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Abstract—This paper describes a flexible infrastructure for fast
computer architecture simulation and prototyping of accelerator
IP. A trend for System-on-Chips is to include application specific
accelerators on the die. However, there is still a key research
problem that needs to be addressed: How do hardware accelera-
tors interact with the processors of a system and what is the impact
on overall performance?

To solve this problem, we propose an infrastructure that
can directly simulate unmodified application executables with
FPGA hardware accelerators. Unmodified application binaries
are dynamically instrumented to generate processor load/store
and program counter events and any memory accesses generated
by accelerators, that are sent to an FPGA-based out-of-order
pipeline model. The key features of our infrastructure are the
ability to code exclusively at the user level, to dynamically
discover and use available hardware models at run time, to
test and simultaneously optimize hardware accelerators in an
heterogeneous system.

In terms of evaluation, we present a comparison between
our system and Gem5 to demonstrate accuracy and relative
performance, using the SPEC CPU benchmarks; even though
our system is implemented on Zynq XC7045 which integrates
dual 667MHz Arm Cortex-A9s with substantial FPGA resources,
it outperforms Gem5 running on a Xeon E3 3.2 GHz with 32GBs
of RAM. We also evaluate our infrastructure in simulating the
interaction of accelerators with processors using accelerators
taken from the Mach Benchmark Suite and other custom
accelerators from computer vision applications.

I. INTRODUCTION

Simulators provide valuable solutions by giving clear in-
sights into complex systems. A simulator is a powerful and
important tool because it enables computer architects and
software developers to evaluate alternative designs, plans or
policies. Thus, ”What if?” questions concerning system per-
formance can be addressed without having the requirement of
experimenting on a system that actually exists.

A recent trend of modern computer systems is the inclusion
of hardware accelerators in heterogeneous System-on-Chips
(SoCs). For example, the market offers SoCs (Xilinx Zynq)
that combine FPGAs for acceleration and general purpose
CPUs. It has been suggested that the trend will lead to hetero-
geneous systems with many specialised hardware accelerators,
although only a small subset of them powered on at a time,
to tackle the problem of Dark Silicon [1]. There is a need
for providing support for this type of architecture in the
simulation infrastructure and to consider interactions between
the accelerators, the CPUs and the memory hierarchy. Except
in straightforward cases, with extremely simple accelerators,

the time it takes to complete a task in the accelerator is not
constant, due to interactions with the rest of the system via
the memory hierarchy. Additionally, often the actual input data
values affect the time required by the hardware accelerator to
finish. Thus, naive solutions that simply add a fixed latency
are not very useful.

This paper proposes SimAcc, a methodology to combine
the accuracy of synthesized IP (intellectual property) hardware
models with the flexibility to simulate binaries using software
based simulators. The synthesised IP hardware models include
both actual hardware accelerators and models of the CPU for
simulation. This methodology resolves the speed-complexity
issue by partitioning the functional simulation from timing
models that simulate the microarchitectural structures affecting
performance. An event stream comprised of the loaded/stored
data addresses, and the program control flow addresses taken
by native execution of user-level threads, and any memory
accesses by accelerator IP, is consumed by timing models that
are implemented in Bluespec and synthesized to an FPGA.
This stream of events is generated from the Dynamic Binary
Instrumentation [2] of an unmodified application executable.
Our current system targets out-of-order ARMv7 ISAs using
a Zynq XC7045 which integrates dual 667MHz Arm Cortex-
A9s with substantial FPGA resources.

The software simulation of synthesizable register transfer
level (RTL) is very slow, yet computer architects desire for
faster simulation and testing of accelerator IPs that modifies
the instruction set architecture (ISA) and/or the internal micro-
architecture is increasing. Accelerator IP can be directly
plugged into our simulation system in the form of a synthesiz-
able model, encapsulated in Bluespec or designed with High-
Level Synthesis, and then test the overall system performance
(timing/performance statistics) on an unmodified application
executable using this accelerator IP.

