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Abstract—This paper introduces a fully free and open source
software (FOSS) architecture-neutral FPGA framework compris-
ing of Yosys for Verilog synthesis, and nextpnr for placement,
routing, and bitstream generation. Currently, this flow supports
two commercially available FPGA families, Lattice iCE40 (up
to 8K logic elements) and Lattice ECP5 (up to 85K elements)
and has been hardware-proven for custom-computing machines
including a low-power neural-network accelerator and an Open-
RISC system-on-chip capable of booting Linux. Both Yosys and
nextpnr have been engineered in a highly flexible manner to
support many of the features present in modern FPGAs by sep-
arating architecture-specific details from the common mapping
algorithms. This framework is demonstrated on a longest-path
case study to find an atypical single source-sink path occupying
up to 45% of all on-chip wiring.

I. INTRODUCTION

In many ways, Field-Programmable Gate Arrays can be
likened to an “Etch-A-Sketch” plotting device — a blank
canvas for near-limitless creativity that can be enjoyed (in
reconfigurable fashion) by young and old, but one that remains
difficult to truly master. Far from being a toy though, FPGA
technology continues to be extensively studied in academia
and to gain traction in industry, including most recently, large
scale deployments in cloud datacenters.

Continuing with the Etch-A-Sketch analogy where access
to the substrate is controlled solely through the two knobs on
its front face, access to FPGA silicon is equivalently available
only through the use of closed-source Computer-Aided Design
(CAD) tools provided exclusively by the FPGA vendor. This
sole entry point belies a major disconnect between the two
worlds of academia and industry: the inability for certain
innovations made in the former to be physically realised on the
latter, on real silicon. The Yosys+nextpnr framework described
herein represents a first step to breaking out of this walled
garden for those that wish to experiment with the creation of
custom-computing machinery outside.

Typically, academic researchers have turned to existing open-
source frameworks such as Verilog-to-Routing (VTR) [1] to
investigate their hypotheses. Long regarded as the de-facto
FPGA research framework, the VTR project allows questions to
be asked of (a) the underlying FPGA architecture (for example,
the optimal number of LUT inputs) as well as (b) the best
CAD algorithms for use in mapping to such architectures. In
order to support the ability to answer questions of type (a),
necessarily VTR must target theoretical architectures (perhaps

one modelled on commercial architectures [2]) that can
be procedurally generated from a number of architectural
parameters. Currently, there is no native publicly-available
support for commercial devices within, with prior work finding
that extending VTR to support non-ideal, real-world FPGA
architectures can be a difficult affair [3] and that conclusions
made on its theoretical architectures can be misleading when
applied onto commercial devices [4].

In contrast, Yosys+nextpnr does not focus on exploring the-
oretical architectures but instead has been carefully engineered
to natively target commercial-off-the-shelf (COTS) FPGA:s,
including all their imperfections and real-world considerations.
Figure 1 shows the positioning of Yosys+nextpnr relative to
VTR and vendor tools.

II. RELATED WORK

Synthesis: Open-source Verilog synthesis is supported by
Odin II, which is tightly integrated into the Verilog-to-
Routing [1] project. Odin II accepts a synthesisable subset
of Verilog as Yosys does, supports hard-IP such as the
block-RAMs, carry-chains, and multipliers present in VTR
architectures, but can only produce BLIF netlists primarily
used in research. In contrast, Yosys not only supports the BLIF
format (demonstrated on VTR in [3]) but also supports EDIF
and Verilog output formats interoperability with commercial
tools, and allows flexible coarse-grained technology mapping
(and inference) as described in the following section. Lastly,
Titan [2] is an extension of the VTR flow that replaces its
Odin II front-end with Intel’s (closed-source) vendor tools,
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Fig. 1. Comparison of nextpnr against VPR and vendor FPGA tools.




enabling downstream experiments to be made with larger and
more complex benchmarks not otherwise supported.

