
A LUT-Based Approximate Adder

Andreas Becher, Jorge Echavarria, Daniel Ziener, Stefan Wildermann and Jürgen Teich
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Email: {andreas.becher, jorge.a.echavarria, stefan.wildermann, juergen.teich, daniel.ziener}@fau.de

Abstract—In this paper, we propose a novel approximate
adder structure for LUT-based FPGA technology. Compared
with a full featured accurate carry-ripple adder, the longest
path is significantly shortened which enables the clocking with
an increased clock frequency. By using the proposed adder
structure, the throughput of an FPGA-based implementation
can be significantly increased. On the other hand, the resulting
average error can be reduced compared to similar approaches
for ASIC implementations.

Keywords—Approximate Computing, Adders, LUTs, FPGAs,
Low Power.

I. INTRODUCTION

The processing of multimedia content allows the decrease
of accuracy due to many reasons. One is the limitation of
human sense organs which are unable to recognize very subtle
variations. On the other hand, if the input data gathered, for
example, from an image sensor has a decreased quality, e.g.,
due to not optimal light conditions, the following digital signal
processing chain must not evaluate the input data at the high-
est possible accuracy. The usage of approximate computing
permits performing multimedia processing in an energy -and
resource- efficient way [1], [2]. This emerging paradigm is
drawing a lot of interest from researchers since several years.
The application and exploitation in programmable and adaptive
systems based on reconfigurable FPGAs is rather new and
subject of current research. In order to build efficient FPGA-
based circuits for approximate computing, we have to look first
at basic structures, like adders.

In contrast to ASIC approaches [3], FPGA implementa-
tion of approximate adders must deal with available FPGA
resources. For adders, LUTs, the corresponding carry-logic
inside FPGA slices and dedicated carry routing channels
between slices are used. At the first look, the freedom of design
choices is massively restricted compared to ASIC approaches
which can easily use additional logic gates. On the other
hand, an accurate adder uses many FPGA resources which
are not fully utilized. For example, modern FPGAs consist of
LUTs with six inputs and can implement a five input LUT
with two outputs. A standard adder uses only two inputs for
each bit and left the others unused. These inputs cannot be
used for the mapping of other logic due to the occupied LUT
output. By improving the utilization of available resources,
an approximate adder can be designed with the same amount
of LUTs and a small resulting error compared to an accurate
adder. The advantage is to significantly shorten the longest
path and, therefore, a remarkable increased throughput.

II. PROPOSED EXAMPLE ADDER

In [3], the authors propose to split the inputs of an n
bit adder at the position m : 0 < m < n − 1. In the most
significant part (MSP) an accurate addition is performed from
the least significant bit (LSB) m to the most significant bit
(MSB) n− 1. In the least significant part (LSP), they propose
to perform the approximate addition from the MSB (bit m−1)

to the LSB (bit 0). Standard one bit additions are performed
without carry propagation unless both input bits ai and bi at
bit position i generate a new carry, i.e., ai = bi = 1. The
remaining output bits si to s0 are set to 1. This technique
allows saving area and power of an ASIC implementation
with a maximum error of 2m−1. However, implemented with
available logic on an FPGA, n Lookup Tables (LUTs) are
used, thus leading to no resource saving in terms of number
of LUTs, compared to an accurate adder implementation as our
experiments have shown. The main benefit achieved with their
proposed architecture of an approximate adder is the drastic
reduction of the longest path. This holds true for both, the
FPGA and the ASIC implementation.

As it can be seen in Fig. 1, LUTs on modern FPGAs
have more than three inputs as it would be necessary to
implement full adders. We now propose to make use of these
additional, not needed but available, inputs to reduce the
overall error introduced by approximate adders. Our proposed
design performs an accurate addition on both sides of the adder
and from the LSB to the MSB. If the carry from the MSB of
the LSP cm−1 is one, all bits of the LSP are set to one, except
the case that am−1 and bm−1 generate a carry. In this case,
the MSP result is incremented by also feeding the inputs am−1
and bm−1 to the adder in the MSP in order to reduce the error.
By sharing the inputs am−1 , bm−1, am−2, bm−2 to the LUTs
in stage m− 1 and m− 2, the overall latency can be reduced.
We achieved a five times lower mean error compared to the
implementation of [3] and the maximum error is 2m−1 − 1.

Fig. 1: Approximate adder implemented with LUTs as available on FPGAs. It
makes use of the not connected inputs of the 5× 2 LUTs provided in Xilinx
7-series devices in order to reduce the error generated by disconnecting the
carry chain. This can be done on occasions where a carry would be produced
at m − 1 but is not forwarded to LUTm . By simply connecting the bits at
LUTm−2 to LUTm−1 , an all1 signal can be generated and forwarded to the
lower bits, setting their outputs to 1. Furthermore, bits m− 1 are connected
to LUTm in order to allow correct carry propagation if bits m− 1 are both
1 reducing the error drastically.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Test Symposium (ETS), 2013
18th IEEE European, May 2013, pp. 1–6.

[2] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique
for automated behavioral synthesis of approximate computing circuits,”
in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014, March 2014, pp. 1–6.

[3] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design of
low-power high-speed truncation-error-tolerant adder and its application
in digital signal processing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 18, no. 8, pp. 1225–1229, Aug 2010.

2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-5090-2356-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FCCM.2016.16

27

2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-5090-2356-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FCCM.2016.16

27

