arXiv:1904.00938v1 [cs.LG] 1 Apr 2019

LUTNet: Rethinking Inference in FPGA Soft Logic

Erwei Wang, James J. Davis, Peter Y. K. Cheung and George A. Constantinides
Department of Electrical and Electronic Engineering
Imperial College London, London, SW7 2AZ, United Kingdom
{erwei.wangl3, james.davis, p.cheung, g.constantinides}@imperial.ac.uk

Abstract—Research has shown that deep neural networks
contain significant redundancy, and that high classification ac-
curacies can be achieved even when weights and activations are
quantised down to binary values. Network binarisation on FPGAs
greatly increases area efficiency by replacing resource-hungry
multipliers with lightweight XNOR gates. However, an FPGA’s
fundamental building block, the K -LUT, is capable of implement-
ing far more than an XNOR: it can perform any K-input Boolean
operation. Inspired by this observation, we propose LUTNet, an
end-to-end hardware-software framework for the construction
of area-efficient FPGA-based neural network accelerators using
the native LUTs as inference operators. We demonstrate that
the exploitation of LUT flexibility allows for far heavier pruning
than possible in prior works, resulting in significant area savings
while achieving comparable accuracy. Against the state-of-the-
art binarised neural network implementation, we achieve twice
the area efficiency for several standard network models when
inferencing popular datasets. We also demonstrate that even
greater energy efficiency improvements are obtainable.

I. INTRODUCTION AND MOTIVATION

During inference, the most common—and expensive—
computational node in a deep neural network (DNN) performs
a function of the form in (T)), calculating a channel output y.
Each weight w,, is a constant determined during training, x a
vector of NV channel inputs and f an activation function such
as the widely used rectified linear unit. In the extreme case
where w € {—1, 1}N—so-called binarised neural networks
(BNNs)—the multiplications become cheap or free to im-
plement. When time-multiplexed, multipliers become XNOR
gates. When unrolled, they can be further simplified into
buffers and inverters, all of which are usually subsumed into
the downstream adder logic. Also beneficial for BNNs is the
ability to use a population count (popcount) for the summation:
an operation that consumes half the LUTs of the otherwise-
throughput-optimal balanced adder tree [1]].
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No matter how simple these multiplications become, how-
ever, all of the products still need to be summed. In modern
networks, N commonly reaches numbers in the thousands [2],
[3]]. To tackle this, we propose the replacement of (I)) with the
specifically FPGA-inspired function (2)), wherein the activation
function is unchanged but each product is replaced with an
arbitrary term-specific Boolean function g, : {—1, I}K —
{=1,1}. The input to this function is a vector ™ whose

Fig. 1. BNN to LUTNet architectural transformation for a single channel,
mirroring the replacement of (T)) with ). Activation function blocks are not
shown, but follgw the adders. N lookup tables (here, 2-LUTSs) substitute N
XNOR gates. N < N is achieved via pre-substitution pruning, represented
by the removal—i.e. lack of LUT substitution—of the second XNOR gate.

LUT inputs :Z"gn) Vn are connected to preserve the pruned BNN’s structure.
LUTNet’s weights are encoded in its LUT masks, thus do not appear as inputs.

elements are any K components of the original input vec-
tor x, ie. () = S,z for some binary selection matrix
S, € {0,1}"" with ||S,||., = 1. Since its inputs and
outputs are binary, each g, maps directly to a single K-LUT.
BNNss are a special case of this function: they are recoverable
for K=1and N =N , with S, being the row vector with the
n' element equal to one and all others zero. An example of the
resultant architectural transformation—excluding blocks for f,
which are common to both approaches—is given in Fig.

N
=1 D ga(a") @)
n=1

Notice that, while in (T) each element of = only participates
in a single summation term, in (2)) each can participate in many
terms. The intuition here is that inputs can be arranged such
that N < N for comparable accuracy via network pruning,
dramatically reducing the sizes of the required popcount trees.
Our experiments demonstrate that this is indeed the case.

