, the data is sent in multiple data packets.
The first symbol position in a data packet can be detected (e.g.,

by synchronization methods). In order to increase detection
ratio for the first symbol, we use a preamble to determine the
correct start position of the payload. The preamble is a known
bit sequence that has the same encoding as the user data and
is transmitted directly before the payload data.

In [3] and [2], we have proposed power watermarking
methods which have different encoding/decoding schemes and
which can also be used for communication over the power
channel. The basic method uses an encoding scheme of Z =
{(γ, 1, 1), (γ̄, 1, 1)}. The experimental results in [2] show that
the decoding is often not possible due to heavy intersymbol
interference. The encoding scheme of the enhanced robustness
encoding method is Z = {(γ, 1, ω), (γ̄, 1, ω)}. Encoding with
ω = 32 improves the decoding rate by far. However, this
encoding scheme does not strictly avoid ISI. The impact of
ISI is less because the symbol length is extended. For certain
FPGA and board combinations, the different superimposed
impulse responses might cancel out each other. This could
happen if the phases of two subsequently following impulse
responses are complementary. Therefore, the interference-free
encoding of the correlation method presented in this paper is
preferred even if the experimental results of our setup shows
a better decoding with the non-interference-free enhanced
robustness encoding method.

The BPSK method, introduced in [3], uses a two step
encoding. First, the data is encoded using binary phase shift
keying (BPSK) and then the result is encoded with an on-off
keying (OOK) with Z = {(γ, 1, ω), (γ̄, 1, ω)}. Experimental
results using ω = 10 have shown that correct decoding is
possible even if many interferences from other working cores
are present. The disadvantage of this method is the decreased
data transfer rate. However, on designs with heavy interfer-
ences from other cores, the BPSK method can also be used
for transmitting data over the power channel. Furthermore, the
encoding of the OOK modulation can be adapted to the ISI-
free encoding scheme of the correlation method.

The decoding results can be further improved by sending
each data packet repeatedly and averaging several signals
before decoding to reduce the noise level and filter out
interferences which are not correlated with the encoded data.
This can in general be done for all different encoding schemes,
but again with the disadvantage of a decreased transfer rate.

V. EXPERIMENTAL RESULTS

In the following experiments, we used the same two FPGA-
boards as in [3], the Digilent Spartan-3 Starter Board [7], and
a board equipped with a Xilinx Virtex-II XC2V250 FPGA.
On the second board, many other components such as an
ARM micro-controller and interface chips are integrated to
demonstrate that the algorithm is also working on multi-chip
boards. The Spartan-3 board operates at a clock frequency of
50 MHz, the Virtex-II board at 74.25 MHz.

On both boards, the voltage is measured on the back of the
printed circuit board directly on the via which connects the
FPGA with the power plane of the printed circuit board. We
used a 50 Ω wire with a 50 Ω terminating resistor soldered
directly on the vias. We have used a DC block element and a
25 MHz high pass filter to filter out the DC component and
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Fig. 6. The measured impulse responses of the Spartan-3 Board (above)
and the Virtex-II Board (below). The impulse responses were averaged over
many single impulse responses on each board. Furthermore, for each impulse
response the percentage of the energy content is shown over the time.

the interferences of the switching voltage controller. We used
a LeCroy Wavepro 7300 oscilloscope with 20 Giga Samples
per second to measure the voltage. The voltage amplitude of
the measured switch peak is very small, so we used a digital
enhanced resolution filter to improve the dynamics, at the
cost of a decreased bandwidth. The signal of the length of
200 µs is recorded on the internal hard disc of the oscilloscope.
This trace file is then transferred to a personal computer and
analyzed there.

First, we measured the impulse responses of the two boards
of the experimental setup. The impulse is generated using a
shift of 64 16 bit shift registers (SRL16) inside the FPGA
which are initialized with a ”010101 . . . ” pattern to achieve
the highest possible toggle rate. Figure 6 shows the measured
impulse responses of the two boards.

TABLE I
APPROXIMATION VALUES AND ERRORS FOR h(t) FOR THE SPARTAN-3

AND VIRTEX-II BOARD.

α f φ n
Spartan-3 Board Approx. Error: 1.5%

h3(t) 0.56 mV 43.0 MHz 1.7π 11.3
h2(t) 0.17 mV 26.9 MHz 1.6π 4.49
h1(t) 0.16 mV 75.7 MHz 1.5π 19.2

Virtex-II Board Approx. Error: 4.7%
h3(t) 1.96 mV 36.5 MHz 0.06π 12.6
h2(t) 1.49 mV 26.6 MHz 1.1π 12.3
h1(t) 1.02 mV 66.5 MHz 1.7π 23.8

Fig. 7. Many subsequently measured impulse responses (symbols) are
depicted on the left side. The measurement is done for the Virtex-II Board,
where the measured drift is too high. By plotting the maximum of each symbol
the drift can been seen (shown on the right side). Each cross corresponds to
the maximum of a symbol and the straight line depicts the average drift.

The approximation of the impulse responses of the two
boards was done using a genetic algorithm and for three
frequency components (l = 3) each. The resulting parameters
α, f, φ, and n are shown in Table I.

