
Efficient FPGA Floorplanning for Partial 

Reconfiguration-Based Applications 
 

Norbert Deak Octavian Creţ Horia Hedeşiu 

Cluj-Napoca branch Computer Science Department Department of Electrical Machines, 

Marketing & Management 

National Instruments Technical University of Cluj-Napoca Technical University of Cluj-Napoca 

Cluj-Napoca, Romania Cluj-Napoca, Romania Cluj-Napoca, Romania 

Norbert.Deak@ni.com Octavian.Cret@cs.utcluj.ro Horia.Hedesiu@mae.utcluj.ro 

 

Abstract— Partial Reconfiguration (PR) is a technique that 

allows reconfiguring the FPGA chip at runtime. However, 

current design support tools require manual floorplanning of the 

partial modules. Several approaches have been proposed in this 

field, but only a few of them consider all aspects of PR, like the 

shape and the aspect ratio of the reconfigurable region. Most of 

them are defined for old FPGA architectures and have a high 

computational time. This paper introduces an efficient automatic 

floorplanning algorithm, which takes into account the 

heterogeneous architectures of modern FPGA families, as well as 

PR constraints, introducing the aspect ratio constraint to 

optimize routing. The algorithm generates possible placements of 

the partial modules, then applies a recursive pseudo-

bipartitioning heuristic search to find the best floorplan. The 

experiments showed that the algorithm’s performance is 

significantly better than the one of other algorithms in this field.  

 

I. INTRODUCTION  

Partial Reconfiguration (PR) makes it possible to modify 
certain parts of a hardware architecture implemented in an 
FPGA chip while the remaining parts of that architecture are 
still running ([1]). The advantage consists in the reduction of 
the design’s size, thus also reducing the cost and the power 
consumption. PR offers flexibility in the choices of algorithms 
or protocols for an application, along with security 
improvements and also the possibility of introducing FPGA 
fault tolerance. But it also poses a few design challenges, one 
of the most important being the manual floorplanning (FP), 
where the user must provide a placement in the FPGA chip for 
each reconfigurable partition. This can be difficult to achieve 
because the user should have deep knowledge of the structure 
of the FPGA. Furthermore, each placement should meet the 
modules’ requirements in terms of resources, taking into 
account the different types of resources and meeting special 
PR design constraints. For a larger number of reconfigurable 
regions, this problem may be very difficult to solve manually. 

Several solutions were proposed for solving the FP 
problem, however only few of them consider PR and FPGAs 
with a heterogeneous architecture. In this paper, a new method 
that satisfies the PR constraints is proposed, which is aware of 
the heterogeneous distribution of resources and takes into 

account the inter-modules connections. This method uses the 
recursive pseudo-bipartitioning heuristics from [2] in order to 
reduce the problem size and also to find a convenient location 
for each module on the FPGA device. Instead of generating all 
the possible placements for each module as in [2], the 
Columnar Kernel Tessellation method [3] is used for rapidly 
generating the modules placement and for reducing the 
amount of wasted resources. Also, in the bipartitioning 
heuristics, the total wirelength is considered only indirectly for 
solving a Nonlinear Integer Programming (NLIP) problem [4]. 
A new constraint has also been introduced: the Aspect Ratio 
(AR) of the modules, which must be around 0.5 to avoid 
routing problems, as explained in [5], [6].  

The FP problem works on a number of reconfigurable 
regions, each of them having its resource requirements. The 
target FPGA device is also chosen, as well as an objective 
function that needs to be minimized. The FPGA can be seen as 
a matrix, where the rows are the clock regions [7], [8]. Each 
cell contains a specific type of resource (mainly CLB, BRAM 
and DSP blocks). This is due to the fact that when PR is 
performed, the minimal reconfigurable unit is a column of 1 
CLB wide and 1 clock region high. This minimal 
reconfigurable unit can be called a tile.  

A solution to the FP problem is defined as a rectangular 
area for each region. The solution is valid if it meets these four 
constraints: (1) For each region, the chosen area must contain 
the resource requirements; (2) Overlapping between two 
regions is forbidden; (3) All regions should fit in the target 
FPGA chip; (4) The objective function of the problem is 
minimized (the resource wastage and the total wirelength). 

There are also two additional, PR specific constraints that 
should be met. First, each region has to be placed into a 
rectangular area that includes complete tiles, and, second, the 
AR of a region has to be between 0.4 and 0.6 to ease the 
routing process. Authors of [5] claim that the best results are 
obtained for an AR of ~0.5, and the author of [6] claims that 
AR has to be less than 1 to ensure that the design is routable – 
but none of them provides a formal proof. 

In FP, the area of the reconfigurable region is an important 
factor. PR allows changing the functionality of the region by 
uploading a partial bit file at runtime. This new uploaded 



configuration may require other types of resources or a 
different amount of them, for instance more CLBs or less 
DSPs, etc. This implies that at FP step, when selecting an area 
for the reconfigurable region, every partial module that may 
be implemented in that region has to be evaluated as regard to 
the amount of logic resources it needs, i.e. each module must 
have enough resources available. As a matter of consequence, 
the required amount of resources for the reconfigurable region 
is the minimal one that satisfies the resource requirements of 
each partial module that is implemented in the corresponding 
region.  

The resource wastage for a particular area of a region is 
defined as the difference between the amount of resources of 
the actual reconfigurable area and the required one. The FP 
algorithm aims at minimizing this factor. 

Total wirelength is another important factor which 
determines the quality of the floorplanner. The reconfigurable 
regions may be interconnected by signals, so it is important to 
place these modules as close to each other as possible. The 
total wirelength is computed as the sum of the distances 
between the modules, where the distance between two 
modules is multiplied by the number of signals that connect 
them. The distance between two modules is given by the 
distance between their geometrical centers. 

