
ShrinkWrap: Compiler-Enabled Optimization and
Customization of Soft Memory Interconnects*

Eric S. Chung
Microsoft Research

Michael K. Papamichael
Carnegie Mellon University

Abstract—Today’s FPGAs lack dedicated on-chip memory
interconnects, requiring users to (1) rely on inefficient, general-
purpose solutions, or (2) tediously create an application-specific
memory interconnect for each target platform. The CoRAM
architecture, which offers a general-purpose abstraction for
FPGA memory management, encodes high-level application
information that can be exploited to generate customized soft
memory interconnects. This paper describes the ShrinkWrap
Compiler, which analyzes a CoRAM application for its con-
nectivity and bandwidth requirements, enabling synthesis of
highly-tuned area-efficient soft memory interconnects.

I. INTRODUCTION

The lack of a dedicated on-chip memory interconnect
continues to be a weak link when it comes to creating a
balanced, high-performance design on an FPGA. Today’s
FPGAs do not provide native on-chip interconnects such as a
memory bus or network-on-chip (NoC) and continue to rely
on the classic reconfigurable routing architecture for wire-
like connections between many distributed clients and off-
chip memory interfaces. When building the memory system
for an application, designers typically face two opposing yet
equally undesirable choices: (1) rely on inefficient, vendor-
specific buses and NoCs realized on top of reconfigurable
logic, or (2) by hand, manually create and tune a memory
interconnect matched to the application’s latency and band-
width requirements.

In this paper, we present a new compiler called
ShrinkWrap that enables graceful optimization and tuning
of the memory interconnect on a per-application basis.
Unlike conventional flows for targeting “bare-metal”
FPGA abstractions, ShrinkWrap is fundamentally layered
upon the recently proposed CoRAM FPGA computing
abstraction [1]. The use of CoRAM uniquely exposes both
flexibility and high-level information that can be exploited
during the interconnect generation process.

II. WHAT IS CORAM?
CoRAM was originally conceived as a portable, general-

purpose architecture layer for FPGA-based computing [1].
The CoRAM programming model offers (1) an easy-to-use
software abstraction for FPGA on-die memory management
and (2) portability across any supported FPGA platform,
either through native support in future FPGAs or based
on soft-logic implementations on existing FPGAs. As illus-
trated in Figure 1 (top), CoRAM deliberately partitions an

∗A full-length technical report is available at www.ece.cmu.edu/˜coram.

DMA Clusters

Mem Mem Mem

On-Chip
Memory

Interconnect

DRAM
Interfaces

Control
FSM

FPGA

Shared
Memory

Software
Control
Threads

Core
Logic C

o
R

A
M

Figure 1. The CoRAM Architecture (adapted from [2]).

application into two separate components: Core Logic and
software control threads. Core Logic, typically comprised
of application-specific cores on the FPGA, are attached to
distributed CoRAM blocks (SRAMs) with logical connec-
tions to any off-chip DRAM interface (seen by the user as
a global shared memory with a single address space). To
perform off-chip memory accesses, a collection of C-based
software control threads are used to specify the sequencing
and movement of data between external DRAM and the on-
chip CoRAMs.

Compilation Flow. A C-based software control thread cap-
tures an applications’ high-level memory access behavior but
does not specify an actual implementation (in similar spirit
to a portable ISA). In practice, a tool chain must translate
the high-level threads and their memory access invocations
onto a memory system that can service and track logical
memory accesses and efficiently move data between edge
DRAM interfaces and the distributed CoRAM blocks.

The bulk of these mechanisms—highlighted in the pro-
posed microarchitecture shown in Figure 1 (bottom)—
comprise a scalable on-chip memory interconnect and mul-
tiple DMA clusters used to provide connectivity between up
to thousands of distributed CoRAM blocks and a multitude
of DRAM interfaces. To reduce the number of end-points
on the network, multiple CoRAM blocks are grouped into
clusters, which supply a fixed allocation of off-chip memory
bandwidth. Control threads in the programming abstraction
can be further implemented by direct synthesis onto finite
state machines or executed on dedicated micro-controllers.