Our aim in proposing this inference node function is to
play to the strengths of FPGA soft logic. While a LUT is
capable of performing an arbitrary nonlinear Boolean function,
traditional DNNs are based around near-linear high-precision
functions: almost the exact opposite of the architecture’s forte.
Innovations such as BNNs have addressed one side of this



weakness, by reducing precision [4]; we address both by also
embracing the nonlinearity of the LUT.
In this paper, we make the following novel contributions:

e We introduce LUTNet, the first neural network architec-
ture featuring K-LUTs as inference operators. Since each
K-LUT is capable of performing an arbitrary Boolean
operation on up to K binary inputs, LUTNet’s logic
density is much greater than that of BNNs.

« We propose a training regime resulting in the conversion
of a BNN architecture from a dense array of simple
XNOR gates into a sparse network of arbitrary K-input
functions directly mappable onto K-LUTS.

¢ We empirically demonstrate the effects of LUTNet’s
increased logic density on area efficiency and accuracy.
We also experimentally explore the associated energy and
training efficiency impacts. Our results for 4-LUT-based
inference operators reveal area compression of 2.08 x and
1.90x for the CNV network classifying the CIFAR-10
dataset and AlexNet classifying ImageNet, respectively,
against an unrolled and losslessly pruned implementation
of ReBNet [3], the state-of-the-art BNN, with accuracy
bounded within +0.300 percentage points (pp).

II. RELATED WORK

The authors of early BNN publications, such as BinaryCon-
nect [6] and BinaryNet [7l], proposed network training with
binary weights and activations (channel inputs and outputs)
used for forward propagation. High-precision formats—most
commonly IEEE-754 single-precision floating point, used to
approximate reals R—are always used for backward propaga-
tion; this is essential in order for stochastic gradient descent
to work well [6]. Tang et al. showed that training from scratch
with binarised forward propagation is significantly slower than
through the consistent use of high-precision data, however;
learning rates some 100x lower are required than in the all-
real case [8]]. Furthermore, binary forward propagation results
in the majority of real-valued weights being close to either
—1 or 1, while a spread across [—1, 1] is required to facilitate
fine-grained pruning [9].

Use of fine-grained pruning effectively adds zero to the set
of possible weight values, resulting in a ternary representation.
Ternarisation has been shown by the authors of many works
to deliver significantly higher accuracy than yielded through
binarisation [10], [[11]], [12]. Pruning also promotes regular-
isation, reducing overfitting [13]]. The latter is particularly
relevant to this work since the use of K-LUTs as inference
operators greatly increases potential network complexity.

In order to promote pruning, Han et al. proposed train-
ing with the [, sparsification regulariser in [9]. During
backward propagation, the value of {2 influences training loss,
inducing weights carrying low significance to descend towards
zero. A, L and C are the regularisation factor, number of layers
and number of channels per layer, respectively. @) denotes
the real-valued weight vector of layer [’s channel c.
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Improving upon BinaryNet’s data representation, Rastegari
et al.’s BWN features layer-wise trainable scaling factors o
used in order to increase BNN expressiveness [14]. During
training, each o; € R assumes the mean value of layer I’s
weights. When inferencing, this is multiplied with the layer’s
popcount results, compensating for some of the information
lost to binarisation and increasing accuracy.

Tang et al. [8] and the authors of ABC-Net [15] and ReB-
Net [5] demonstrated the alleviation of information loss from
binarisation through the approximation of real-valued weights
as linear combinations of multiple binary values. This is
achieved via residual binarisation, a scheme in which each bit
is the binarised residual error of its predecessor. Each bit b is
associated with a trainable scaling factor 7, € R, representing
its relative importance. When quantising, each weight @ € R
is approximated as B binary weights wy, = sign(ep), as shown
in (@), wherein e, is the b™ bit’s residual error. During training,
each -y, is updated to minimise the total error. While accuracy
was found to be positively correlated with B, diminishing
returns were seen; little improvement was observed for B > 2.
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The aforementioned proposals are complementary to our
approach, thus we embrace all of them. Through the use
of high-precision training, fine-grained pruning, layer-wise
scaling factors and residual binarisation, LUTNet achieves
state-of-the-art accuracy. None of these lies at the heart of our
proposal, however, and we do not consider their combination
to represent novelty. Our novel use of K-LUTs allows us to
reach such levels of performance significantly more cheaply
than previously reported in the literature.

