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EFCAD – an Embedded FPGA CAD Tool Flow
For Enabling On-Chip Self-Compilation

Abstract—This paper combines a chain of academic tools to
form an FPGA compilation flow for building partially reconfig-
urable modules on lightweight embedded platforms. Our flow
— EFCAD — supports the entire stack from RTL (Verilog) to
(partial) bitstream, and we demonstrate early results from the on-
chip ARM processor of, and targeting, the latest 16nm generation
of a Xilinx UltraScale+ FPGA-SoC device. With this, we comple-
ment Xilinx’s PYNQ initiative to not only facilitate System-on-
Chip research and education entirely within an embedded system,
but also to allow building new and specialising existing custom-
computing accelerators without needing access to a workstation.

I. INTRODUCTION

Presently, the FPGA tool landscape is dominated by closed
source tools provided by FPGA vendors or EDA tool design
houses. This is in contrast to software programming with
its huge ecosystem that includes a large number of open-
source projects for compilers and all kinds of software design
tools. One reason for this disconnect is that FPGA vendors
do not disclose low-level device-specific information (e.g. the
bitstream encoding). While this makes reverse engineering of
IP from a bitstream harder (but not entirely impossible [1]),
it prevents portability across FPGA vendors and restricts the
design of domain-specific implementation tools.

In this paper, we are introducing EFCAD — an Embedded
FPGA CAD Tool Flow which can run on a normal PC or
directly within an embedded system. Distinct features of
EFCAD include 1) a full, FPGA vendor tool independent,
open-source flow from Verilog to (partial) bitstreams and 2)
support for recent Xilinx Zynq UltraScale+ FPGAs. EFCAD
integrates several academic projects into an end-to-end flow.
As shown in Figure 1, the Xilinx vendor tools are only used to
generate an architecture graph to be used by our run-time flow
that then runs entirely on the ARM core of a Zynq UltraScale+
FPGA. In detail, the components include:

• Yosys is a popular open-source Verilog logic synthesis
tool supporting all common Verilog-2005 features [2].
Consequently, EFCAD accepts the same Verilog features.
Yosys also performs technology mapping (into LUTs and
flops), which is based on ABC [3]. The tool is very
generic and supports for example mapping to Lattice
iCE40, Lattice ECP5, and Virtex-7 FPGAs including
BRAM inference.

• nextpnr is a generic open-source place and route tool that
aims at portability across different FPGA vendors and
device families [4].

• GoAhead is an academic tool for building complex
reconfigurable designs for Xilinx FPGAs [5]. GoAhead
can parse in XDL and TCL device descriptions that
are generated by the Xilinx tools and builds up a full
architecture graph for all recent Xilinx FPGAs (S6,
V6, entire 7-series and UltraScale devices). Reporting

Fig. 1. The EFCAD flow.

functions in GoAhead are used to export the architecture
graph for nextpnr.

• BitMan is a tool and library for bitstream manipulations
on Xilinx FPGAs [6]. BitMan is designed to operate with
designs created with the GoAhead tool. It is used as
a tool when implementing reconfigurable systems (the
static system/shell as well as for reconfigurable modules).
BitMan also performs module relocation in the run-time
system and deals with clock-net configurations, if needed.

• ZUCL is an open-source shell/static system for Xilinx
Zynq UltraScale+ FPGAs for hosting partially reconfig-
urable modules [7]. It provides a runtime system for
configuring (including module relocation) and running
modules. It also comes with compile scripts to build the
actual partial module bitfiles.

II. USE CASES

There are many reasons for an open-source tool chain in
general and embedded CAD tools in particular. The following
scenarios give some ideas and are not meant to be complete:

• Education Open-source tools with clean interfaces be-
tween all individual processes steps are key for FPGA
research. EFCAD supports this over the entire stack and
allows therefore experiments and testing on real hardware.
In the case of embedded tools, it removes the burden
to install, maintain and operate heavy FPGA vendor
tools. EFCAD could be used for building lightweight self-
contained out-off-the-box education solutions that only
needs a screen or terminal. This aligns with the PYNQ
initiative from Xilinx that is an educational platform for
SoC design under Python [8]. That platform, however, uses



pre-built bitstreams and still relies on the Xilinx Vivado
suite for building hardware. EFCAD complements this
initiative by allowing Pynq users to implement peripherals
or other circuits right on the prototype platform.