The contributions of this paper are:

• We outline the design, flexible modelling capabilities,
and performance of our dynamic binary instrumentation
based on a simulation system that is constructed using a
Bluespec library of composable instrumentation systems.
We compare our simulation infrastructure with Gem5
system call emulation mode using the SPEC CPU2006
Benchmark suite and SPEC reference CPU benchmarks
using fastforwarding. One of the advantages of our in-
frastructure is that it delivers cycle level accurate timing



faster than comparable simulators by implementing the
timing model in FPGA hardware.

• We propose a simulation methodology that includes the
interaction of processors and accelerators. We are able
to use unmodified IP blocks, which are wrapped with
logic to capture the memory accesses that they initiate and
provide through our infrastructure a timing/performance
monitoring simulation. The proposed system can save
a significant part of development time, as end-users
can study the timing/performance statistics to identify
optimization opportunities, and then re-design their ac-
celerators for testing again with the same executable.

• Our system, implemented on a Zynq XC7045 which is
equipped with dual 667MHz Arm Cortex-A9s integrated
with programmable logic, outperforms Gem5 running on
a Xeon with 32GBs of RAM, and our fastforwarding
feature is 60x faster than this on Gem5.

• We design accelerators for two well-known computer vi-
sion applications, ORB-SLAM2 and Semi-Direct Monoc-
ular Visual Odometry (SVO), in order to present the inter-
action between accelerators and processors with SimAcc.

II. RELATED WORK

In this section we discuss the approaches of software-
based simulators such as Gem5, Sniper and ZSim along
with FPGA assisted simulators for evaluation. An in-depth
survey of FPGA accelerated simulation of computer systems
is contained in [3].

Gem5 [4] is currently the de-facto standard for archi-
tecture simulation, and the only open source simulator for
Arm based systems. Gem5 provides a highly configurable
simulation infrastructure handling multiple ISAs, and CPU
models (ranging from functional-only atomic models to cycle-
detailed out-of-order (OoO) models) in conjunction with a
detailed and flexible memory hierarchy providing support for
multiple cache coherency protocols and interconnect models.
The simulation mode can be either system call emulation (SE)
mode, concentrating on the simulation of user-level application
code, or, full-system (FS) mode, where OS code is also
simulated.

Sniper and ZSim [5], [6], [7] both utilise Intel’s Pin
infrastructure to dynamically rewrite the code executed by
X86 applications using a pintool. Sniper and ZSim use cus-
tom pintools to implement their simulation infrastructures by
extracting key information from an application’s execution.
ZSim decodes instructions to µ-ops related to the pipelined
microarchitecture under simulation. A core’s pipeline stages
are simulated and evaluated at each µ-op. Sniper uses interval
simulation based on high-abstraction analytical models of
core performance. A core’s instruction stream is divided into
timing intervals delineated by miss events, such as branch
mispredictions, and cache misses.

APTSim [8] is a novel FPGA-based infrastructure able to
simulate ARMv7 binaries. APTSim proposes a methodology
to combine the accuracy of synthesized IP hardware models
with the flexibility to simulate binaries using software based

simulators. APTSim fully decouples functional simulation
from the timing models used to produce performance informa-
tion. Dynamic binary instrumentation is used to generate an
event stream comprised of the addresses of data loaded and
stored, along with the program control flow addresses taken
by native execution of user-level threads. The event stream is
consumed by timing models that are synthesized to an FPGA.
Timing models gather statistics about their behaviour, they do
not store data, only state and counters and as a result this
allows the behaviour of a model to be evaluated whilst the
area of the model remains manageable.

FAST [9], [3] was one of the first systems to use FPGA
accelerated timing models, implemented in Bluespec, that
are driven by speculative functional execution of full-system
simulation, using modified QEMU software [10]. QEMU
determines the dynamic instruction trace passed to the timing
models. However, at program execution points where a branch
mis-speculation occurs, functionally incorrect instructions will
be fetched in a real processor until a mis-speculation is
resolved, then the functionally correct branch path is followed.
Therefore, the modified QEMU software must use costly
check-pointing at places where such mis-speculations can
occur, and roll-backs to a checkpointed state when a mis-
speculation occurs in order to follow mis-speculated instruc-
tion traces until they are resolved. Such modifications further
slow down the execution of a vanilla QEMU that is already
significantly slower than other dynamic binary instrumentation
tools such as MAMBO and Pin. It is important to note that
FS simulation is unnecessary for many applications, and that
the infrastructure described in this paper enables significantly
more flexible interfacing to timing models than FAST, as well
as the integration of accelerator IP.