III. NETWORK CONSTRUCTION AND TRAINING

LUTNet’s initialisation comprises three successive stages:
training, pruning and “logic expansion” (XNOR to K-LUT
conversion), with each of the latter two including a retraining
phase. These are shown enclosed within a dashed box in
Fig. 2] All three phases were implemented with TensorFlow.
While our training and pruning stages are fairly standard, logic
expansion encompasses the key novelty of our approach.

A. Training

In order to both expedite learning and facilitate later prun-
ing, our first step is to train the chosen network model
using high-precision data during both forward and backward
propagation. Layer-wise scaling factors « are learnt during
this stage along with weights, and sparsification is induced
through the use of the l5 regulariser in with A =5 x 1077
as suggested by Tang et al. [8].



B. Pruning

Following high-precision training, fine-grained pruning is
conducted through the application of threshold # on each
weight w0, as shown in (3)). The higher the value of 6, the more
weights are pruned away, exposing a continuum between area
occupancy and accuracy.

N w
w <—
{0

Once pruned, the network is binarised following the scheme
shown in (@), after which it is retrained in order to recover
some of the induced accuracy loss. Due to the diminishing re-
turns previously found when applying residual binarisation [8]],
[LS], [5l], we used B = 2 (two-level binarisation) consistently.

if |w| >0
otherwise

&)

C. Logic Expansion

At this point, we have obtained a residual-binarised ternary
neural network with non-zero-weighted operators implemented
as XNORs. It is from here that we depart from the standard
BNN approach. Each XNOR gate is replaced with a K-LUT,
whose first input 5:5”) is assigned to preserve the original
connection, thereby retaining the pruned BNN’s structure. The
K — 1 subsequent inputs to each LUT are then randomly
selected from channel inputs within the same convolutional
window as ign), ensuring that the window shape remains
unchanged. We additionally constrain their selection such that
each channel input is not multiply connected to the same LUT.

The form of the inference function proposed in (2)) is defined
on the binary domain {—1, 1}N. In common with quantisation-
inspired networks, such as BNNs, this causes difficulty for
training algorithms designed to operate on real vectors RY,
specifically in the backward propagation of derivatives. Our
approach to this problem is to define an interpolating extension
of the function g, : {—1,1}" — {—=1,1}, i.e. a function
Gn : RE — R such that g, (:i(")) = gn (5;(")) for every

™ in the domain of gr.. There are many such functions. Of

them, we prefer those that are as smooth as possible, allowing
training optimisation methods to perform well, and that form
a good interpolation in the sense that, if g,, remains constant
when a Boolean input flips, so does §,,. A natural choice for
the extension is a Lagrange interpolating polynomial, leading
to the form we use in (6).
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This expands as shown in for K € Nsq, with each
polynomial comprising 2% trainable parameters ¢.

)
Since connections are effectively remade from an unpruned
BNN (Section [[II-A)), it makes sense to use those channel
inputs’ original weights as a starting point for retraining. For
each LUT, this is done by solving (8) as shown in (@) for
all ¢gq, wherein p represents the set of indices of reconnected
channel inputs that were previously removed via pruning
(Section [[II-B). This initialisation approach was motivated by
the idea that the additional flexibility of the LUTs can be used
to compensate for the pruned parts of the network.

Gn (j(n)) _ wljgn) + Z wrjgn) (8)
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Once all g, are initialised, our second and final retrain-
ing phase is conducted, whereafter the binarised training
parameters c¢q = sign(¢q) can be directly interpreted as the
configuration mask of each K-LUT.