• Virtualization FPGA bitstreams are impossible to be
ported between different hardware platforms. Unlike what
we know from, for example, smart phone app-stores where
binaries can be downloaded and executed on a wide
range of different devices, that is infeasible with FPGA
accelerators. Even when using the same FPGA device,
this will still not easily allow using identical configuration
bitstreams. For example, the ULTRA96 and the UltraZed-
EG board provide the same FPGA, but I/O pins are
connected differently, which in turn requires different
static configurations (shells) and consequently different
module implementations. However, with EFCAD place
and route could be carried out by the system itself taking
into account the specific system constraints.
This approach could be considered further for masking
defect or imperfect resources. In this scenario, a system
may create a defect mask that will then be incorporated
through the model that is used by EFCAD. The idea
was proposed in [9] by using a networked workstation
that performs the device specific physical implementation.
EFCAD would allow such an approach in remote scenarios
where transferring data is infeasible or impossible.

• Partial Reconfiguration Building partially reconfigurable
systems requires obeying some dedicated constraints
for the physical implementation. In our case study, for
example, we ensure that a module is implemented into
a fixed physical bounding box (i.e. a partial region) by
only providing a model of the partially reconfigurable
region to nextpnr (we call that sandbox). With this,
by definition, any completed routing process will obey
the bounding box. Similarly, fixing interfaces with the
surrounding static system or allowing static system routing
to cross reconfigurable regions is very easy to implement
in EFCAD but very hard using the Xilinx vendor tools,
which holds in particular for supporting module relocation.
For instance, in our case study, we allow the static system
to use long distance wires (i.e. wires that route a distance
of 12 switch matrices on Xilinx UltraScale) for crossing
partial regions, if needed. These wires are not included in
the sandbox model provided to nextpnr as most of these
wires would leave the bounding box constraint anyway.
Even when using different long-distance wire paths in
different regions, that would not impact relocatability of
partial modules as we keep the resource footprint (i.e.
the relative positions of logic columns) identical. BitMan
supports this as it is possible to merge different netlists
into a combined bitstream.

• Security Removing wires from the model can be applied
as an answer to recent wire tapping [10], [11] security
attacks as an attacker would be prohibited to use the
required wire resources. For the same reason, BitMan can
be used with a truncated bitstream model database so
it would then be impossible to create malicious circuits
exploiting the mentioned scenarios or malicious bitstream
encodings [12].

Moreover, the possibility of compiling in the field can
provide unique security solutions. For example, keys for
an encryption algorithm maybe compiled directly into
a hardwired netlist without the need to send sensitive
information off-site.

III. RELATED WORK

There is a large body of academic and open-source FPGA
tools addressing various aspects of FPGA design or FPGA
research in general. The following projects are prominent
examples that are closely related to EFCAD.

Originally developed for FPGA architecture exploration, the
Versatile Place and Route (VPR) tool [13] is the seminal work
on place and route tools. This project went through several
major revisions and is packaged today as Verilog-to-Routing
VTR [14]. VTR, in turn was used in [15] to build a CAD flow
targeting Xilinx Virtex-6 FPGAs from Verilog all the way to
fully placed and routed netlists using entirely open-soure tools.
Only for the final bitstream assembly were the Xilinx vendor
tools involved (through the XDL API [16]).

Originally designed for rapid prototyping, the tool HMFlow
(developed at Brigham Young University) was designed to
compose systems together from (physically implemented) hard-
macros [17]. For bulding and manipulating macros and netlists
in general, the tool RapidSmith was developed [18].

All previously mentioned tools still rely at least for the
final bitstream generation on the FPGA vendor tools (here
Xilinx), hence making self-compilation prohibitive. Approaches
targeting bitstream manipulation include PARBIT [19] and
JBits [20]. They both provide simple netlist/circuit manipu-
lations at bitstream level (which could be carried out by an
embedded system, but however, both lack a frontend that allows
specifying real-world circuits. This points out that it needs a full
compilation flow from a hardware description (e.g., Verilog)
all the way to the final bitstream assembly to perform real
self-compilation on an FPGA platform in the field.

A full compilation flow could be implemented through
Project X-Ray which is an open-source documentation effort
for Xilinx 7-series FPGAs [21].

EFCAD is based on established open-source CAD tools from
VTR and BitMan for the final bitstream assembly. BitMan has
a bitstream database for 7-series, UltraScale, and UltraScale+
devices, and it provides open-source and closed-source parts.
The bitstream manipulation library needed for building partially
reconfigurable systems is freely available while the BitMan
bitstream backend, as used in EFCAD, is only available as an
executable binary.