HAsim [11] is a FPGA-based simulator that simulates mul-
ticore architectures using a highly-detailed processor pipeline,
cache hierarchy and detailed on-chip network using a single
FPGA. Its main contribution is the use of fine-grain multiplex-
ing of pipeline models to support detailed timing for multicore
processors. Internal core state, such as the PC and register file,
is duplicated but the combinational logic used to simulate each
pipeline stage is not. HAsim’s timing models track how many
FPGA clock cycles represent a single target machine cycle for
a given operation. In this scenario, structures such as cache
memories that do not map efficiently to FPGA resources, are
implemented using FPGA efficient features (such as Block-
RAMs), and multiple FPGA clock cycles then represent a
single target machine cycle.

HeteroSim [12] is a simulation platform for heterogeneous
CPU-FPGA systems. It combines two simulators: Multi2Sim
[13] which is a cycle-based simulation framework for CPU-
GPU heterogeneous processors, and Verilator, a fast simulator
based on hardware description languages, which is able to
compile synthesisable Verilog into C++ or System C code.
After that, it generates an executable to simulate a given
design, returning cycle accurate execution time performance
and timing statistics. The combination of these two simulators
allows the generation of metrics for CPU-FPGA systems. In



general, an end user provides the x86 executable and Verilog
code of kernels, which are executed by HeteroSim that then
generates statistics about the CPU-FPGA system. The main
contributions of HeteroSim are the effective Co-simulation
of Verilog code and x86 executables, the Shared coherent
memory sub-system of CPU and FPGA which used by the
two simulators and the CPU-FPGA communication through
different memory hierarchies.

Aladdin [14] is a power and performance simulator aimed
at searching the design space search of accelerator-based
systems. The main contribution of Alladin is that it takes high-
level language descriptions of algorithms as inputs. It uses
these descriptions to create dynamic data dependence graphs
(DDDG) that represent the accelerators, without having to
generate RTL. The dataflow behavior of accelerators makes
them ideal to be represented with dynamic data dependence
graphs. Aladdin is able to achieve more than 100x faster
than traditional RTL design flows. The ability to co-simulate
Verilog designs and x86 executable, the rapid simulation speed
and the evaluation of a CPU-FPGA system with a wide
variety of system configurations rank Aladdin as an ideal
infrastructure to quickly and accurately model accelerators
without generating RTL. However one of the key limitations
of Aladdin is that the accelerators cannot be reconfigured,
because Aladdin generates an accurate representation of ac-
celerator and it is not using the actual generated hardware for
the simulation.

LiME [15] is a hardware/software tool designed for memory
system evaluation. LiME uses the Xilinx Zynq UltraScale+
MPSoC on the ZCU102 board to capture any/all memory
access, either from the Processing System (PS) or the Pro-
grammable Logic (PL). LiME employs novel loopback cir-
cuitry in conjunction with address map relocation to pass
memory references from the PS into the PL side.

III. ARCHITECTURE OF SIMACC AND METHODOLOGY

SimAcc is composed from three main components. A C++
library and hardware interface standard called MAST [8] and
the dynamic binary modification tool MAMBO [2] are respon-
sible for the simulation side. Additionally, SimAcc includes
the accelerator side, which includes accelerator IP for specific
applications and wrappers to interact with the simulation side.
SimAcc is able to simulate ARMv7 binaries using hardware
models for memory system hierarchies and microarchitecture
pipelines. Furthermore the simulation of applications com-
bined with accelerator IPs can collect performance statistics
from pipeline and accelerator models.