We elected to follow the network initialisation procedure
detailed above rather than training with K-LUTs from scratch
due to the exponential relationship between K and the number
of trainable parameters ¢. Training these from the outset,
particularly prior to network pruning, would cause both slow
convergence and likely overfitting due to the large numbers
of local minima in the search space. High-precision training
followed by pruning not only ensures fast convergence, it also
brings the starting point of K-LUT learning closer to global
minima, reducing the likelihood of overfitting.

IV. NETWORK IMPLEMENTATION

A representation of the overall LUTNet software training
and hardware implementation flow is shown in Fig. 2] As
input, the user provides the desired network model, training
dataset, activation precision and the required pruning level
to our TensorFlow-based training software, which performs
training and pruning. Logic expansion is then performed on
the chosen layers—also supplied as input—to construct the
LUTNet architecture.

We chose to target Xilinx parts for this work, for which
two parallel synthesis flows are required in order to convert the
trained network into RTL. For ease of design and modification,
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Fig. 2. LUTNet’s fully automated training and FPGA implementation flow.

all hardware apart from the inference K-LUTs is generated
from C templates with Vivado HLS. LUT array generation is
outsourced to a custom RTL generator written in Python, the
output of which is combined with that from Vivado HLS after
completion. Vivado is then used for implementation.

A separate LUT array generator is required because, as a
general-purpose C-to-RTL synthesis tool, Vivado HLS com-
pulsorily performs code transformations and optimisations for
the synthesis of efficient RTL. Given that LUT configura-
tions are already learnt during training, it is unnecessary—
and extremely time-consuming—for such optimisation to be
performed on this logic at the C level. Optimisation of RTL
LUT arrays at the netlist level during synthesis with Vivado is
a lot more efficient, typically taking a few hours—rather than
days or weeks—to complete for large designs.

V. EVALUATION
A. Benchmarks

For evaluation, we implemented end-to-end dataflow en-
gines for the DNN models shown in Table [I] using them to
classify the listed datasets. Our primary baseline was the state-
of-the-art BNN architecture, ReBNet [5]. All hardware imple-
mentations targetted the Xilinx Kintex UltraScale XCKU115
FPGA and met timing at 200 MHz.

In order to demonstrate the capabilities of specialised LUTs,
we unrolled a subset of each network such that each node
within that subset mapped to a distinct compute unit. We
chose to unroll by layer, unrolling as many layers as the
target device could accommodate and implementing those
following the LUTNet approach. Those selected for unrolling
are marked in bold in Table E} For fairness of comparison,
BNN architectures (chiefly ReBNet) used as baselines had the
same layers unrolled, and fine-grained pruning was performed
identically to that carried out for LUTNet on those layers. The
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Fig. 3. Training losses for @) the CNV network classifying the CIFAR-10
dataset and 1?; AlexNet classifying ImageNet. Curves represent high-precision
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remaining layers were left time-multiplexed, with identical
folding factors to those used for ReBNet’s evaluation.

B. Training Particulars

For our simpler datasets (MNIST, SVHN and CIFAR-10),
we performed the training, post-pruning retraining and post-
logic expansion retraining described in Section [lII| for 200, 50
and 200 epochs, respectively. For the more complex ImageNet
dataset, these were performed for 20, 5 and 20 epochs instead.
These periods were selected from our observations during
training, the loss curves for which are shown in Fig. [3a
demonstrating saturation at or before these epochs. Non-
LUTNet implementations were identically trained, but the
logic expansion phase (Section was not performed. All
training phases were executed in TensorFlow and accelerated
using four Nvidia GTX 1080 Ti GPUs.

C. Area Efficiency

When evaluating our implementations, we were primarily
interested in logic density, which we define as the number
of LUTs required to construct a network able to achieve a
particular test accuracy for a given dataset. The fewer LUTSs
needed to reach the same accuracy, the higher the density and
thus the more efficient the implementation.