IV. RESTRICTIONS

EFCAD is a complete vendor independent CAD tool flow
featuring latest FPGA UltraScale devices, and is a strong
demonstration of what academic tools can do today. However,
UltraScale devices are substantially more complex than previ-
ous FPGA architectures and the present EFCAD flow comes
with several restrictions. While we could have targeted older
and less complex architectures to circumvent such restrictions,
we believe it is more important to follow the state-of-the-art.
Regardless, even with EFCAD having several restrictions, it
has enabled us to identify interesting new research questions;



and due to the open nature of the EFCAD flow, those can now
be tackled. The most important restrictions include:

• CLA Support In the UltraScale architecture, Xilinx
moved for the first time from carry-chain-based arithmetic
to a faster carry-look-ahead structure (CLA) which is not
currently supported by Yosys. Comparators, counters and
adders get consequently mapped entirely to LUTs.

• Fractual LUTs 7-Series FPGAs allow a 6-input LUT
to be used as a dual 5-input LUT with independent
logic functions for the same input signals. UltraScale
supports the same feature, but the extra slice outputs are
routed differently and are not exported in the report files
generated by the vendor tools; meaning that GoAhead
cannot include these in the FPGA architecture graph. A
practical solution would be to move this routing (that
in the previous generations’ models belonged inside the
logic) into the switch matrices. However this would have
to be done manually, which is feasible due to the high
regularity of the fabric.

• Memory Inference While Yosys can infer BRAMs
directly from Verilog, we have not enabled this feature
in EFCAD so far. UltraScale devices provide distributed
memory in a subset of the Slices, BRAM, and UltraRAM.
These memory primitives differ substantially in capacity
and modes of operation. An easy solution would be
to offload the problem to the designer by instantiating
primitives directly, which is not an unusual design practice,
and one taken by VTR [14]. In the future, we plan
on enabling this feature in Yosys and using GoAhead
to deliver the required routing information. However,
inferring memory primitives automatically and efficiently
is still an open challenge.

• DSP-Blocks UltraScale devices have more complex DSP
blocks than in prior families, which for example, have 4
input operands and more bits. We therefore decide to omit
DSP blocks in this first version of EFCAD. However, as a
first step, UltraScale DSP blocks could be used in exactly
the same mode as done for 7-series devices in Yosys.

• Clocks and Timing Closure While Yosys can deal
with multiple clock domains, we omitted this feature
in EFCAD because the interface to the ARM SoC in
our prototype system provides clock domain crossing
and our demonstration circuits are rather baseline. As a
simplification, we pre-route all sequential primitives (i.e.
all flops in the reconfigurable sandbox region) to a global
clock tree. An interesting feature (yet still not enabled in
the Vivado tools either) are delay elements in the clock
tree [22]. Starting from the same horizontal clock wire,
these elements can generate multiple phase shifted vertical
clock splines that ultimately connect to the flip-flops. This
could be used to allow more advanced implementation
techniques like time-borrowing and glitch masking.

• I/O EFCAD has no model of any UltraScale I/O primitive
and modules communicate through predefined wires only.
Therefore, the vendor independent FPGA compilation
path is only available for partial modules. Instantiating
I/O pads or even more complex peripherals as primitives
would be a feasible way to offer full system design in

Fig. 2. Sandbox design. left) ZUCL shell hosting up to three sandboxes.

EFCAD, however, BitMan has no understanding of the
bitstream information about the internals of I/O cells (e.g.,
I/O voltage standards, drive strengths, phase shifts). These
sections of the bitstream are always kept as generated by
the Xilinx tools.

V. SYSTEM SANDBOX CREATION

For testing EFCAD implemented modules, we are using
the ZUCL open-source shell for the UltraZed board [7]. As
shown in Figure 2, the XCZU3EG FPGA in that system uses
a small static system to connect three larger regions to the
ARM SoC. The static system is in charge of decoupling the
partial regions during reconfiguration and to provide a static
clock. Each of the three large reconfigurable regions provides
a dedicated AXI master and AXI-Lite connection through a
standardized interface that is routed identically in each region
so as to permit module relocation.

In one of these regions, using the ZUCL partial module
compilation scripts, we implemented a sandbox containing one
dummy module (essentially a set of 6-input XOR gates with
combinatorial and sequential outputs enabled) that occupies
all available LUTs and corresponding adjacent flops. Within
this sandbox, all LUTs are configured in their 6-input/1-output
mode (where the output is provided directly from the LUT
and passing through a flop), all flip-flops are connected to
the clock tree, and the routing of these primitive outputs
were constrained to specific wires. By doing this, we create
a “superset” configuration template for use by EFCAD, from
which BitMan can then manipulate to implement the required
configuration only by adjusting LUT tables and switch matrix
settings. After this, a partial configuration bitstream of the
sandbox connected to the AXI Lite interface is generated
and duplicated to all three slots. We also connect a PMOD
with each region. In this system, we can load up to three
individual sandboxes. However reconfigurable slots can host
other modules, like OpenCL accelerators, as intended by ZUCL.
The previous steps are all carried out mostly with the help of
the Xilinx vendor tools.