A. Simulator

Figure 1 illustrates an overview of the SimAcc simulation
infrastructure and how performance estimates and statistics are
generated. More specifically MAST enables all the Bluespec
IP hardware models to be managed by a C++ userspace
software driver library. MAST manages the event stream of
memory accesses and PC-altering instructions, in order to
feed the memory and pipeline models. The event streams
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Fig. 1. Simulator side of SimAcc Infrastructure.

are generated from custom plugins that extend the Dynamic
Binary Modification tool for ARMv7. The ability of our
simulator to be extended and the flexibility it offers is one
of the key benefits of the simulator part of SimAcc.

1) MAST BLUESPEC IP LIBRARY: MAST uses Bluespec
to facilitate the rapid construction of highly parameterised
models with well defined interfaces. Most MAST models have
a single AXI interface, controlled by a library IP block that
handles its identification, and locking, which can be used to
control how the derivative models can accessed by a common
software driver. Bluespec’s atomic rule based coding style
enables the synthesis of control systems that would be complex
to specify using RTL languages. A MAST compliant IP
component must adhere to a low-level IP interface containing
identification, locking, data movement and I/O features such
as burst controllers for fetching data from processor memory,
and file based reading/writing IP. The high level models are
currently: a) the out-of order Pipeline Model for the simulation
of unmodified ARMv7 binaries; and b) the Cache System
Model which obtains statistics for the cache hierarchies.

a) Out-of-order Pipeline model: implements most of the
main features of out-of-order processors, including register
renaming, memory aliasing checking and branch prediction.
The functionality of the model is inspired by the Arm Cortex-
A9 processor. The model does not functionally replicate the
pipeline, i.e. it is not a functioning processor, it simply
decodes instructions, counting individual instruction types, and
registers used, and allocates instructions to a processor pipeline
to obtain timing and utilisation statistics. The pipeline model
communicates with a cache model to provide requests to the
instruction and data caches. All the modules of the pipeline
model are fully configurable.



b) Cache System: The cache model consists of three
common cache structures which are included as additional
models in the library. The first is a dual L1 cache, with a
shared L2 cache, common in Intel-type multicore systems.
The second is a cluster cache hierarchy, with a parameterised
number of core caches (L1 instruction + L1 data) coupled
via a Snoop Control Unit (SCU) to an L2 cache, this is the
structure found in Arm’s big.LITTLE style architecture. The
third includes another dedicated cache in the second cluster
cache which serves the requests directly from the accelerator
of SimAcc only. One advantage of these combined models,
when used as stand alone models, is that their components
share a common ACP port, allowing larger memory systems
to be configured on a device. It gathers statistics about the
behaviour of a cache system. It is not a functional model, i.e.
it does not store data, only address tags and states for cache
lines; this allows the behaviour of a cache to be evaluated.
The model always features an AXI slave that is used to
lock the model to an application (the simulator), and to read
back statistics; additionally, an optional ACP interface can be
included, for burst transfers from the CPU. All the above cache
systems are fully configurable in terms of cache-size, block-
size and number of ways. End users can choose between the
offered cache models to determine the most suitable model
for their application or to extend the current Cache System
implementation in order to replicate new cache hierarchies.

2) MAST USERSPACE DRIVER LIBRARY: The hardware
is managed by a C++ software library that acts as an entirely
userspace driver for any IP blocks configured onto the FPGA.
The library is able to recognize any IP blocks that are present,
and to enable the appropriate plugins in MAMBO [2], to
ensure correct instrumentation is performed during program
execution. It consists of two main classes that are used within
any application accessing the FPGA, as shown in Figure 1.
SimCtrl is responsible for managing the system as a whole and
SimObject for controlling an IP block. SimCtrl has a number
of features allowing easy system development. On creation
the object probes the FPGA to ascertain what hardware is
configured on it; it creates a SimObject derived object for each
IP block, that allows an IP block to be used by the application.