Fig. @] shows the achieved whole-network area vs test
accuracy points for ReBNet and LUTNet implementations,
each pruned to various densities (proportion of remaining pre-
pruning parameters) via the tuning of pruning threshold 6, for
CNV classifying CIFAR-10. Each point marks the mean of five



TABLE I
NETWORK ARCHITECTURES FOR EVALUATED BENCHMARKS. CONVZ, y, z DENOTES A CONVOLUTIONAL LAYER WITH  OUTPUTS, KERNEL SIZE y X y
AND STRIDE z. FCONN IS A FULLY CONNECTED LAYER WITH x OUTPUTS. MAXPOOL IS AN & X & MAXIMUM-POOLING LAYER, AND BATCHNORM
AND SOFTMAX ARE BATCH NORMALISATION AND NORMALISED EXPONENTIAL LAYERS, RESPECTIVELY. LAYERS IN BOLD WERE FULLY UNROLLED
AND, FOR LUTNET, FEATURE K -LUT INFERENCE OPERATORS.

Dataset Model Network architecture
FConnjsg, BatchNorm, FConn,sg, BatchNorm, FConnjsg, BatchNorm, FConnysg, BatchNorm, FConnyg,
MNIST LFC
BatchNorm, SoftMax
Convey, 3,1, BatchNorm, Convey, 3,1, BatchNorm, MaxPool,, Convsg 3 1, BatchNorm, Convyg 3, 1, BatchNorm,
SVHN & CIFAR-10 CNV MaxPool,, Convsse, 3, 1, BatchNorm, Convssg, 3,1, BatchNorm, FConns;», BatchNorm, FConns;,, BatchNorm,
FConn;y, BatchNorm, SoftMax
Convog, 11,4, BatchNorm, MaxPoolz, Convsse, 5,1, BatchNorm, MaxPools, Convsgy 3, 1, BatchNorm, Convsgs 3. 1,
ImageNet AlexNet BatchNorm, Convyse, 3, 1, BatchNorm, MaxPools, FConnggos, BatchNorm, FConngges, BatchNorm, FConnjggg,

BatchNorm, SoftMax
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Fig. 4. Area-accuracy tradeoff for pruned ReBNet [5] @), 2-LUTNet @, 4-
LUTNet @ and 6-LUTNet (@) with the CNV network and CIFAR-10 dataset.
Each point is representative of a distinct pruning threshold. The dashed line
shows the baseline accuracy for unpruned ReBNet (660196 LUTs).

independent training runs, with an error bar indicating its 90%
confidence interval. LUTNet implementations used 2-, 4- and
6-LUT inference operators. For reference, the mean test error
rate of ReBNet without pruning—again averaged over five
training runs—is also shown. From this data, one can clearly
observe that while the error rate increases as more aggressive
pruning is applied, LUTNet demonstrates greater robustness to
that pruning than ReBNet through its increased logic density.
That several LUTNet points achieve greater test accuracy
than the unpruned baseline speaks to LUTNet’s increased
expressiveness. For example, despite having a significantly
lower (2.27x) area requirement, our 91.1%-pruned 4-LUTNet
implementation achieved an accuracy 0.590 pp above that of
the ReBNet implementation without pruning.

It is interesting to note from Fig. 4| that 6-LUTNet imple-
mentations tended to achieve lower logic densities than those

of 4- and sometimes even 2-LUTNet. To understand why this
is the case, we must consider area and accuracy separately.

Fig. [ba] shows the test accuracies of the same
implementations—ReBNet, 2-, 4- and 6-LUTNet—for
the same network and dataset—CNV and CIFAR-10—
pruned to two densities: 4.02% and 11.3%. These densities
were selected for comparison since they represent a wide
spread over those found to achieve accuracies reasonably
close (£2.00 pp) to ReBNet when unpruned. Of particular
pertinence is the difference in accuracy spread between
the two: those at 11.3% are much tighter than their 4.02%
parallels. These diminishing accuracy returns when adding
LUT inputs at higher densities point to complexity saturation.