The remainder of the paper is organized as follows: 
Section II provides a detailed description of the existing FP 
methods, emphasizing on their strengths and limitations. 
Section III presents the proposed bipartitioner, followed by 
Section IV, which describes the proposed algorithms in detail. 
The experimental results are presented in Section V, while 
Section VI concludes the paper. 

 

II. RELATED WORK  

In the literature, several approaches to FPGA FP have been 
published. Most of them focus only on static placements, as 
they don’t consider the partial modules. In [9] slicing trees are 
used to represent an FPGA floorplan and simulated annealing, 
one of the most common algorithms in FP [7], to find the 
optimal result. It takes into consideration that the FPGA 
contains CLBs, BRAMs and DSPs, but it relies on the fact that 
these resources are homogeneously distributed, as in older 
devices, while in newer FPGAs they are distributed 
heterogeneously. 

HeteroFloorplan [10] is another FP for static modules 
which uses a slicing tree representation and relies on a three 
phase algorithm. The first step is the recursive balanced 
bipartitioning, followed by the slicing topologies generation. 
The final step implies running an algorithm based on a greedy 
heuristic and a min-cost max-flow formulation for allocating 
the resources for the modules. An improvement of the 
algorithm is presented in [11], however, both of them are 
based on the same FPGA architecture as the model used in [9]. 

In [3] a new method is presented, which focuses on partial 
reconfigurable modules and takes also into account the 
modern FPGAs’ architecture. The algorithm considers the 
FPGA device as a collection of tiles containing a specific type 

and amount of resources (CLB tiles, BRAM tiles and DSP 
tiles). Each reconfigurable region is assigned a priority based 
on the type of resource needed, the requirements being 
expressed in tiles. Then, all kernels are created by merging 
adjacent tiles, and then they are extended horizontally until 
meeting the reconfigurable region requirements. This 
procedure is repeated several times using different initial 
kernels in order to find the best floorplan. At the end, a post 
processing step is performed to reduce the total wirelength by 
moving or swapping the allocated regions.  

Another approach is proposed in [12], based on Mixed-
Integer Linear Programming (MILP). It also considers the 
heterogeneously distributed resources existing in modern 
FPGAs along with the partial modules. An analytical model is 
proposed for the reconfigurable regions, using their resource 
requirements, their interconnections and special PR 
constraints.  

A similar FP is presented in [2], which is aware of the 
heterogeneous distribution of resources and of the PR, but also 
takes into account all the components, their connectivity and 
resource requirements. First, the floorplanner finds all possible 
rectangular placements of each module, and then executes a 
recursive pseudo-bipartitioning using NLIP. Then the 
placement candidates are selected using the Pareto-ranking 
technique, and finally a trial-and-error algorithm is executed 
in order to obtain the final floorplan. This method is compared 
with the floorplanner from [12], showing that it performs 
better. Though, finding all the placements for the modules is 
intensively time consuming. 

 

III. PROPOSED APPROACH 

Recursive bipartitioning is often used to solve the problem 
of FP [10]. The basic idea of a cut-size driven recursive 
bipartitioning is shown in Fig. 1. The circuit is cut in two 
partitions such that the cut line crosses as few wires as 
possible, also ensuring that the modules are balanced in the 
two new partitions. These cut lines can be vertical or 
horizontal. In Fig. 1, the connections between modules are 
shown as solid lines, the dashed lines being the cuts. In Fig. 
1.a), a vertical cut is made intersecting a connection and 
separating the region in two halves. Likewise, in Fig. 1.b), the 
next two cuts are shown, which are also vertical, made 
recursively on the left, respectively on the right partition from 
the previous step (a). 

 

Fig. 1. The recursive bipartitioning example – [2]. 

A simple recursive bipartitioner, such as [10] is not 
possible for modern FPGAs because the resources are 
heterogeneously distributed. Therefore, in [2] a new 
bipartitioner was proposed, which can minimize the signal 
nets crossing the cut line and supports multi-resource 



bipartitioning. This means that the available resource types 
and quantities can differ in the two partitions, the resources 
occupied by the possible placements of one module in both 
partitions can be different, and the resources occupied by the 
modules in the partitions can be individually balanced. 

The proposed method consists of using an NLIP-based 
bipartitioner mechanism (similar to [2]) to find the location of 
each module on the FPGA chip; however, we added new 
constraints to it in order to reduce the total wirelength. The 
partitioning problem is modeled here as an NLIP optimization 
problem. A binary variable, named mi, shows the belonging of 
module i to a partition module. The objective function to be 
minimized is the total number of nets that cross the cut line. 
We used the Manhattan metric to compute the distance 
between the regions. Equation (1) shows how to compute the 
number of nets that cross the cut line, where nij is the number 
of signals linking the two modules i and j: 

netsij = nij  (mi + mj – 2  mi  mj) (1) 

However, an additional constraint should be added. The 
wirelength is computed from the center of the modules, so its 
shape and size also matter when computing the distance 
between two modules, as illustrated in Fig. 2. This constraint 
can be implemented by first computing the average width and 
height of all the placements of the modules i and j in a 
partition, in both cases, starting with the placements in 
partition 0 and continuing with the placements in partition 1. 
Equation (2) shows the updated formula for computing the cut 
line, for a vertical cut, where the average width should be 
considered. wi0 is the average width of all the placements of 
module i in partition 0, wi1 in partition 1, and the same for wj0 
and wj1 (the formula for a horizontal cut is the same, except it 
considers the average height). 