Place-and-route: Versatile Place and Route (VPR) has been
a mainstay of academic research (and even a number of
commercial ventures!) since its inception over 20 years ago, and
is packaged as part of the VTR project [1]. VTR architectures
are described theoretically using the XML format, detailing
the (proportional) makeup and layout of soft and hard blocks
on the targeted FPGA, using architectural parameters such as
number of LUT inputs, as well as their local and global routing
connectivities. Importantly, and in contrast to nextpnr and to
vendor tools, VPR’s ability to target procedurally generated
architectures enables new architectures to be designed and limit
studies to be made — for example, to measure architectural
efficiency by determining the smallest FPGA that a benchmark
can fit on, or to quantify the performance of routing algorithms
by determining the minimum routing channel width necessary
— studies that cannot be made when supporting only a fixed
set of discretely-sized devices.

Commercial architecture support: A number of projects
exist for open-source support of real-world devices. These
include VTR-to-Bitstream [3] that overrides VTR’s procedural
capabilities with actual device data to support a Xilinx Virtex-6
device, as well as frameworks such as RapidSmith [5] that
provide a sandbox, inclusive of simple packing, placement and
routing algorithms, for experimenting with multiple Xilinx de-
vice families. However, such projects are not solely the domain
of academics as evidenced by RapidWright [6] from Xilinx
Research Labs that provides an “escape-hatch” into Vivado.

III. YOSYS — VERILOG SYNTHESIS

Yosys [7] is an open-source framework for Verilog synthesis
and verification. It supports all commonly-used synthesisable
features of Verilog-2005, and can target both FPGAs and
ASICs. Yosys uses ABC [8] for logic optimisation and LUT/cell
mapping; combined with custom coarse-grained optimisations
and dedicated passes for inferring and mapping block- and
distributed-RAM, flip-flops and arithmetic structures.

A typical FPGA flow, after logic elaboration, would perform
some coarse-grain optimisations and map the results to a set of
generic hard-logic cells. Generic passes are then used to infer
block-RAM, flip-flops supporting clock-enables and set-resets,
arithmetic logic and more, followed by architecture-specific
technology mapping. Any remaining coarse-grain cells are
converted to gates by Yosys and then mapped to LUTs by
ABC. Further architecture-specific rules then map generic LUT
and flip-flop cells to the target device’s primitives.

Coarse- and fine-grained cells are mapped (even recursively)
according to a Verilog description. As an example, Figure 2
shows how a generic 8-input LUT can be transformed into two
LUT7s plus a dedicated multiplexer, and from there onto a total
of four LUT6s and three muxes when synthesising for Xilinx
7-series. This capability gives Yosys a high degree of flexibility,
while reducing the effort for targeting new architectures. Yosys
currently supports synthesis for the Xilinx 7-series, Lattice

// Apply these mapping rules to Yosys’

module \$lut (A, Y);
parameter WIDTH = 0;
parameter LUT = 0;
input [WIDTH-1:0]

generic LUT cells

// Number of LUT inputs
// LUT mask contents
A; // LUT input signals

output Y; // LUT output signal
generate

wire TO, T1;

if (WIDTH == 8) begin

// Map a generic 8-input LUT to two generic 7-inputs
\$lut #(.WIDTH(7), .LUT(LUT[127:0]) fpga_lut_0 (

.0(TO0), .A(A[6:0]));
\$lut #(.WIDTH(7), .LUT(LUT([255:128])) fpga_lut_1 (
.0(T1), .A(A[6:0]));
// ... plus a target-specific mux primitive
MUXF8 fpga_mux_0 (.0(Y), .IO(TO0), .I1(T1l), .S(A[7]1));
end else if (WIDTH == 7) begin

// Decompose a generic 7-input LUT into two target-—
specific 6-input LUTs, plus another specialised mux

LUT6 #(.INIT(LUT([63:0])) fpga_lut_0 (.0(TO),
.IO(A[O]), .I1(A[1]), .I2(AI[2]),
LI3(A[31), .I4(A[4]1), .I5(A[5]1));

LUT6 #(.INIT(LUT[127:64])) fpga_lut_1 (.0(T1),
.I0O(A[O0]), .I1(A[1]), .I2(A[2]),
LI3(A[3]), .I4(A[4]), .I5(A[S5]));

MUXF7 fpga_mux_0O (.0(Y), .IO0O(TO), .I1(T1l), .S(A[6]));

end else begin
// Internal marker to indicate no mapping otherwise
wire _TECHMAP_FAIL_ = 1;
end
endgenerate
endmodule

Fig. 2. Example of Yosys’ flexible technology-mapping capabilities for
recursively decomposing 7- and 8-input LUTSs into 6-input ones with muxes.
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Fig. 3. Breakdown of nextpnr’s shared (left) versus architecture-specific
(right) components; at its core is the “Device Database API” that answers
basic queries, such as availability and validity of the placer’s decisions.

iCE40, Lattice ECPS5, and Silego GreenPAK4; as well as
experimental support for Intel, Gowin and Anlogic families.