Turning now to area, Fig. [5b| shows the LUT requirements
of the same implementations. While K-LUTNet designs for
any K with equal density contain the same number of logical
LUTs, this does not mean that they consume the same number
of physical LUTs. The LUTs actually present in our target
device are 6-LUTs, each capable of implementing either a
single logical 6-LUT or two logical K-LUTs with at least five
(for 5-LUTs), three (4-LUTs) or one (3-LUTSs) shared inputs.
1- and 2-LUTs are not required to share any inputs; two of
these can always be packed together. For 2- and 4-LUTNet,
in which each inference operator uses fewer than five inputs,
Vivado can often (for 4-LUTNet) or always (2-LUTNet) pack
two logical K-LUTs into each physical 6-LUT, resulting in
high logic density. Training-induced simplifications, e.g. inputs
treated as don’t-cares that are removed during synthesis, also
lead to higher probabilities of additional packing when smaller
logical LUTs are used. These optimisation phenomena are
rarely seen for 6-LUTNet, hence its significantly higher area
requirements at equal density.

When moving from 4- to 6-LUTs at the higher density,
despite the >20% increase in physical LUTSs, no accuracy ben-
efit was obtained. In fact, 6-LUTNet’s accuracy actually fell
~0.1 pp below that of 4-LUTNet’s as a result of overfitting.
Due to this, as was shown in Fig. |4} 4-LUTNet almost always
achieves a better area-accuracy tradeoff than 6-LUTNet.

As was noted in Section[V-A] we also benchmarked LUTNet

on other popular datasets and models: MNIST (on LFC),
SVHN (on CNV) and ImageNet (on AlexNet). Fig. [6] shows
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classifying CIFAR-10. Annotations denote decreases vs ReBNet.

the LUT requirements of each of these model-dataset com-
binations when implemented using both the ReBNet and
LUTNet inference architectures. The same layers for all pairs
of implementations were fully unrolled and pruned, with the
pruning threshold tuned to achieve an accuracy degradation no
more than £0.300 pp vs ReBNet’s without pruning.

For CNV and AlexNet, our use of arbitrary inference
operators sees area reductions of around 2x. For the clas-
sification of SVHN, the CNV network used can be pruned
more heavily than for CIFAR-10, hence the greater area saving
for that dataset. For LFC classifying MNIST, however, more
LUTs were consumed by LUTNet than its pruned ReBNet
counterpart. While each of CNV’s hidden layers has 2304
inputs per channel, LFC’s channels each have only 256 in-
puts, presenting less opportunity for area reduction through
popcount simplification. In this case, LUTNet’s post-pruning
LUT savings through popcount tree thinning were unable to
make up for the inference operator LUT incursion.

-106

0.8 |

()

D

T
771 1.90%

|

0.4

Area occupancy (LUTSs)
:12.08x

0.2

7] 0.827 x

[m
&
<

o
§$

Dataset (network)

Fig. 6. Area occupancy for ReBNet [5] @) and 4-LUTNet Q) with various
models and datasets. Via pruning, each implementation’s test accuracy was
kept within £0.300 pp of that of the unpruned ReBNet baseline’s. Annotations
show the area decrease in each case.

D. Area Breakdown

As a crude method of verifying the source of LUTNet’s
area savings, we disabled design hierarchy optimisation in
Vivado, preventing the synthesis engine from flattening across
modules. By taking a slice of implementations shown in Fig. 4
at the unpruned ReBNet test error rate (84.5%) +0.300 pp,
we obtained pruned ReBNet and 2-, 4-, 5-, 6- and 7-LUTNet
implementations for CNV all of comparable CIFAR-10 test
accuracy. Fig. |/| shows the LUT requirements for each of
these, with area split into that required by popcount operators,
inference operators and everything else. The overall height of
each bar is the whole design’s area occupancy with hierarchy
optimisation enabled, but the height of each stacked bar
is relative to the proportional area obtained with hierarchy
optimisation disabled. We emphasise that these relative area
data are not particularly meaningful, however this was the best
we could do without significant manual tool intervention.

Generally, as more inputs are used per logical LUT, we can
see that physical LUT requirements decrease, highlighting K-
LUTNet’s increasing logic density with K. Also shown in
Fig. [/| is each implementation’s post-pruning density. From
the breakdowns, it can be seen that the number of physical
LUTs required for popcount operators drops dramatically
with density. More aggressive pruning reduces the number
of branches in each popcount tree which, when unrolled,
consume the majority of the target device’s area.