3) MAMBO Instrumentation: MAMBO [2] is an efficient
dynamic binary modification tool for Arm architectures that
transparently modifies the machine code of 32 bit and 16
bit instructions during execution. Its performance is 2.8 times
faster on average than Valgrind [16], and 14.9 times faster
than QEMU [10]. To drive our hardware models we use
MAMBO plugins to add new functionality. They consist of a
set of callbacks that are executed at various points of program
execution. An initialisation function is used to assign end
user provided functions to MAMBO events, in the case of
SimAcc we also use it to call SimCtrl to ensure that we
have any hardware required by the plugin and thus enable
plugin events. We have extended MAMBO with the feature of
fastforwarding the simulated program, until the desired point is
reached and the plugins start sending event traces to the FPGA.
The idea is that initially the start of each code cache fragment

is instrumented only with a call to an assembly function, using
the number of instructions in the fragment as the argument.
When the desired threshold is reached, the fastworwarding
instrumentation is discarded and regular instrumentation starts.

As an illustrative example, we measured how long it takes
to reach the desired point of simulation in the mcf SPEC
CPU2006 reference benchmark. While SimAcc fastforwards
to the desired simpoint in 5 seconds, Gem5 using the DerivO3
CPU needs more than 5 minutes to reach the same point.

B. Accelerators + Simulator

One of the key contributions of our infrastructure is the
ability to co-simulate processors and accelerators and their
interaction using unmodified binaries. SimAcc allows to im-
plement conventional FPGA-based accelerators, such as image
processing filters, and access these from regular applications.
Figure 2 illustrates how SimAcc models the interaction of
specialised hardware with CPU and caches in an SoC. On
one hand, CPU-initiated transactions are easily captured by
the simulator, since it captures all memory accesses already.
On the other hand, accelerators that include a master port
can initiate transactions independently from the CPU. In
our environment, this is achieved by an accelerator directly
accessing the memory of the processor over the ACP port, this
enables dramatic performance increases over CPU managed
transfer. Moreover, the ability to use a block of memory makes
the migration of CPU based code to FPGA accelerators a
straightforward task, without having to deal with kernel level
drivers. Nevertheless, combining accelerators and simulated
hardware requires that the infrastructure is able to capture all
accesses to the memory hierarchy, including those via the ACP
port. Moreover, the accesses to the actual ACP port must still
happen, as the behaviour and outcome of the simulated run
could differ if the accelerator is not reading or writing the
expected data.

In SimAcc we have tackled the problem of capturing
the traffic in the ACP port by developing a number of IP
blocks (namely, the ACP Snoop module, the Access Generator
module and the Cache Arbiter) that wrap the accelerator and
allow it to interact with the simulation infrastructure. The ACP
Snoop module intercepts the ACP accesses generated by the
accelerator, creates a descriptor for them and sends the original
request to the actual ACP port. This enables using unmodified
hardware blocks for the accelerators. Responses from the ACP
port are sent directly to the accelerator. An interface of the
ACP Snoop returns the most recent descriptor, if any, and
it keeps a small buffer of recent descriptors. The Accesses
Generator is responsible for retrieving descriptors from the
ACP Snoop, and breaking them down into individual memory
accesses to send to the cache model. The Cache Arbiter takes
the requests from the Accesses Generator and the pipeline
model (we do not need to if the simulated system does not
include an accelerator). The Cache Arbiter also has an input
interface from the Pipeline model that notifies when there is
a new simulated cycle. We use this to sync the speed of the
requests from the Access Generator and the Pipeline Model.
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Fig. 2. Overview of the SimAcc Infrastructure.

There are some limitations in our approach. One of the main
drawbacks concerns the achieved performance of SimAcc. The
accelerator IP in SimAcc is configured to run at its usual
frequency. Moreover the simulated CPU is much slower than
the actual CPU. Combining the above, the relative speed of
the accelerator compared to the CPU is much higher when
it is simulated. In order to synchronize the simulator with
the accelerators in SimAcc infrastructure, we slow down the
modelling of the memory accesses in the cache arbiter module
with the input of simulated cycles. This approach fits in a large
proportion of accelerators. There are two basic scenarios in
which this approach is not ideal. First, this approach is not
applicable for accelerators which are always running, that is,
an accelerator which is not waiting for the CPU to send a
start command. Second, the approach of SimAcc may affect
the operation when there is time-dependent behaviour, either
on the software or the accelerator. An example would be if the
accelerator times out waiting for something to be provided by
the CPU. Since the program running on the simulated CPU
will progress much slower than on the actual CPU, a time out
may be triggered in the simulation only.