IV. NEXTPNR — PACK, PLACE, ROUTE & BITSTREAM-GEN.

nextpnr is an open-source, timing-driven, place-and-route
framework targeting real-world FPGA silicon supporting Linux,
Windows and macOS platforms. Unlike many existing tools
which describe an architecture using a flat file format such as
XML; an architecture in nextpnr is an implementation of an
Application Program Interface (API).

This gives nextpnr the flexibility to support the irregularities
and intricacies of modern commercial FPGAs. An architecture
can provide its own custom packer; functionality to check
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Fig. 4. nextpnr Graphical User Interface.

validity and availability of placement sites, routing switches
and wires, its own timing model, and other custom passes as
needed — such as a dedicated global network routing pass,
or bitstream generation. Architectures must also provide their
own implementation of the device database.

This flexibility is implemented without detriment to perfor-
mance by each architecture providing its own set of source
files that implement a source-compatible (as opposed to binary-
compatible) interface, and building a separate executable for
each architecture. Doing so also avoids the overhead of virtual
(polymorphic) functions for frequently called code and allows
compile-time optimisations such as inlining.

A breakdown of nextpnr’s internals is shown in Figure 3,
differentiating between its common and architecture-specific
components. nextpnr uses a JSON-based design interchange
format for netlists, a format that supports cell names, inout
ports, attributes and parameters unavailable in BLIF whilst
being easier to process than formats such as EDIF or structural
Verilog. Packing is an architecture-specific stage responsible for
transforming primitives from the input netlist into larger cells,
for example, in the iCE40 target LUTs and their fanout flip-
flops are merged into a LUTFF cell, though the API allows use
of other granularities. Two timing-driven placers are included,
traditional simulated annealing and an analytic placer based
on HeAP[9] supporting relative and complex floorplanning
constraints. Routing is also timing-driven and currently based
on a naive iterative rip-up and re-route A* algorithm, followed

by bitstream generation. Furthermore, nextpnr provides a
modern graphical user interface that allows navigation through
any implemented design as well as the underlying architecture,
as shown in Figure 4.

The iCE40 and ECP5 flows employ information from the
open-source Project Icestorm [10] and Project Trellis [11]
respectively to provide architecture-specific data (e.g. location
and connectivity of logic and wiring resources, as well as cell
and interconnect timing) and to generate bitstreams. This makes
them fully independent from the vendor FPGA tools. Besides
basic soft-logic, carry-chains, and block-RAM, a large amount
of hard-IP is also supported across both flows including PLLs,
DSPs, DDR inputs/outputs, constant-current LED drivers, hard
PWM generators, and gigabit transceivers.

Device database deduplication: Since nextpnr allows im-
plementation details to be deferred to individual architectures
through a source-level interface, this enables custom features
such as database deduplication. Essentially, this is a one-off
compile-time ‘compression’ process that takes advantage of
an FPGA’s inherent symmetry and redundancy to reduce the
disk and memory footprint of its database, thus improving
cache-efficiency and runtime.

Currently, deduplication is implemented for the ECP5 family
with devices of up to 85K logic elements and 4M wires and
28M routing switches. The uncompressed database for the
largest device is 1GB; after deduplication this database shrinks
to 38MB. Moreover, this scales with device size improves



considerably, the deduplicated database for the 85K device is
just 13% larger than that for the 25K device.

Python API: To facilitate development of external plug-
ins and allow custom design flows for real-world devices,
nextpnr’s internal API is exposed to Python through use of the
Boost::Python library. Although almost every feature of the
C++ API is exposed to Python, a shim exists to reverse some
performance optimisations in order to make the Python API
considerably easier to use.