netsij = nij  (mi  ( wi1 +  wj0) + mj  ( wi0 +  wj1) – 

mi  mj  (wi0 +  wj0 + wi1 +  wj1)) (2) 

The objective function (the sum of the signal nets crossing 
the two partitions), is expressed in the equation (3): 

∑ ∑ netsij
j≠ii

= ∑ ∑ nij∙(mi∙W1+mj∙W2- mi∙mj∙(W1+W2))

j≠ii

 
(3) 

Equation (3) contains the wirelength between the modules 
in the parent partition, where W1 = wi1 + wj0 and W2 = wi0 + 
wj1. But some of the modules have connections with other 
modules which are not in the parent partition; that connections 
could also cross the cutline, so they should be taken into 
consideration. Fig. 3 illustrates the differences for a corner 
case, when this situation is taken into consideration, and when 
it is not, respectively. 

 

Fig. 2. The difference between wirelengths in the two cases: on the left, the 

distance between A and B is shorter than the distance on the right between A 

and C, because it is measured from the center of the modules. 

Therefore, two additional module lists are constructed, one 
containing modules from the left side of the parent partition, 
and the other one from the right side. Then, using equation (2), 
we compute the connections between the modules in the 
parent partition, and then we compute the connections 
between those modules and the outside world. Finally, we sum 
them using equation (3). Instead of these two variables, a 
single one is used because we already know the location of the 
outside module (0 for the left, 1 for the right).  

The bipartitioner’s goal is to minimize the left-hand side of 
equation (3) taking into account the constraints. The total 
amount of resources assigned to the modules in a partition 
should not exceed the amount of available resources in that 
partition. 

 

Fig. 3. The connection to modules that are not in parent partition. In (a), the 
current parent partition is the left part of the region, separated with a solid 

line, containing modules D, E, F. By considering the connection between D 

and B, it is more convenient to put D in the right partition, rather than in the 
left one (separated with dashed line). In (b), this connection is not considered, 

and it may end up putting D in the left one, increasing the number of 

connection that will be cut, thus increasing the wirelength. 

For the CLB resources, these constraints are shown in 

equations (4) and (5). They have to be ensured for both 

partitions. Total0CLB shows the total number of CLBs occupied 

by the modules assigned to partition 0, and Total1CLB for 

partition 1. The available number of CLBs in the partitions is 

represented by MAX0CLB, and MAX1CLB respectively. The 

number of CLBs occupied by module i is CLB0i in partition 0, 

and CLB1i in partition 1. 

 

𝑇𝑜𝑡𝑎𝑙0𝐶𝐿𝐵 =  ∑((1 − 𝑚𝑖) ∙ 𝐶𝐿𝐵0𝑖) ≤ 𝑀𝐴𝑋0𝐶𝐿𝐵

𝑖

 (4) 

𝑇𝑜𝑡𝑎𝑙1𝐶𝐿𝐵 =  ∑(𝑚𝑖 ∙ 𝐶𝐿𝐵1𝑖) ≤ 𝑀𝐴𝑋1𝐶𝐿𝐵

𝑖

 (5) 

All constraints above have to be formulated not only for 
the CLBs, but also for the DSPs and BRAMs. To solve the 
minimization problem, we use an off-the shelf software 
application, Gurobi Optimization [13], [14]. 

 

IV. IMPLEMENTATION 

The first step is to create an empty root partition that will 
be used by the recursive bipartitioner. Next, all possible 
placements for each module are collected in a list, and then the 
recursive bipartitioner is executed twice, once horizontally and 
once vertically. When finished, for each placement of each 
module the normalized wastage and the distance from anchor 
point are computed. Then, the placements are sorted based on 



an objective function. Finally, the modules are sorted in the 
decreasing order of their size, and a feasible floorplan is found 
using trial-and-error. 

In [2], the placement generation step is the most expensive 
one, as it computes all possible placements, disregarding the 
resource wastage, and it filters out large wastage regions in a 
future step. To avoid sorting and filtering a very long list, a 
smaller list of placements is generated, which contains only 
the placements which are efficient from the PR point of view: 
placements that contain only complete tiles, placements that 
are within the AR boundaries and placements that minimize 
the resource wastage.  

This was implemented using the Kernel Tessellation 
Method [3], which generates all possible placements, and it 
does not consider the already chosen tiles, because the 
placements are not final, they are just a large list of 
possibilities. This step is presented in Algorithm 1. The 
algorithm works by prioritizing the resource requirements in 
the modules, since the FPGA has the least amount of DSP 
blocks, then BRAMs, and the majority of the resources are 
CLB tiles. Using this order, each module has primary, 
secondary, and possibly tertiary resource requirements. 

Algorithm 1. Generate all possible placements 

Requires: modules and FPGA 
Filter the modules in four different lists: (S1, S2, S3, S4) 
For L in the lists (S1, S2, S3, S4) 
    Sort L based on the modules resource requirements 
    For each module M in L 
        Create all kernels in a new list KL 
        Sort KL in increasing order of the kernels size 
        For each kernel K in KL 
            Expand K vertically until it has enough primary resources 
            Expand K horizontally until it has enough secondary and 
   tertiary resources 
            Insert the expanded kernels in the placements list PL of 
   module M 
        End for 
    End for 
End for 

First, four lists are generated and populated with modules, 
based on the following criteria: the first list S1 contains the 
modules that include both DSP and BRAM resources, and 
possibly CLB tiles; the modules from the second list S2 require 
DSP and also possibly CLB tiles, while modules from the 
third list S3 include only BRAMs and possibly CLBs. Finally, 
the list S4 comprises the modules containing only CLBs. 