2013 21st Annual International IEEE Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4969-9/13 $26.00 © 2013 IEEE

DOI 10.1109/FCCM.2013.56

113

Cluster

Thread A

General-Purpose Interconnect

DRAM DRAM

Thread B

Cluster

Memory

Accesses

Thread A

General-Purpose Interconnect

Cluster

DRAM DRAM

Thread B

Baseline Thread Aggregation

Combined

Memory

Accesses

General-Purpose Interconnect

DRAM DRAM

Thread Disaggregation

Thread A Thread B

Cluster Cluster Cluster

Disaggregated

Memory

Accesses

Thread B

CoRAMs

M C C M

C C C C

C C C C

M C C M

Sample Generic

Interconnect (Mesh)

M Memory Port

CoRAM Cluster C

Router

Thread A

CoRAMs

Figure 2. Simple Mapping Strategies from Threads to Memory Interconnect.

Read

Cluster

Thread

R W
Write

Cluster Read-only

CoRAM

DRAM DRAM

General-Purpose Interconnect

Read-only

Memory

Accesses

Write-only

Memory

Accesses

Write-only

CoRAM

Read

Cluster

Thread A

R

Read-only Interconnect

Write

Cluster

DRAM DRAM

Write-only

Interconnect

Thread B

Read

Cluster

Read-Write Classification with

Asymmetric Clusters

Asymmetric Memory Interconnect

W

W

R

Sample Specialized Interconnect

(Tree)

M M M M

R R R R R R W W W W W W

M Memory Port

 Read Cluster R Router

 Write Cluster W

Figure 3. Advanced Mapping Strategies from Threads to Memory Interconnect.

III. THE SHRINKWRAP COMPILER

Control threads in CoRAM appear as high-level specifi-
cations for memory accesses but encode information such
as: (1) actual connectivity between specific CoRAMs and
memory ports in the system, (2) the actual direction of
memory traffic, and (3) with static analysis, the actual
amount of traffic demand. With this knowledge, ShrinkWrap
introduces several compile-time optimizations to guide the
soft memory interconnect generation process, enumerated in
detail below.

Baseline: Black-Box Mapping Strategy. Figure 2 (left)
shows a baseline, black-box mapping strategy used in
prior compilation approaches [2]. In this approach, the
control threads and their associated CoRAM blocks are
each assigned to individual private clusters. At the macro
scale, a “black-box” general-purpose interconnect with a
fixed topology and capacity (i.e., number of nodes, link
width, frequency) is first selected by the user to provide
bulk data transfers between the clusters and the off-chip
DRAM interfaces. The clusters and DRAM interfaces are
then assigned and mapped to available end-points on the
network. Although this is the simplest strategy to implement,
it is conservatively over-provisioned in bandwidth and could
introduce significant overheads in area.

Thread (Dis-)Aggregation. Thread Aggregation and Disag-
gregation improves upon the baseline method by statically
analyzing the control threads (and the CoRAMs they man-
age) and combining (or decomposing) their assignment to
cluster resources. Figure 2 (middle) illustrates the thread
aggregation method, in which CoRAMs belonging to two
threads are assigned to a single cluster. Thread aggrega-
tion reduces soft logic area consumption by decoupling

the number of threads and their resources (i.e., number
of logical network end-points) from the physical number
of interconnect end-point switches. Aggregation sacrifices
memory bandwidth in exchange for a lower area cost and is
most suitable for compute-intensive applications with high
arithmetic intensity. Thread disaggregation, on the other
hand, spreads the CoRAMs managed by a logical thread
across multiple clusters. Instantiating additional clusters can
increase the overall throughput of the memory system at the
cost of additional endpoints on the interconnect. Disaggrega-
tion is most suitable for memory-intensive applications with
high bandwidth and low arithmetic intensity.