As was pointed out in Section [} due to following a tradi-
tional BNN inference paradigm, ReBNet implementations—
whether pruned or not—require zero LUTs for the realisation
of their inference operators since, when unrolled, XNORs
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Fig. 7. LUT use breakdown, presented in terms of popcount operators ,

inference operators E) and other layers (Q), for CNV implementations.
Each implementation’s test accuracy was within +0.300 pp of that of the
unpruned ReBNet baseline’s [3]. Points show post-pruning densities.
Annotations show decreases vs ReBNet with pruning.

become free-to-implement buffers and inverters. For LUTNet,
this is not the case: physical LUTs are consumed by our
logical K-LUTs. As shown in Fig. [/| however, this is more
than outweighed by significant popcount area reduction. This
confirms the statement made in Section [I| regarding N < N.
Between 2- and 6-LUTNet, we can observe a general
trend of decreasing inference operator LUT requirements
with density. Looking more closely, some more interesting
features emerge. The jump in total area between 4- and 5-
LUTNet can be attributed to two factors: lack of density
reduction and decreased opportunity for LUT sharing. Here,
the increased expressiveness of 5-LUTs was not significant
enough to enable increased pruning while remaining within
the required accuracy bound. On top of this, the logical-
to-physical LUT packing effects discussed in Section
were marked, pushing both inference operator and total LUT
requirements for 5-LUTNet above those for 4-LUTNet. There-
after, although increasing numbers of physical LUTs were
occupied by the 6- and 7-LUTNet implementations, decreases
in density facilitated through increased network complexity
caused more-than-compensatory popcount area reductions.

E. Energy Efficiency

We estimated LUTNet’s energy efficiency using the Xilinx
Power Analyzer (XPA) tool with default settings: vectorless
mode (that not requiring specific input stimuli) and 12.5%
primary input switching probability. The resultant power es-
timates, for the same implementations captured in Fig. [/} are
shown in Fig. [8] All were obtained post-placement and -rout-
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Fig. 8. Implementation power consumption estimates, broken into static Q)
and dynamic components, for the same CNV implementations used
in Fig. [7] Points show post-pruning densities. Annotations show
decreases vs ReBNet with pruning.

ing. Power consumption is equivalent to energy efficiency here
since all implementations have identical throughput. While we
acknowledge that vectorless power estimates are not partic-
ularly accurate—typically around £10-20% from measured
values [16]—they are sufficiently so for our purposes.

Since dynamic power consumption is directly related to
area occupancy, Figs [7] and [§] show similar trends. Most of
the fully unrolled networks’ area consumption is attributable
to popcount adder trees, whose carry chains are dominant
with respect to switching activity. Popcount branch pruning
shortens the chains, more than proportionately lowering their
switching rates and thereby causing the large dynamic power
drop. The reduction in static power between the ReBNet and
LUTNet implementations can also be linked to area, although
indirectly. Between Pruned ReBNet and 2-LUTNet there was
a drop in estimated junction temperature from 60.1° to 31.3°,
leading to reduced leakage current and therefore static power
draw. Such temperature decreases are also useful since they
limit ageing, thereby increasing device lifetime [[17]. Overall,
we can conclude that LUTNet’s significant area reductions
result in even greater energy efficiency improvements.

FE. Training Efficiency

Each of LUTNet’s inference K-LUTs consists of 2K
weights: 2x more than that for (K — 1)-LUTNet. Conse-
quently, the number of training operations required per epoch
increases exponentially with K. This does not necessar-
ily translate to exponentially increasing training times over
XNOR-based BNNs, however, since, as pointed out by Jouppi
et al., the majority of DNN training accelerators’ speed is
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Fig. 9. Training efficiency of ReBNet [5] and LUTNet implementations for
CNV classifying CIFAR-10. Annotations show increases over ReBNet.

bounded by memory bandwidth, not compute power [18].
This is evident from Fig. 0] which shows the per-epoch
training times of ReBNet and 2-, 3-, 4-, 5-, 6- and 7-LUTNet
implementations for CNV with CIFAR-10. Implementations
from ReBNet to 4-LUTNet all have approximately the same
training rate, despite the number of weights increasing by up
to 16x. The training time did not increase because, for all
of these implementations, progress was bottlenecked by high-
precision activation transfer to and from GPU RAM. Increases
of significance were seen for 5S-LUTNet and beyond, for which
the number of multiply-accumulate operations performed per
activation transferred rose enough for the former to dominate.