Then, for each list a number of steps are performed, 
starting by sorting the modules in ascending order based on 
their resource requirements. The lists are processed in this 
order: S1 (DSP + BRAM + CLB), S2 (DSP + CLB), S3 (BRAM 
only), and finally S4 (CLB only).  

Resource requirements are ordered by their priorities. In 
the first list, S1, the modules need both DSPs and BRAMs, and 
additionally also CLBs – this means that for the modules from 
S1, the primary resource is DSP, the secondary one is BRAM, 
and finally, the tertiary resource in the priority list is CLB. In 
the next two lists, S2 and S3 (with DSP and CLB requirements, 
and BRAM and CLB requirements, respectively), the primary 

resource is DSP for S2, and BRAM for S3, but the secondary 
resource is CLB. There are no tertiary resources. Finally, in S4, 
the only primary resource is CLB.  

The kernels search starts from the bottom of the FPGA, 
from left to right. At the start of the row of the FPGA matrix 
(the clock region), the first primary resource tile is located. In 
case the kernel contains both primary and secondary 
resources, the nearest secondary resource is located and a new 
kernel is created. Otherwise, the kernel will contain only the 
primary resource tile. Then the next primary tile is located.  

A kernel is valid only if it contains available tiles: no tile 
from the kernel is a reserved area (non-reconfigurable tiles). 
This is done at the level of the whole row until no more 
primary resource columns can be found. In case more primary 
resource tiles are needed, the algorithm expands these kernels 
on the vertical. But there can be placements that have multiple 
primary resource columns in a row.  

To ensure that no possible placement is left out, these 
simple kernels are merged, creating larger kernels, which also 
include the other resources lying between the basic kernels. 
Fig. 4 illustrates this step in two cases: one where the primary 
resource is BRAM, and the other one, where the primary 
resource is DSP and the secondary one is BRAM (so, in this 
last case, a small kernel).  

It is important that these kernels have as little resource 
wastage as possible, so if the modules already fit in the kernel, 
there is no need to merge the kernels, and the algorithm 
processes the next row. Otherwise, the kernels from the 
current row are merged in all possible ways. This is done by 
taking the first kernel in the list, which contains the kernels 
sorted out according to the FPGA device, and merging it with 
all the others, obtaining larger kernels. The algorithm stops at 
the kernel that has enough primary resources for the module. 
Then, this is done for all the next kernels in that row. Kernels 
are only valid if they do not contain reserved areas.  

Next, all the other rows are processed in the same way. 
Finally, the algorithm returns the list of valid kernels, together 
with the merged kernels, from all rows. After all the kernels 
were generated, they are sorted based on their size, analyzed 
and processed, starting with the smallest ones. If a kernel 
doesn’t have enough primary resource tiles, it will be 
expanded in a columnar way, i.e. vertically. 

 

Fig. 4. An example of merging kernels. 1a shows two single, small kernels 

containing both DSP and BRAM, and they are merged in 1b, containing also 

the CLB tiles between them. 2a shows two small kernels, containing only 

BRAM. In 2b they are merged by also including them. 

Since the kernel list contains all the kernels from the 
FPGA, the only way to avoid duplicates is to expand the 
kernel vertically until it gets the required primary resources. If 
it still needs more primary resources, then a larger kernel 
needs to be expanded, so the current one is discarded.  



After it is ensured that the kernel has obtained the required 
primary resource tiles, the secondary requirements (if any) are 
analyzed. If it needs more resources, the kernel will be 
expanded horizontally, towards the secondary resource 
columns. The horizontal expansion is described in Algorithm 
2. However, it does not grow only horizontally, but also 
upwards. This will solve some corner cases, where the module 
needs a very small amount of primary resources, but a large 
amount of secondary resources. The kernel will not grow 
vertically because it has already enough primary resources, 
but it may not get the needed secondary resources if it only 
grows horizontally. 

With each new row added to the kernel after the vertical 
expansion, its height is computed, and based on it the 
algorithm computes how many secondary resource columns of 
equal height are needed (because of the AR constraints).  

The kernel can be expanded horizontally in both directions. 
As shown in Fig. 5, every possible growth is taken into 
consideration as a new kernel. For instance, if 5 secondary 
columns are needed, then it first takes 5 secondary resource 
columns on the right, then 4 on the right, 1 on the left, and this 
continues until all 5 columns are taken from the left. By taking 
the next secondary resource column, all resources between the 
current kernel and the next secondary resource column are 
merged.  

Also, if by merging a resource column the kernel would 
get a reserved area, it is discarded. Only those columns are 
added that would not merge other primary resource columns 
with the actual kernel, because that would be resulting in a 
larger kernel and duplicates must be avoided. This way it is 
ensured that the placement has enough secondary resources. 

The horizontal expansion procedure is executed multiple 
times (see Algorithm 1). First, it is called when the module 
has the required number of primary resource tiles, but not 
enough secondary resources. Then, each new kernel that has 
enough secondary resources will be expanded horizontally 
until it gets enough tertiary resources. The same steps are 
repeated for the tertiary resources. Then, the generated 
kernels, which have enough resources, will be added to the 
modules placement list. 

Algorithm 2. Horizontal kernel expansion 

Requires: kernel and module and secondary resource 
Returns: kernel list KL 
Repeat 
    Get the number N of secondary resource tiles needed by module 
    For each combination of l + r = N 
        Create new kernel NK by adding l secondary resource tiles to              
        kernel from its left  
        Add r secondary resource tiles to NK from the right of kernel  
        Insert NK in KL 
    End for 
Until kernel cannot be expanded upwards 

Before marking a kernel as a valid possible placement, it is 
also checked whether it respects the AR boundary constraint. 
All accepted kernels are saved in a list. An accepted kernel 
should meet the following constrains: (1) it does not include a 
reserved area; (2) its available resources contain at least the 
required resource for a module; (3) it is rectangular; and (4) it 

meets the AR constraints (the boundaries set for the AR are 
between 0.2 and 0.7, where the AR is defined as width over 
height. These boundaries were chosen by us based on 
empirical observations). 