Read-Write Classification with Asymmetric Clusters. A
more advanced form of thread disaggregation is illustrated
in Figure 3 (left), in which CoRAM blocks belonging to a
single thread are classified and mapped separately to clusters
that are specialized for unidirectional traffic. In this setting,
the ShrinkWrap compiler statically analyzes the C-based
software control thread program and classifies the CoRAMs
based on their usage over the lifetime of application exe-
cution: read-only, write-only, and read-write. A read-only
CoRAM, for example, is only used by the application to
perform in-bound data transfers from the network/DRAM.
Once classified, CoRAMs of each type are mapped to
clusters that only support one-way communication to the
memory interconnect. A read cluster (Figure 3, middle),
consumes less area than a standard cluster and only provides
one-way scatter-gather capability and a single inbound link
from the interconnect. (Bidirectional read-write CoRAM
clusters are still attached to both memory interconnects.)

Asymmetric Memory Interconnect. Figure 3 (right) illus-
trates all of the previous optimizations combined, where

114

Topology Router Flow Ctrl LUTs MHz
4x4 Mesh (baseline) VC-based credits 46361 112

4x4 Mesh VOQ-based peek 31197 126
Symmetric Tree VOQ-based peek 5137 142

Asymmetric Tree VOQ-based peek 3642 220
All networks have 128-bit links and equal buffering per router.

Table I
SYNTHESIS RESULTS FOR INTERCONNECT ALTERNATIVES.

logically centralized threads and CoRAMs are now entirely
decoupled from physical clusters and physical end-points
on the memory interconnect. In the final optimization, the
read, write, and read-write clusters can further be mapped
into asymmetric, decoupled read- and write-only memory
interconnects, which can now be configured and optimized
independently in network topology and capacity for each
traffic direction. In the ShrinkWrap compiler, the user has
the option of enabling a subset or all of the optimizations.

IV. INTERCONNECT OPTIMIZATIONS

Prior compilation approaches for CoRAM relied on the
public-domain CONNECT framework [3] to generate black-
box memory interconnects—i.e., the topology, router archi-
tecture and other details, such as in-order delivery guarantees
and virtual channel support, were hidden from the applica-
tion. ShrinkWrap utilizes a new version of the CONNECT
NoC generation framework that includes multiple new op-
timizations and features, including support for building
asymmetric memory interconnects. Unlike standard meshes
or rings used in previous studies [2], ShrinkWrap leverages
parameterizable, unidirectional, tree-based topologies that
are more efficient at handling cluster-to-memory traffic.

ShrinkWrap also incorporates router-level optimizations
that were not available in the original CONNECT frame-
work: (1) the elimination of Virtual Channels (VCs) due to
the use of independent networks for read and write traffic,
which vastly simplifies the router design and lowers its cost,
(2) an efficient way to implement virtual output queueing
(VOQ) by packing multiple queues into a single physical
LUTRAM, and (3) the use of peek-based flow control (as
opposed to more expensive credit-based), which allows a
router to directly query the occupancy of adjacent routers.

Table I shows FPGA synthesis results assuming a soft
logic CoRAM system with 16 endpoints (4 memory ports
and 12 CoRAM clusters), starting from a baseline 4x4 VC-
based mesh NoC that employs credit-based flow control
and progressing all the way to an optimized asymmetric
unidirectional VOQ based pruned tree topology that employs
peek flow control. Our results show significant area and
frequency improvements—from 46K to 3.6K LUTs and
112MHz to 220MHz.

V. EVALUATION

We compare generated RTL designs that employ
ShrinkWrap optimizations versus the conventional black-
box method. We developed two FPGA accelerators using
the CoRAM API [1]: (1) Dense, Single-Precision Matrix

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16

Th
ro

u
gh

p
u

t
(S

FL
O

P
S/

C
yc

le
)

Instantiated Clusters

Dense Matrix Multiply Throughput

Bidirectional Ring 2-D Mesh

Tree (Asymmetric Clusters) Tree (Symmetric Clusters)

Figure 4. Dense Matrix Multiply Throughput.