The measurements for the synchronization between the
clock frequency of the board and the sample frequency of the
oscilloscope depicted that the sample drift for the Spartan-3
board is good enough, whereas for the Virtex-II board, we
need a subsequent resynchronization (see Figure 7). This was
done by removing sample values for each symbol to lower the
drift into a specified range.

The achieved data transfer rates depend on the encoding
scheme as well as on the repetition rate and the size of the
data packets. Using no data repetition, the encoding scheme
Z = {(γ, 25, 1), (γ̄, 25, 1)}, and fclk = 200 MHz, we are
able to achieve gross data rates of up to 8 Mbits/s. On a
more realistic scenario with a packet repetition rate of ten and
a 12 bit preamble and 32 bit data, the data achievable transfer
rate is 500 kbit/s. The data rate for the enhanced robustness
encoding method is similar to the correlation method, whereas
the robust BPSK method achieves only data rates of approxi-
mately 450 kbit/s without data packet repetition.

VI. CASE STUDY: POWER WATERMARKING

In this section, we present as case study a power water-
marking technique, introduced in [2] and [3]. First, a short
introduction and related work are shown. The technique will
be extended by the correlation method introduced in Section
IV and experimental decoding results will be presented.

A. Introduction and Related Work
IP cores are licensed and distributed like software. One

problem of the distribution of IP cores, however, is the lack
of protection against unlicensed usage. The cores can be
easily copied. Some core suppliers encrypt their cores and
deliver special development tools which can handle encrypted
cores. The disadvantage is that common tools cannot handle
encrypted cores and that the shipped tools can be cracked so
that unlicensed cores can also be processed.

Another approach is to hide a signature in the core, a so
called watermark, which can be used as a proof of the original
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authorship. There exist many concepts and approaches on the
issue of implementing a watermark into a core. Watermarking
procedures can be categorized into two groups of methods:
additive methods and constraint-based methods.

In additive methods, the signature is added to the functional
core, for example, by using unused lookup-tables in an FPGA
[9]. The constraint-based methods were originally introduced
in [10] and restrict the solution space of an optimization
algorithm by setting additional constraints which are used
to encode the signature. Some methods for constraint-based
watermarking in FPGAs exploit the scan-chain [11], preserve
nets during logic synthesis [12], place constraints for CLBs in
odd/even rows [13], or route constraints with unusual routing
resources [13].

The major drawback of these approaches are the limitations
of the verification possibilities of the watermarked core. With
a good watermarking strategy, the verification can be done
only with the given product and without additional information
from the producer. The bitfile of an FPGA can be extracted by
wire tapping the communication between the PROM and the
FPGA. Only the approaches presented in [9] and [14] offer
the possibility to detect the watermark in these bitfiles.

The approach in [14] is using the content of the lookup
tables in an FPGA for the identification of a core. From
the FPGA bitfile, all lookup table contents and positions are
extracted and compared with the lookup table contents of the
netlist IP core. Then, a covering is calculated to show if the
core is included in the FPGA design or not. However, some
FPGA suppliers provide an option to encrypt the bitstream.
The bitfile is stored in the PROM in encrypted form and will
be decrypted inside the FPGA. Monitoring the communication
between PROM and FPGA in this case is useless, because only
the encrypted file will be transmitted. Other possibilities are to
verify the watermark by monitoring the temperature [15] or,
in our case, the power. The temperature approach for bitfile
cores is the only watermarking technique which is commercial
available. An overview and evaluation of existing watermark
techniques is given in [16].

B. Basic Concept

The power watermarking methods described in [2] and [3]
use two shift registers, a large one for causing a recognizable
signature-dependent power consumption pattern, and a shift
register storing the signature itself (see Figure 1 in Section II).
The signature shift register is clocked by the operational clock
and controls the power pattern generator corresponding to the
encoding scheme. To avoid interference from the operational
logic in the measured voltage, the signature is only generated
during the reset phase of the core.

In some FPGA architectures (e.g., Xilinx Virtex), the lookup
tables (LUTs) can also be used as a shift register [17]. A 4
Bit lookup table can also be used as a 16 Bit shift register.
And, also for the Xilinx Virtex architecture, the content of
such a shift register can be addressed by the LUT input ports.
This allows us to use functional logic for implementing the
power pattern generator. The core operates in two modes,
the functional mode and the reset mode. In the functional
mode, the shift is disabled and the shift register operates as a

normal lookup table. In the reset mode, the content is shifted
according to the signature bits and consumes power which can
be measured outside of the FPGA. To prevent the loss of the
content of the lookup table, the output of the shift register is
fed back to the input, such that the content is shifted circularly.
When the core changes to the functional mode, the content
must be shifted to the proper position to have a functional
lookup table for the core.

The advantages of using the functional logic of the core
as a shift register are the reduced resource overhead for
watermarking and the robustness of this method, because these
shift registers are embedded in the functional design. It is hard
if not impossible to remove shift registers without destroying
the functional core.