 

Fig. 5. Horizontal expansion of a kernel. The kernel is bordered with solid 

line, and the expanded kernel with dashed line. On the top, it takes one 
column to the left and one to the right, while on the bottom, two columns 

from the right, no column from left. 

Next the recursive bipartitioner is executed on the root 
partition (the one that includes all the modules and their 
possible placements). This algorithm is executed twice, first 
performing a recursive vertical cut, and then a recursive 
horizontal cut. The goal of the bipartitioner is to find the 
location of each module, but instead of a final placement, it 
only estimates an anchor point (geometrical center). 

The algorithm creates two new partitions and aims at 
placing each module from the parent partition in one of the 
newly created ones. If the geometrical center of a placement is 
closer to the center of one of the child partition (at least 75% 
of a module fits into the partition), the module will be 
assigned to that partition. Otherwise, the module will remain 
in the parent partition. Fig. 6 illustrates the two cases. 

 

Fig. 6. The center of the parent partition, left and right partions are marked 
with a black, a red and a white corss, respectively. In (a), 90% of the module 

fits in the left partition, so its center is closer to the center of the partition. In 

(b), only 75% of the module fits, so its center is closer to the center of the 

parent partition. 

An example of this process is illustrated in Fig. 7. It can be 
seen module A doesn’t fit in any of the partitions, so it will be 
left out from further cuts, but still kept in the parent partition. 
Its resources must be also deducted from the partitions’ 
available resources. The other modules, B, C, D, E and F fit 
into the partitions, so they will be assigned to one of the two 
partitions based on the cost function in the NLP model. Here, 
the AR of a placement cannot be changed, since for each 
placement of a module was already fixed in Algorithm 1.  

To decide which module will belong to which partition, an 
NLIP model is built, based on the equations from the previous 
section, and then solved by the Gurobi Optimizer tool [13]. 
After every module has been assigned to a partition, their 
anchor points are updated with the geometrical central of the 
partition they belong to.  



 

Fig. 7. The parent partition cut in half with a vertical cut (dahsed line). The 
modules will be assigned to one of the partition based on the constraints and 

the objective function.  

In the end, if a valid solution is found, the recursive 
bipartitioner is executed for both partitions, but only if a 
partition contains at least one module. The recursion stops 
when all the partitions lists are empty.  

After two recursive bipartitioning calls (horizontal and 
vertical), the normalized wastage and distance from the anchor 
point is computed for all the placements of each module. First, 
for each module the maximum distance from the anchor point 
and the maximum wastage are computed, and then for each 
placement, the distance from the anchor point is normalized. 
The same way, for each placement, the resource wastage is 
also normalized. In our method, no additional filtering is 
needed for the placements, as in [2], because the placements 
were generated to contain the minimal resource wastage. The 
main objective of the recursive bipartitioning algorithm is to 
minimize the cut-size so that the connected modules are closer 
to each other. By choosing the placements closer to the anchor 
point specified by the bipartitioner, the wirelength is 
minimized. 

In this case, the weights of the wirelength and the resource 
wastage, specified at the beginning of the algorithm, can be 
applied directly to the distance from the anchor point and the 
resource wastage. This way, an objective value is obtained for 
each module, as shown in equation (6), and the placements for 
each module can be sorted based on this objective value. The 
wastage is the resource wastage of the placement, i.e. the 
difference of the actual resource in the placement and the 
required resource, while δA is the distance between the 
placement’s center point and the module’s anchor point (this 
indirectly represents the total wirelength). 

𝑂𝐵𝐽𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =  𝛼 ∙ 𝑤𝑎𝑠𝑡𝑎𝑔𝑒 +  𝛽 ∙ 𝛿𝐴 (6) 

The next step is to sort the modules in decreasing order of 
resource requirements. By doing this, in the next step, the 
modules with the highest requirements get placed, occupying 
most of the resources from the FPGA device, and this way, the 
module from the end of the list (the ones with the smallest 
resources) can easier and faster find a place between the large 
modules.  

Finally, a trial-and-error algorithm is run to obtain the final 
placement of each module on the FPGA device. Having 
ordered the modules in the previous step, the algorithm doesn’t 
need to backtrack all possible combinations of small modules, 
because they have a large number of possibilities. Therefore, it 

is easier to find a location for them next to the already placed 
large modules. The algorithm stops at the first feasible 
floorplan, which is found relatively fast due to the prior 
optimizations. 

 

V. TESTING AND RESULTS 

All experiments were performed on a 2.5 GHz Intel Core 2 
Duo processor with 4 GB RAM under Windows 10, using 
Xilinx’ Vivado software. 

There are several problems when trying to compare this 
algorithm with previously proposed ones. Most of the papers 
published in the literature present their comparisons with other 
methods in form of percentages (i.e. “our algorithm is x% 
faster than another algorithm”). Another issue is the difference 
between FPGA architectures. Devices from the Virtex 5 
family are rather small, having only one or two DSP48 
columns. If executed for this family, our algorithm would 
exclude many possible placements; that is why it should be 
specially adapted for this type of devices. But devices from 
Virtex 4, Virtex 6 and Kintex 7 families have the BRAMs and 
DSPs relatively uniformly distributed all over the chip. So our 
algorithm shows its whole potential on these architectures.  