0

50000

100000

150000

200000

250000

300000

2-D Mesh
(8C)

Bidirectional
Ring (8C)

Sym-Tree
(8C)

Asym-Tree
(4W-4R)

FP
G

A
 L

U
Ts

Dense Matrix Multiply Area Comparison

Core Logic
Clusters
Network
Threads

Figure 5. Dense Matrix Multiply Area Comparison.

Throughput Efficiency (FLOPs/Cycle/LUTs x 1e4)
2-D Mesh (6C) 8.4

Bidirectional Ring (8C) 4.75
Sym-Tree (8C) 11.4

Asym-Tree (4W-4R) 12.4

Table II
DENSE MATRIX MULTIPLY THROUGHPUT/AREA EFFICIENCY.

Multiply (DMM), and (2) Single-Precision Black-Scholes
Option Pricing (BS). Our study targets a large-scale Xilinx
Virtex-6 LX760 FPGA [4] allowing up to 760 BlockRAMs
to be used as CoRAMs. We model in RTL an aggressive
memory system with 25.6 GB/sec peak bandwidth exposed
as 16 memory ports at 100MHz. All performance results are
collected by simulating the generated designs at 100MHz
using Synopsys VCS. All area and timing results are
reported using Xilinx ISE 13.1 targeting the LX760 (-2).

A. Methodology

Using the CoRAM API, experimenting with different soft
memory interconnect configurations can be achieved without
any changes to the control thread program or the core
logic of the application. For BS and DMM, we configure
ShrinkWrap to emit conventional networks (e.g., 2-D mesh)
and both symmetric and asymmetric tree-based networks and
clusters. The ability to adjust the number of clusters of each
type (read, write, read-write) is a “major knob” to scale the
memory system bandwidth in proportion to traffic demand.
For a fixed number of clusters, ShrinkWrap uniformly maps
instantiated CoRAMs across available resources.

Optimizing Conventional Interconnects. In the conven-
tional interconnects, the clusters are connected by a point-
to-point network such as a 2-D mesh or ring. For tuning,
we systematically instantiate a few clusters and gradually
scale them (along with the network size) until performance

115

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9

Th
ro

u
gh

p
u

t
(O

p
ti

o
n

s/
C

yc
le

)

Instantiated Clusters

Black-Scholes Throughput
Bidirectional Ring
2-D Mesh
Tree (Asymmetric Clusters)
Tree (Symmetric Clusters)

4W-4R
4W-2R

1W-1R

4W-1R

Figure 6. Black-Scholes Throughput.

0

50000

100000

150000

200000

250000

300000

2-D Mesh
(6C)

2-D Mesh
(8C)

Sym-Tree
(8C)

Asym-Tree
(4WC-4RC)

Sym-Tree
(6C)

Asym-Tree
(4WC-2RC)

FP
G

A
 L

U
Ts

Black-Scholes Area Comparison

Core Logic
Clusters
Network
Threads

Figure 7. Black-Scholes Area Breakdown Comparison.

saturation is reached (or resources are exhausted). This
performance is established as a baseline for all subsequent
experiments. In the case of a bidirectional ring, memory
interfaces and clusters are interspersed to reduce hotspots.
In the 2-D mesh, memory interfaces are placed near the
edges, while clusters occupy remaining nodes.

Optimizing Tree-based Interconnects. With optimizations
enabled, ShrinkWrap replaces the conventional networks
with tree-based networks. In a symmetric tree-based net-
work, identically-configured tree networks are used to fa-
cilitate memory traffic in both directions between clients
and memory. Asymmetric tree-based networks allow the
independent trees to be customized and scaled separately. We
also have the option to select specialized clusters—referred
to as RW-Cluster (full read-write support), W-Cluster (write-
to-CoRAM only), and R-Cluster (read-from-CoRAM only).
To find the optimal enumeration of cluster types, we explore
different configurations by starting with an optimal number
of RW-Clusters, then systematically converting them to
asymmetric R- and W-Clusters.