C. SimAcc flow for accelerator development and co-
simulation

SimAcc is an infrastructure which allows to test and si-
multaneously optimize accelerators in a heterogeneous system.
Figure 3 presents the flow for developing FPGA-based accel-
erators and including them for simulation in SimAcc. For end
users of SimAcc the process of running a simulation for an ap-
plication with an accelerator is simple. As an initial step, they
must produce a hardware configuration to match their desired

memory hierarchy and pipeline models parameters. Running
the source through the Bluespec compiler will produce a
Verilog file that is suitable for creating a Vivado IP block
(it is also possible to ship pre-compiled Vivado IP blocks that
can be used directly, with the configuration parameters already
set). After creating the desired models with the Bluespec
compiler, the system is ready to be loaded to Vivado. From the
accelerator side, end users can create accelerators using High
Level Synthesis or Bluespec with the limitation that the created
accelerator uses the ACP port. After that stage a simple Vivado
TCL script is used to integrate accelerators and simulator
models, producing a bitstream file for FPGA configuration.
As illustrated in Figure 3, after getting the statistics, users
either re-design their accelerator(s) through HLS or optimize
their accelerator(s) prior to testing with the same executable.

IV. ACCELERATOR USE-CASES

In this section we present use-cases of accelerators from the
Mach Benchmark Suite [17] and accelerators for computer
vision applications [18][19] that are designed and evaluated
using our simulation system.

1) ORB-SLAM2: ORB-SLAM2 [18] is a state-of-the-art
SLAM implementation. After carefully profiling the applica-
tion, we developed an accelerator for one of the key functions
of ORB-SLAM: FAST corner detector. This accelerator can be
typically implemented with a sliding window over the current
frame. This was challenging in this case, as ORB-SLAM
divides the frame into multiple “cells” and independently
in each one uses two variants: first a more restrictive one
(higher threshold), and if not enough corners are found, the
second version is used. The hardware implementation required
buffering the image at the cell level and implementing both
versions in parallel, selecting which one is used according to
the results. This implementation results in a sequential memory
access pattern that reads the input frame from a buffer and
another that writes the output into another buffer.

We have implemented the accelerator for corner detection
using Bluespec and we have leveraged MAST to package this
accelerator for use in SimAcc. Images are passed to and from
the main applications using the SimCtrl unit to map pages from
virtual to physical addresses and to store page mappings on the
FPGA, as a translation lookaside buffer (TLB). This use-case
demonstrates that only user-space coding is required in MAST.
ORB-SLAM2 has been modified to use the MAST software
library capabilities to detect if a FAST accelerator exists in
the hardware. We have demonstrated this works robustly even
if the FPGA is reconfigured during the application runtime.

The simulator hardware blocks and the accelerator hardware
blocks co-exist peacefully in the FPGA, and MAST can handle
both without any problem. Note that since both ORB-SLAM2
and SimAcc use MAST, when simulating ORB-SLAM2 there
are two instances of MAST: one linked with the simulator
and one used by ORB-SLAM2. Both instances see all the
hardware IP, but the simulator one manages the hardware
models of the pipeline and caches and the other manages the
accelerators. An interesting observation is that the MAMBO
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plugin runs functions of MAST directly, but that the simulated
program executes instrumented versions of the same functions
seamlessly.

2) Semi-Direct Monocular Visual Odometry (SVO): Semi-
Direct Visual Odometry (SVO) [19] has a semi-direct approach
that eliminates the need of feature extraction and robust
matching techniques for motion estimation. The algorithm
operates directly on pixel intensities, which results in subpixel
precision at high frame-rates. A probabilistic mapping method
that explicitly models outlier measurements is used to estimate
3D points, leading to fewer outliers and more reliable points.
The profiling of the algorithm shows that the most time-
consuming part of the application is the feature alignment
function. In order to evaluate the functionality of our simula-
tion infrastructure the feature alignment function was hardware
implemented, using HLS. This function can be explained as
a relaxation step, that achieves a higher correlation between
the feature-patches. This alignment is solved using the inverse
compositional Lucas-Kanade algorithm [20].