We conducted the experiments on all the latest Xilinx 
families, Kintex7 and Virtex7 [15]. As the algorithms 
previously reported were tested on Virtex5, which was not our 
primary target as it is already an “old” family of FPGAs, we 
preferred making a complexity comparison. 

A. Performance estimation 

The running time of the FP algorithm depends on the size 
of the FPGA and the number of modules. The following 
parameters need to be finely tuned in our solution: N – the 
number of modules; R – the number of rows (clock regions) 
on the FPGA chip; C – the number of columns; D – the 
number of DSP columns; B – the number of BRAM columns. 

The first step is to create a root partition that represents the 
whole FPGA device, which parses all the tiles once; that is 
O(R∙C). Next, the placements for the modules are generated: 
first, the modules are filtered in four different lists, which 
takes O(N). The next steps are computed for each of the four 
lists separately, as they constitute different cases and cannot 
be generalized from the performance point of view. The 
estimated size of the first list S1 (that contains modules with 
DSP, BRAM and possibly CLB requirements) is N / 4, so the 
first step’s complexity (sorting) is O(N∙log(N)). 

The next step consists of generating all base kernels. The 
following steps require both DSPs and BRAMs. The entire 
algorithm is then repeated R times. To find the kernels 
containing DSP and BRAM tiles, the complexity is D∙(O(C/B) 
+ O(C/B)), since there are D DSP tiles in a row, and the 
distance to the nearest BRAM column from each DSP tile is 
on average of C / B. The number of generated kernels is D, so 
adding D kernels to a new list takes O(D). The merging takes 
longer: when a module needs more DSP tiles than the ones 
available in a clock region, the generation of all merged 
kernels is a double nested for loop of size D, giving O(D2), 



creating D2 merged kernels that will be copied into the list. 
There are R∙D2 kernels in the list, while the total runtime for 
generating the kernels is R·(D·O(C/B) + O(D) + O(D2)), 
resulting in: 𝑂(𝑅 ∙ (𝐶 + 𝐷2)). 

The returned list is then sorted in O(R∙D2∙log(R∙D2)). For 
each kernel, in the worst case, a horizontal expansion must be 
made twice, once for BRAM and once for CLB, and its 
running time is O(col2), where col is the number of columns 
needed by a resource. Both times the expansion stops at the 
next DSP tile, so for expanding to BRAM tiles, it requires at 
most C / D columns. These can be expanded to add CLB tiles 
until the same number of columns: C / D. So, the complexity 

of the expansion is: 𝑂 ((
𝐶

𝐷
)

2
). 

The final complexity of generating all the placements for 

the first list is: 𝑂 (𝑁 ∙ (log 𝑁 + 𝑅 ∙ (𝐶2 + 𝐷2 ∙ 𝑙𝑜𝑔(𝑅 ∙ 𝐷2)))).The 

average number of generated kernel for a module from the 

first list is: 𝑅 ∙ 𝐷2 ∙
𝐶

𝐷
∙

𝐶

𝐷
= 𝑅 ∙ 𝐶2. 

Similarly, one can compute the complexity for all the other 
lists. For the second list S2 (modules needing only DSP and 
CLB resources), the complexity is the same. For the third list 

S3 with only BRAMs and CLBs: 𝑂 (𝑁 ∙ (log 𝑁 + 𝑅 ∙

(𝐶2 + 𝐵2 ∙ 𝑙𝑜𝑔(𝑅 ∙ 𝐵2)))). Finally, for the list S4 containing only 

CLB based modules: 𝑂 (𝑁 ∙ (log 𝑁 + 𝑅 ∙ 𝐶2 ∙ 𝑙𝑜𝑔(𝑅 ∙ 𝐶2))). For 

all the three lists one can compute the same average kernel per 
module, R·C2.  

The next step of the FP algorithm consists of the two calls 
of the recursive bipartitioning. The first step, creating two 
partitions from the parent partition is O(R) and O(C), 
depending on the cut type. For each module, its list of 
placements is parsed, giving O(N·R·C2). Finally, there are two 
recursive calls: 

𝑇(𝑁, 𝑠𝑖𝑧𝑒) = 2 ∙ 𝑇 (
𝑁

2
,
𝑠𝑖𝑧𝑒

2
) + 𝑂(𝑁 ∙ 𝑅 ∙ 𝐶2) + 𝑂(𝑠𝑖𝑧𝑒) (7) 

where size is R or C, depending on the cut type. 

B. Complexity comparison with other methods 

This section compares the complexity of the proposed 
solution with state-of-the-art works. In [2], the generation of 
all placements for the module is done by taking every possible 
rectangular placement on the FPGA. The complexity of this 
step is O(N·R3·C3). The number of placements generated for a 
module is R2·C2. Later, this list is processed multiple times. 
The algorithm can be run at most C / 2 times, until it finds a 
feasible solution. In this case, the complexity of the algorithm, 
except the placement generation, is multiplied by C / 2. 

Table I reports the computational complexity of the 
proposed algorithm, compared to [2]. It can be noticed that the 
current solution has smaller running times for both steps of 
generating the placements and the recursive bipartitioning to 
find the anchor point (and finally find a feasible floorplan). 
Also, the number of placements for each module is smaller, 
and the placements contain the minimum amount of wastage. 