VI. ON-CHIP SELF COMPILATION

We demonstrate the feasibility of on-chip self-compilation on
the Ultra96 development board containing a Xilinx UltraScale+
MPSoC ZU3EG device, with a 1.3GHz ARM Cortex-A53
processor, 2GB of RAM, running Ubuntu 16.04. Since Yosys
and nextpnr are open-source tools, we were able to recompile
these for the ARM architecture, which coupled with a version
of BitMan that the authors of [6] have kindly provided, allows
us to execute EFCAD entirely within this embedded platform.
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Example Top-Level Verilog:

module top;
  wire reset, [31:0] odata, ...;

     // Do not optimise away
  (* keep,    
     // Placement constraint
     LOC=”X14Y60.A” *)
  LUT1 resetn_in (.O(reset));

  (* keep, LOC=”X16Y100.A” *)
  LUT1 odata0_out (.I0(odata[0]));
  (* keep, LOC=”X16Y100.B” *)
  LUT1 odata1_out (.I0(odata[1]));

  ...

endmodule

Fig. 3. Use of location-constrained 1-input proxy LUTs to enter/exit
reconfigurable sandbox region, as well as preprocessed Verilog for EFCAD.

As shown in Figure 1, GoAhead first extracts a device
description from the vendor tools offline, and prepares a
flattened architecture model containing a uniquified list of all
available primitives (in this preliminary version of EFCAD, only
the LUT+FF primitive is supported), and their (X,Y) location as
well as the associated pins on each (e.g. A1,B2,...,G,HQ). Also
in this architecture model is the list of programmable routing
switches available from each pin or wire, as well as a crude de-
lay estimate – for example, the FQ output pin has a switch con-
necting it to a LOGIC_OUTS_W22 wire, and from that wire a
switch exists to INT_NODE_SDQ_78_INT_OUT0 and so on.

EFCAD starts with the invocation of Yosys to synthesise
a Verilog design into a JSON netlist format accepted by
nextpnr. nextpnr accepts the architecture model produced
earlier by GoAhead in a CSV format, and uses the parsed
information to generate a compact in-memory data-structure,
before proceeding to timing-driven place and route of the design.
Since EFCAD does not currently support I/O primitives, entry
into and exit from each partially-reconfigurable sandbox region
requires “proxy LUTs” — where a one 1-input LUT is used
per signal that crosses the sandbox — and is accomplished
by preprocessing the Yosys design as in Fig. 3. The output
of nextpnr is a FASM file, which contains a list of placed
primitives with their LUT init values (truth table for each
LUT), as well as the list of routing switches to be enabled.

Lastly, BitMan reads this file and translates its contents into
the corresponding configuration bit settings. The process is
completed in memory and only after the full partial bitstream
assembly, the changed configuration frames are written to
the fabric (using standard PCAP mode). We can therefore
say that our nextpnr modules are partially reconfigurable
modules inside partially reconfigurable modules (i.e. the
sandbox infrastructure), a feature not supported by the Xilinx
vendor tools.

A. Experimental Results
The feasibility of running Verilog synthesis and place-and-

route entirely within the embedded platform, for a 3840 LUT
sandbox region, is shown in Table I. As can be seen, even for
our larger test case, peak memory consumption was less than
200MB which is well within the 2GB RAM available on the
ARM SoC. Execution times scales poorer than we expect, but as

the toolchain continues to mature and we continue to optimise
EFCAD, we believe that we can improve this significantly.
Future work would also include evaluating on a greater, more
varied, set of benchmarks.

LUT+FF Routing Yosys nextpnr Peak Mem
Benchmark primitives arcs time (s) time (s) (MB)
32bit “blinky” 59 165 13 14 148
256bit “blinky” 492 1280 83 63 148
16-tap 23-bit FIR 1175 4347 113 614 159(Fixed Coefficients)
picorv32 2223 8474 266 4163 170(RISC-V CPU)

TABLE I
EFCAD METRICS FROM RUNNING ON XILINX ULTRASCALE+ MPSOC.

VII. CONCLUSION

The EFCAD flow presented here enables in-system compi-
lation from Verilog to bitstream without using Xilinx vendor
tools. While the flow needs more testing and more features (as
highlighted in Section IV, our first experiments demonstrate
that the flow is very feasible to run an ARM SoC of a Zynq
UltraScale+ FPGA using only moderate memory requirements
and processing time. With this, we enable new directions in
research, education and FPGA embedded system design in
general.
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