B. Results
Dense Matrix Multiply Discussion. Figure 4 shows the
throughput of DMM as a function of instantiated clusters.
The “Tree (Symmetric Clusters)” shows the isolated per-
formance of the tree using RW-Clusters only. The curve
labeled “Tree (Asymmetric Clusters)” uses a fixed ratio of R-
Cluster and RW-Clusters to match the bandwidth demands of
DMM—e.g., at 8 clusters, the “Tree (Asymmetric Clusters)”
instantiates 4 W-Clusters and 4 RW-Clusters. Across all
networks except the ring, throughput scales with the total
number of clusters until performance is saturated (at about
8 clusters).

Throughput Efficiency (FLOPs/Cycle/LUTs x 1e6)
2-D Mesh (6C) 2.2
2-D Mesh (8C) 2.4
Sym-Tree (8C) 3.0

Asym-Tree (4W-4R) 3.3
Sym-Tree (6C) 3.1

Asym-Tree (4W-2R) 3.3

Table III
BLACK-SCHOLES THROUGHPUT/AREA EFFICIENCY.

Area Comparison. Although “Asymmetric Tree” and “2-
D mesh” achieve comparable performance, Figure 5 shows
that the 2-D mesh network incurs significantly more area
overhead. The ShrinkWrap optimizations that employ tree-
based networks prune out unnecessary links and datapaths—
reducing the overhead by more than 2X. The classification of
traffic (i.e., splitting CoRAMs into separate W-, R-, and RW-
Clusters) further improves the cluster area, as illustrated in
Figure 5, which compares the tree with and without symmet-
ric clusters (“Sym-Tree” vs. “Asym-Tree”). Table II shows
the throughput of DMM normalized to area. The asymmetric
approach provides a 37% increase in overall efficiency. In
general, the best approach combines the efficient tree-based
networks with asymmetric clusters configured and tuned to
the application’s requirements.
Black-Scholes Discussion. The trends observed in the
DMM kernel are similar in BS. The optimal ratio of R- to W-
Clusters closely tracks the intrinsic Black-Scholes memory
bandwidth requirement (5 Reads and 2 Writes per clock
cycle). As seen in Figures 6 and 7, the most efficient ratio
for the asymmetric tree is 4W-2R (while 4W-4R only offers
incrementally improved performance). Table III shows that
BS paired with an asymmetric tree with 4 W-Clusters and
4 R-Clusters achieves 48% improvement in area efficiency
relative to the 2-D mesh.

VI. CONCLUSION

General-purpose soft memory interconnects on FPGAs are
convenient but untailored to the specific needs of a given
application. The ShrinkWrap compiler, in conjunction with
the CoRAM program abstraction, enables automatic synthe-
sis of application-specific networks that exploit information
preserved by CoRAM control threads. For two non-trivial
applications, ShrinkWrap achieves significant increases in
area efficiency (up to 48%) without requiring changes to the
application and without significant impact on performance.

REFERENCES

[1] E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: An In-Fabric
Memory Abstraction for FPGA-based Computing. In FPGA,
2011.

[2] E. S. Chung, M. K. Papamichael, G. Weisz, J. C. Hoe, and
K. Mai. Prototype and Evaluation of the CoRAM Memory
Architecture for FPGA-Based Computing. In FPGA, 2012.

[3] M. K. Papamichael and J. C. Hoe. CONNECT: Re-Examining
Conventional Wisdom for Designing NoCs in the Context of
FPGAs. In FPGA, 2012.

[4] Xilinx, Inc. Virtex-7 Series Overview, 2010.

116