TABLE I. COMPARISON OF THE ALGORITHMS’ COMPLEXITY 

 PRFloor [2] This algorithm 

Placements generation 

complexity 
O(N·R3·C3) O(N·(logN + R·C2·log(R·C2))) 

Placements per module R2·C2 R·C2 

Algorithm runs C/2 1 

C. Performance comparison with other methods 

Surprisingly, there are not many testing methods reported 
in the literature. Most of the existing benchmarking sets were 
designed for ASICs and only a few of them were transformed 
and adapted for FPGAs (like the MCNC and GSRC 
benchmarks used in [16], [17], and [10]).  

The previously reported algorithms were tested either on 
pseudo-randomly generated circuits ([2], [12] and [16]) or on 
Software Defined Radios ([3] and [12]). As mentioned before, 
the comparisons with other methods presented by the authors 
of these papers are done only in relative terms (percentages) or 
the circuits themselves are relatively simple. We have chosen 
to use the same methods and benchmarks where available and 
we present the results below. 

1) Testing on Software Defined Radios 

The algorithm was tested on a real case study taken from 
[3]. The design considered is a Software Defined Radio 
(SDR), consisting of a chain of modules, a matched filter, 
carrier recovery, demodulator, signal decoder and video 
decoder. Each module can have multiple modes that can be 
interchanged using PR. So, each module will have a 
reconfigurable partition, and each mode corresponds to a 
partial module. However, the FP is concerned only with the 
partitions. All modules are connected in sequential order with 
a 64 bit wide bus. The regions for the modules and their 
resource requirements are given in Table II. The target device 
is a Virtex 5 FX70T FPGA, containing CLB, BRAM and DSP 
tiles (each of them contains 36, 30 and 28 frames 
respectively). 

TABLE II. RESOURCE UTILIZATION OF EACH MODULE IN THE SDR DESIGN 

Benchmark module CLB BRAM DSP No. of Frames 

Matched Filter 500 0 34 1040 

Carrier Recovery 123 0 8 280 

Demodulator 97 8 0 240 

Decoder 234 2 0 462 

Video Decoder 1100 6 34 2180 

TOTAL 2054 16 76 4202 

 
We used the same objectives as in [3], i.e. the minimum 

wirelength and the minimum wastage. The same circuit is 
tested in [12], so the comparison includes that result too. In 
both [3] and [12], a constraint specific to PR regions is not 
met, which is to keep the AR in a specific range, preferably 
[0.4-0.6], in order to avoid routing problems. We aimed at 
meeting this constraint, but during the experiments we noticed 
that the best interval is [0.2-0.7]. We performed the tests both 



with meeting the AR constraint and not. Table III presents the 
comparative results. We aimed at finding the optimal results 
by testing each possibility. The results for the area wastage 
were 306 when the AR constraint was not taken into 
consideration and 476 otherwise. In our FP algorithm, these 
optimal results are achieved in case the area wastage weight is 
set to the maximum. However, the best case is the balanced 
one, when neither the wastage nor the wirelength is too large. 

From [3], there is no information about the running time, 
but in [12], the algorithm ran in this case in 29 seconds. For 
this design, our algorithm runs every time under a second. 

TABLE III. RESULTS PROVIDED BY VARIOUS FP ALGORITHMS 

Algorithm Benchmark module Wastage Wirelength Runtime (s) 

[3] Min wastage 466 8640 - 

[3] Min wirelength 516 7392 - 

[12] Min wastage 306 ~8600 29 

This Balanced 504 11584 2 

This Min wastage 476 16704 1 

This Min wirelength 562 11328 1 

This No AR, balanced 506 10432 1 

This No AR, min wastage 306 8448 1 

This No AR, min wirelength 506 10432 1 

 

2) Testing on Pseudo-Randomly generated designs 

The performance of our algorithm was also tested on a set 
of pseudo-random circuits, on a Kintex 7 XC7K410T device 
using both the wirelength and the resource wastage, with the 
same weight, as objective function. The main idea for the 
pseudo-random circuits was described in [12], [18] and [16], 
but it had to be modified to show the true potential of this 
algorithm on latest families FPGA devices. 

A series of pseudo-random circuits were generated with 5, 
10, 15, 20, 25, 35, and 50 reconfigurable partitions, 
respectively. In each case, different types of circuits were 
generated, having the occupancy rate of 70% or 80%. To 
ensure that the circuits are heterogeneous, some modules 
require BRAM, and some require DSP blocks. Further, two 
modules are connected by a 64 bits wide signal with a 
probability of 1 / number_of_modules. Table IV reports the 
details of the experiment. 

TABLE IV. EXECUTION TIME IN DIFFERENT SYSTEM CONFIGURATIONS. 

No. of PR Regions CLB BRAM DSP Runtime (s) 

5 70% 5% 3% 51 

10 70% 11% 6% 79 

15 70% 13% 8% 83 

20 70% 16% 9% 101 

25 70% 27% 19% 61 

35 70% 37% 29% 52 

50 80% 30% 30% 37 

 

 

 

3) Testing on MCNC and GSRC benchmarks 

Since there is no standard benchmark available for FPGA 
FP, we have used some circuits from MCNC and GSRC suites 
for VLSI design and transformed them to cope with the FPGA 
FP scenario, similarly to [10], [16] and [17]. The main steps of 
this transformation are described in [16]. The results are 
presented in Table V. 

TABLE V.  RESULTS ON  MCNC AND GSRC BENCHMARKS  

Circuit No. of Reconfigurable Areas Wirelength Execution time (s) 

apte 9 11009 4 

xerox 10 60676 10 

hp 11 9670 4 

ami33 33 125262 110 

n10 10 2934 15 

n30 30 7123 10 

 

VI. CONCLUSIONS AND FURTHER WORK 

This paper presents a new approach for FP in FPGA 
devices with PR capabilities. Previous works reported in the 
literature were based on older FPGA architectures, which have 
significantly changed over time, and the algorithms had large 
execution times even for the smallest design.  