The watermarking embedding procedure is easy to use and
consists only of two steps. First, the core must be embedded
in a wrapper, which contains the control logic for emitting
the signature. This step is done at the HDL-level and before
synthesis. The second step is at the netlist level after synthesis.
A program converts suitable four input lookup tables (LUT4)
into shift registers (SRL16) for the generation of the power
pattern generator and attaches the corresponding control signal
from the control logic in the wrapper. The initial content of
the lookup table is left unchanged.

The wrapper contains the control logic for emitting the
watermark and the shift register, holding the signature. The
ports of the wrapper are the same for the core, so we can
easily integrate this wrapper into the hierarchy. The control
logic enables the signature shift register, while the core is in
reset state. Also, the power pattern shift registers are shifted
in correspondence to the output of the signature shift register.
If the reset input of the wrapper gets inactive, the function of
the core cannot start at the same cycle, because the content in
the shift registers is probably not in the correct position. After
that the control logic deactivates the internal reset signal to
start the normal function mode.

C. Correlation-Based Detection Method

The signature is encoded and decoded for the correlation de-
tection method as described in Section IV. The measurements
are done with the experimental setup, described in Section
V. The functionality of the correlation detection method is
evaluated for a Des56 core from opencores.org [18]. After
the synthesis step, only 40 out of 715 lookup tables from
the Des56 core have been transformed into SRL16 and a
32 Bit signature has been added. The decoded sequence was
compared with the encoded signature from the core to evaluate
the bit error rate.

We have evaluated three cases, one where only the water-
marked core is implemented (case A), and one where the
watermarked core and the original core are implemented to
check the functionality of the watermarked core (case B). This
is done by connecting both cores to the same pseudo random
input data and comparing the output when the cores are not in
reset state. In case C, the unwatermarked core has an inverted
reset, so the core is working when the watermark is sending the
signature. We embedded the signature S1 =”153CA9F8” with
a 12 bit preamble. Note that our correlation detection methods
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use an ISI-free encoding. Therefore, the experimental results
are not depending on the signature, unlike methods in [3].

TABLE II
DECODING RESULTS OF THE CORRELATION-BASED DETECTION METHOD

OBTAINED FOR A Des56 CORE.

Case Board Bit Error SNR SNR
Rate RMS h3(t) h2(t)
in % in mV in dB in dB
Des56 Core

Signature S1, Decoding without packet repetition
A Spartan-3 0 - 3.6 -9.6
B Spartan-3 18.5 0.698 1.9 -
C Spartan-3 15.3 1.13 1.6 -
B Virtex-II 6.2 2.44 3.4 2.5
C Virtex-II 15.3 3.28 2.8 1.9

Signature S1, Decoding using four repetitions
B Spartan-3 3.1 0.648 2.0 -
C Spartan-3 6.2 0.987 1.6 -
B Virtex-II 3.1 2.18 3.6 2.7
C Virtex-II 3.1 2.93 2.9 2.2

The experimental results for the correlation detection
method are shown in Table II. The decoding was done with
the correlation of the highest frequency component of the
corresponding impulse response. On both boards, this is the
component h3(t) (see Table I). To enhance the results, the
second strongest frequency component, on both boards h2(t),
are additionally used.

The SNR values in Table II are small compared to the
methods reported in [3]. One reason is that only the used
frequency component counts to the signal and all other fre-
quency components of the impulse response are calculated to
the noise. Furthermore, the values reported in Table II are
acquired by decoding only one signature pattern, whereas the
decoding for the other methods uses the average of many
repeated signatures to lower the noise level. The values in the
lower half of Table II correspond to a decoding which uses
the average of four repeated signature patterns.

Nevertheless, the BPSK and the enhanced robustness en-
coding method exceeds this method in forms of the bit error
rate for these boards. However, this method is signature and
board independent and can be further enhanced, e.g., for
multiplex methods where multiple cores can concurrently send
signatures.

VII. CONCLUSION

In this paper, we introduced a method for using the power
pins as a communication channel for sending data from the
cores out of the FPGA. The data may be received by decoding
the measured power supply voltage. Possible applications
include a) monitoring, b) portless debugging, and c) power
watermarking. The advantage of this technique is that no
further pins are required, which makes this method suitable
if an additional communication channel is needed without
alteration of the board or the pin assignment.

With our experimental setup consisting of a digital oscil-
loscope and a decoding algorithm running on a standard PC,
no real time decoding is possible. However, by designing an
integrated decoding device which is able to measure and con-
currently decode the signal, real time communication should
be possible.

We characterized the power communication channel for real
FPGAs on two example boards and presented a method for
a general characterization. A new encoding/decoding method
based on correlation of the impulse response has been intro-
duced. Furthermore, a power watermarking case study has
been presented. Here, the power watermarking techniques,
introduced in [2] and [3] are extended by an advanced
encoding/decoding approach. Experimental results show that
decoding is possible even if interferences from other cores
are present. However, the decoding can be further improved
if more shift registers or a higher repetition rate of per data
packet are used. We expect this encoding/decoding method
to scale to other (newer) devices as well. Furthermore, the
protection of the transferred data using error correction codes
is envisaged which should further improve the communication
quality.
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