3) Mach Benchmark Suite: MachSuite [17] is a collection
of nineteen benchmarks for evaluating high-level synthesis
tools and accelerator-centric architectures. MachSuite spans a
broad application space, captures a variety of different program
behaviors, and provides implementations tailored towards the
needs of accelerator designers and researchers, including
support for high-level synthesis. We illustrate the potential
of our infrastructure by implementing six accelerators (aes
encryption, fft strided, fft Transposed, bfs, bfs Queue, kmp)
from Mach Suite and simulating them with our infrastructure.

V. EVALUATION

A. Experimental setup

SimAcc uses a Zynq XC7045 which consists of an inte-
grated processing system (PS) and programmable logic (PL),
on a single die. The PS integrates dual 667MHz Arm Cortex-
A9s. Additionally, we use Gem5 in system call emulation
mode to generate statistics and compare against SimAcc. We
currently evaluate single-threaded applications.

We use the SPEC CPU 2006 benchmark suite [21] to eval-
uate the accuracy of the out-of-order CPU model of SimAcc,
compared with Gem5. We also use accelerators generated
automatically from the Mach benchmark suite [17] to test the

TABLE I
FPGA UTILIZATION FOR THE EVALUATION SYSTEM.

Component LUT BRAM
L1 I+D & L2 6% 2%
Snoop Controller 1% –
Pipeline model 35% 1%
- IEU 6.4%
- LSU 8.5%
- ROB 2%
DMA Engine 1% –
Cache Arbiter 1% –

ability of SimAcc to model the interaction of the simulated
CPU and arbitrary accelerators. In all cases, bear in mind
that we must fit our simulation runtime infrastructure within
the 1GB RAM space. Some basic configuration parameters
used in the experiments, for both SimAcc and Gem5, are
presented in Table II. First, we run the benchmarks with the
test input in order to be able to run applications to completion
without the fastforwading option, and keep simulation time
reasonable. Allowing the simulation to execute until the end
gives more confidence in the implementation and results. In a
second stage of testing, we simulate using the reference input
benchmarks in order to evaluate intervals of execution more
representative of actual programs. In this case, to keep sim-
ulation time reasonable, we used SimPoint [22] to select the
most representative 100M instruction interval and simulated
only that (plus a 1M instructions warm up period), using the
option of the fastforwarding both in SimAcc and in Gem5 [4].
In the case of Gem5, we also create a checkpoint, so we only
need to fastforward once.

We have used the flexibility of our infrastructure to sim-
ulate the accelerator use-cases mentioned before, using dif-
ferent cache configurations. SmallCache, MediumCache and
LargeCache referred to different cache configurations. Small-
Cache defined as 16k,512k,32k for dcache, L2, icache re-
spectively, MediumCache referred to 64k,2M,32k and Large-
Cache defined as 125k,4M,32k. Bear in mind that the pre-
sented results are normalised to the configuration SmallCache.

B. Results and Discussion

1) Resources Utilization: In terms of resources Table I
shows the utilization reported by Vivado (version 2017.2) after



TABLE II
CONFIGURATION PARAMETERS.

CPU Branch Configuration Cache Configuration
L1 L2 instr

CPU type DerivO3CPU Type Tournament associativity 2 8 2
ROB entries 192 BTBentries 4096 size 64K 2M 32K

LQ/SQ entries 16 BTB tag size 16 block size 64 64 64
Phys Registers 56 RAS size 16 TLB entries 32 32 32
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Fig. 5. L1 data cache statistics (SPEC test input).

the implementation step. The pipeline model seems to occupy
most area, but note that a significant amount of this area is
occupied from the IEU, LSU and ROB modules of the pipeline
model which are fully dependent from their size parameters.
For instance, choosing a large LSU leads to a dramatic increase
in the resources utilization of the pipeline model.

2) Accuracy: Figure 4 shows the number of simulated
cycles of the SimAcc infrastructure compared with Gem5, and
the ratio between them. Figures 5 and 6 plot the statistics for
the data L1 cache and the unified L2 cache respectively. The
most significant difference is found in benchmark gobmk. At
this stage of development, we have not fully implemented sup-
port for multiple accesses instructions in our infrastructure, and
an in-depth study revealed that gobmk makes extensive use of
multiple accesses instructions, which causes this discrepancy.