The main contribution of this paper is the introduction of a 
high performance algorithm (especially from the execution 
time point of view), which can be used on all FPGA 
architectures, including the newest ones. It is based on an 
architecture aware algorithm to generate all the possible 
placements with a minimum wastage of FPGA resources. The 
best placement is chosen using a bipartitioner, whose main 
goal is to minimize the total wirelength. 

As there are no standardized benchmark designs for testing 
this category of algorithms for FPGAs, the theoretical 
performance of the proposed algorithm was thoroughly 
analyzed and compared with previous algorithms from the 
literature. Generating all placements is the most time 
consuming step of this type of algorithms. In our algorithm, 
the complexity of this step is lower than the one exhibited by 
other algorithms; it has a very significant contribution (more 
than 90%) to the reduction of the execution time. Also, the 
number of placements per module is smaller. 

The tests were executed such that they provide as many 
fair comparisons as possible. Our algorithm shows its whole 
potential on the latest FPGA architectures. Unlike previous 
approaches, this algorithm considers the aspect ratio constraint 
of partial modules to avoid routing problems. The experiments 
with different system setups show that, in most of the cases, a 
result can be generated much quicker than previously reported 
similar algorithms. 

Future work will focus on further reducing the wirelength 
and integrating the algorithm with existing commercial tools, 
making a partial reconfiguration design flow fully automatic. 



VII. BIBLIOGRAPHY 

 

[1]  Xilinx, "Vivado Design Suite User Guide Partial Reconfiguration," 
Xilinx, 2016. 

[2]  Tuan D.A. Nguyen and Akash Kumar, "PRFloor: An Automatic 
Floorplanner for Partially Reconfigurable FPGA Systems," in The 2016 
ACM/SIGDA International Symposium on Field-Programmable Gate 
Arrays (FPGA '16). , New York, 2016.  

[3]  Kizheppatt Vipin and Suhaib A. Fahmy, "Architecture-Aware 
Reconfiguration-Centric Floorplanning for Partial Reconfiguration," in 
8th International Symposium on Reconfigurable Computing: 
Architectures, Tools and Applications, ARC 2012, Hong Kong, 2012.  

[4]  Hemmecke R., Köppe M., Lee J., Weismantel R., "Nonlinear Integer 
Programming," in 50 Years of Integer Programming 1958-2008, 
Heidelberg, Germany, Springer, 2010, pp. 561-618. 

[5]  C. Conger, R. Hymel, M. Rewak, A.D. George and H. Lam, "FPGA 
design framework for dynamic partial reconfiguration," in 
Reconfigurable Architectures Workshop (RAW), pp. 1-8, April 14-15, 
2008., Miami, Florida, USA, 2008.  

[6]  J. T. Lamprecht, "FPGA Floor-Planning Impact on Implementation 
Results," Brigham Young University, Provo, UT, 2012 . 

[7]  Scott Hauck, Andre DeHon, Reconfigurable Computing: The Theory 
and Practice of FPGA-Based Computation, San Francisco, CA, USA : 
Morgan Kaufmann Publishers Inc. , 2007.  

[8]  Xilinx, "7 Series FPGAs Clocking Resources," 1 March 2017. [Online]. 
Available: 
https://www.xilinx.com/support/documentation/user_guides/ug472_7Se
ries_Clocking.pdf. 

[9]  Lei Cheng and M. D. F. Wong, "Floorplan design for multi-million gate 
FPGAs," in IEEE/ACM International Conference on Computer Aided 
Design, ICCAD-2004, San Jose, CA, USA, 2004.  

[10]  P. Banerjee, S. Sur-Kolay and A. Bishnu, "Fast Unified Floorplan 
Topology Generation and Sizing on Heterogeneous FPGAs," IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, vol. 28, no. 5, pp. 651-661, 2009.  

[11]  Pritha Banerjee ; Megha Sangtani ; Susmita Sur-Kolay, "Floorplanning 
for Partially Reconfigurable FPGAs," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp. 8-
17, 2011.  

[12]  M. Rabozzi, J. Lillis and M. D. Santambrogio, "Floorplanning for 
Partially-Reconfigurable FPGA Systems via Mixed-Integer Linear 
Programming," in IEEE 22nd Annual International Symposium on 
Field-Programmable Custom Computing Machines (FCCM), Boston, 
USA, 2014.  

[13]  G. Optimization, "Gurobi Optimizer," Gurobi, 2018. [Online]. 
Available: http://www.gurobi.com. 

[14]  G. Optimization, "Gurobi Optimizer reference Manual," 2018. [Online]. 
Available: http://www.gurobi.com/documentation/8.0/refman.pdf. 

[15]  Xilinx, "7 Series FPGAs Data Sheet: Overview," 27 February 2018. 
[Online]. Available: 
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Ser
ies_Overview.pdf. 

[16]  Yan Feng and Dinesh P. Mehta, "Heterogeneous Floorplanning for 
FPGAs," in 19th International Conference on VLSI Design held jointly 
with 5th International Conference on Embedded Systems Design 
(VLSID '06), Washington, 2006.  

[17]  Cristiana Bolchini, Antonio Miele, and Chiara Sandionigi, "Automated 
Resource-Aware Floorplanning of Reconfigurable Areas in Partially-
Reconfigurable FPGA Systems," in 21st International Conference on 
Field Programmable Logic an Applications, Chania, Greece, 2011.  

[18]  M. Rabozzi, "Floorplanning exploration for partially reconfigurable 
FPGA systems," Politecnico di Milano, Milano, Italy, 2014. 

 

 

 

 

 