VI. LIMITATIONS

While LUTNet implementations typically reach signifi-
cantly higher logic density than XNOR-based BNNs, our pro-
posal’s greatest current limitation is that its inference K-LUTs
cannot be time-multiplexed. Consequently, DNN hardware—
in this paper, always complete layers—implemented following
the LUTNet approach must be fully unrolled. While this
may be acceptable in, for example, cloud deployments where
throughput and energy efficiency are of paramount impor-
tance [19], it nevertheless limits the scalability of our proposal.

Time-multiplexing could be introduced in several ways. By
adding a level of multiplexers prior to K-LUTs used as we
propose herein, i.e. with hardened weights, each could be
shared within or between channels or layers. Alternatively, K-
LUT inputs could be sacrificed to allow some or all weights
to be stored in RAM and updated at runtime, enabling up-
to cycle-by-cycle switches in inference operator behaviour.
While both of these proposals would result in lower throughput
and logic density—and necessitate more complex and time-
consuming training—the implementation of larger LUTNet-
based networks on smaller devices would become feasible.
We will explore these in our future work.

Fig. [] shows that while our expansion to 2-LUTs results
in significant logic density gains over XNORs, returns for
movement to K-LUTs for K > 2 are diminishing. We suspect
that this is due to our current restriction on the form of
function g, in @), ie. {-1,1}* — {-1,1} rather than
{-1,1}" — N. This makes (@) insoluble when éq is restricted
to binary values. We can overcome this, and potentially make
even more efficient use of the underlying FPGA fabric, by
learning the popcount circuitry along with XNOR substitutes,
replacing the summation as well as wyx,, in (I).

While the introduction of nonlinearity significantly in-
creases the expressiveness of each inference operator, the
experiments reported in Section [V-C| revealed that 6-LUTNet
showed signs of overfitting. In the future, we will explore
methods of throttling expressiveness during training guided by
losses, e.g. switching to higher or lower K when appropriate.

Finally, LUTNet’s software does not currently skip zeroes
during training. As networks increase in size, GPU RAM will
be increasingly inefficiently used, resulting in unnecessarily
long training times. A future revision will therefore incorporate
sparse matrix multiplication, preventing the storage of and
multiplication by zero-valued weights.

VII. CONCLUSION

In this paper, we introduced LUTNet: the first DNN archi-
tecture featuring K-LUTs as inference operators specifically
designed to suit FPGA implementation. Our novel training
approach results in the construction of K-LUT-based networks
robust to high levels of pruning with little or no accuracy
degradation, enabling the achievement of significantly higher
area and energy efficiencies than that of traditional BNNs.

In our experiments with 4-LUT-based inference operators,
FPGA implementations following our proposals achieved a
mean area reduction of 1.81x vs the state-of-the-art BNN
architecture with unrolling and pruning. These designs target-
ted a range of standard DNN models and datasets, required
approximately the same training time and reached accuracies
bounded within +0.300 pp in all cases. Due to their efficient
use of soft logic, LUTNet implementations can exhibit energy
efficiencies up to 6.66x greater than reported by the authors
of related prior works. Thanks to its parameter hardening, our
architecture also requires no use of block RAM: a common
bottleneck for FPGA-deployed DNNs.

The authors of existing works on low-precision DNN in-
ference seem to have assumed that their forward-propagation
functions must be good approximations of the linear dot
product. With LUTNet, we argue for a tangential approach:
through the embracement of nonlinearity, one can do more
with less by unlocking the full potential of the K-LUT.
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