The other benchmarks present differences in the range 0.4
to 20. While these are apparently large discrepancies, they
typically appear in benchmarks where the absolute value is
quite small, and thus the relevance of these is small in the
overall simulation.
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Fig. 6. L2 cache statistics (SPEC test input).
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When simulating without the fastforwarding option, we
compare the number of simulated instructions as well as the
number of cycles, together with key statistics (e.g. from the
caches and branch predictor) that help us to understand the
discrepancies between the two simulators.

When simulating intervals of the reference input, we simply
present results for IPC (Instructions Per Cycle), as the number
of simulated instructions is fixed in Figure 8.

3) Simulation speed: Figure 7 reports the execution time
in minutes for the SPEC benchmarks running on our infras-
tructure and Gem5. We can yield that the achieved speedup
of SimAcc compared with Gem5 ranges from 2x - 8x. Al-
though our current work has been on accuracy of simulation,
rather than performance and there is significant scope for
performance improvement. Firstly the use of page sized RAM
buffers in the timing model means that if code is not present
in a RAM buffer then an entire page is written to the FPGA
RAM; in many applications more than 4 pages of RAM will
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Fig. 9. L1 data cache statistics normalised to SmallCache and Simulated
Cycles normalised to 1 (MachSuite accelerators).

be used in relatively tight blocks of code meaning time is
wasted on moving data to the FPGA.

A logical alternative solution is to directly access the spe-
cific memory address over the ACP port, using the processors
cache as a code cache, this could significantly reduce the
amount of communications to main memory and cause less
pollution of the processor’s cache, both of which should
improve overall performance. Moreover, the memory model
is currently transferring accesses one at a time to the cache
model, a more rapid solution would be to double buffer these
in the MAMBO plugin and allow the cache to DMA them from
the buffers as they become full; this would allow overlap of
cache modelling and data gathering and the use of ACP offers
around an order of magnitude improvement in data transfer
rates compared with direct writes.

4) Accelerators: Figure 9 presents the simulated cycles for
the six accelerators from MachSuite. The simulated cycles
decreased as the cache sizes becoming larger, with Medium-
Cache yielding significant speedup while LargeCache having
limited effect for some accelerators. Figure 9 shows statistics
from the cache model. Obviously as the L1 cache size becomes
larger, we observed a smaller cache miss rate. Concerning
the L2 cache statistics, the smallest cache size already fitted
the whole workload of the benchmarks, and all configurations
present a steady cache miss rate.

Additionally, Figures 10 and 11 illustrate the simulated cy-
cles, L1 and L2 data statistics for FAST and Feature Alignment
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Fig. 10. Simulated cycles and Data Cache Statistics normalised to SmallCache
(FAST accelerator for ORB-SLAM2).
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Fig. 11. Simulated cycles and Data Cache Statistics normalised to SmallCache
(Feature Alignment accelerator for SVO).

accelerators for ORB-SLAM2 and SVO applications respec-
tively. We can observe that the simulated cycles decrease as
the cache size becomes larger for both applications. From the
graph 11 we can see minor differences in simulated cycles and
cache statistics when we apply different HLS optimizations.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated the potential of combining a flexible
IP hardware library, a user-level driver library and dynamic
binary instrumentation for microarchitecture simulation and
prototyping. We exploit the advantages of an FPGA SoC
to accelerate at a very fine granularity (instructions), rather
than large blocks of code. With this, we can benefit from
the accuracy and speed of FPGA-based modelling and the
ability to run binaries. Moreover, this paper contributes the
first FPGA-based simulator for Arm combined with acceler-
ators, significantly extending the options for simulating Arm
processors. As future work, we will implement the system
on an Ultrascale+ Zynq board. Moreover, we plan to extend
the models to include more microarchitectural features and
alternatives (e.g. more features in the out-of-order execution
model, or different pipelines in parallel which simulate each
core independently to model multi-core systems).
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