As well as being able to replace the entire nextpnr flow with
a custom Python script, scripts can also be run before or after
any stage of the default flow (for example, between packing
and placement). This makes Python useful as a way to specify
constraints, for floorplanning, to perform custom placement
or routing for a subset of cells or nets, or to analyse/export
any in-progress design. It is worth noting that the Python and
GUI are optional functionality, opening the door to running
Yosys+nextpnr on embedded platforms such as FPGA-SoCs.

V. EXAMPLE APPLICATION: LONGEST PATH ROUTING

As a brief and teasing example of the freedom available
with an open-source framework targeting physical devices, we
sought to demonstrate the antithesis of typical CAD tools —
rather than searching for the shortest routing path between two
pins, what about finding the longest? The longest path problem
for directed cyclic graphs is known to be an NP-hard problem;
however, similar to the traditional objective of seeking the
routing solution with the globally minimum critical-path, we
also apply a heuristic to find a path as long as possible. One
utility of constructing such paths may be for online test.

Our experiment consisted of mapping an input Verilog file
with a single input, a single output (constrained to pins 20
and 12 respectively), and an assign statement connecting the
two onto a Lattice iCE40 UltraPlus UP5K device (SG48
package) containing 125K wires (nodes in a directed graph)
and 1.3M programmable routing switches (edges). The input
is synthesised using Yosys (commit 5387ccb) and then
implemented using a modified version of nextpnr (branched
from commit c46a22c) to replace its shortest-path router with
the longest simple path heuristic (simple refers to each wire
being visited at most once) from [12] that adopts a successive-
relaxation approach. In total only 87 lines of nextpnr code
were added and experiments were conducted on a mid-range
14nm AMD 2400G desktop CPU running Ubuntu 18.04.

TABLE I
PHYSICALLY MEASURED PATH DELAY Tgejqy (IN MICROSECONDS) AND
USED FRACTION OF ALL REACHABLE ROUTING WIRES Fiires-

Allowed routing runtime

Objective ~0s <10s <30s <300s <3000s
Shortest Taelay <0.01
Fwi'r‘es 0.0004
Longest Taetay - 1847 21.21 25.21 25.42
Fuires - 0358 0.391 0.445 0.451

The results of Table I compares the delay (Tgcq,) between
the existing shortest-path algorithm and the new longest-path
heuristic; since Yosys+nextpnr can target physical devices, these

represent real-world delay values measured using a 100 MS/s
logic analyser. Also shown is the fraction of all reachable
routing wires and LUT route-throughs that were used in this
path — where reachability is defined by the corresponding
node’s existence in the strongly connected component extracted
from the routing graph in which all IO blocks except for
the design’s input and output ports have been removed. This
statistic reflects the upper bound of wires that can appear on any
path, though there is no guarantee that a (Hamiltonian) solution
doing so can exist. Our example application is available at
https://github.com/eddiehung/nextpnr-1lsp for reproduction.

VI. CONCLUSION

Yosys+nextpnr is a framework that implements Verilog de-
signs onto COTS FPGA devices. Currently, two Lattice families
are supported, and work is underway to target those from other
vendors. For researchers, by innovating within this framework
users will gain the ability to easily evaluate on a broad range
of real-silicon devices with different architectures and process
nodes. For industry, the aim of Yosys+nextpnr is to lower the
barrier for deploying CAD innovations onto existing devices,
and to accelerate time-to-market and reduce risk for supporting
novel new FPGA architectures. Yosys and nextpnr are both
available under a permissive (thus facilitating commercial
use) open-source license from http://github.com/YosysHQ and
between them, are the ongoing product of over 100 contributors.

We do not regard nor intend to position Yosys+nextpnr as
a threat to existing commercial flows and do not expect to
be competitive with them. Instead, we envision a symbiotic
arrangement where both tool flows can co-exist: certified vendor
flows will continue to be used for production, mission-critical
designs; but for more experimental or incremental tasks and for
unorthodox custom-computing applications, the fine-grained
control available through our framework may be more suitable.
We are particularly enthused by how this vision aligns with
that of Xilinx’s own RapidWright [6] project.
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