2104.12766v1 [cs.CV] 26 Apr 2021

arxXiv

HAOQO: Hardware-aware Neural Architecture
Optimization for Efficient Inference

Zhen Dong*, Yizhao Gao*, Qijing Huang, John Wawrzynek, Hayden K.H. So, Kurt Keutzer
University of California, Berkeley
The University of Hong Kong
{zhendong, gi jing.huang, johnw, keutzer}@berkeley.edu, {yzgao,hso}@eee.hku.hk

Abstract—Automatic algorithm-hardware co-design for DNN
has shown great success in improving the performance of DNNs
on FPGAs. However, this process remains challenging due to
the intractable search space of neural network architectures and
hardware accelerator implementation. Differing from existing
hardware-aware neural architecture search (NAS) algorithms
that rely solely on the expensive learning-based approaches,
our work incorporates integer programming into the search
algorithm to prune the design space. Given a set of hardware re-
source constraints, our integer programming formulation directly
outputs the optimal accelerator configuration for mapping a DNN
subgraph that minimizes latency. We use an accuracy predictor
for different DNN subgraphs with different quantization schemes
and generate accuracy-latency pareto frontiers. With low compu-
tational cost, our algorithm can generate quantized networks that
achieve state-of-the-art accuracy and hardware performance on
Xilinx Zynq (ZU3EG) FPGA for image classification on ImageNet
dataset. The solution searched by our algorithm achieves 72.5%
top-1 accuracy on ImageNet at framerate 50, which is 60%
faster than MnasNet [37]] and 135% faster than FBNet [43] with
comparable accuracy.

I. INTRODUCTION

Modern complex deep neural networks (DNNs) are able to
achieve unparalleled accuracy in a wide range of applications
at the expense of their much increased computing require-
ments. To successfully deploy these computationally demand-
ing DNNs in resource-constrained edge systems such as an
embedded FPGA, while maintaining real-time performance,
system designers must therefore engage in difficult tradeoffs
between model accuracy and implementation efficiency. There
are three common approaches to improve the efficiency of
DNN and the corresponding hardware design for edge deploy-
ment: 1) quantize the model to achieve efficient representations
of DNNs, 2) select less compute-intensive operations and
design efficient DNN architectures, and 3) design specialized
hardware. The three design techniques altogether form a
large design space for developing efficient DNN accelerator
solutions at the edge.

Quantization [9], [19]], [50], [53] is a general and effective
technique that uses low bitwidth (such as 4-bit or 8-bit) to
represent the floating-point weights/activations in neural net-
works. To achieve a better trade-off between accuracy and effi-
ciency, mixed-precision quantization was introduced to allow
different layers to have different bitwidths. Mixed-precision
quantization leads to an exponentially large search space to

* Equal contribution.

find the optimal bitwidths. Prior work [[11]], [40]], [44] adopts
differentiable search, reinforcement learning, or sensitivity
analysis to tackle this problem. However, the computational
cost of these approaches is non-trivial. Besides, these works
solely focus on quantization without co-considering the neural
architecture design or efficient hardware implementation.

The second approach to achieve efficient inference is
designing compact neural network architecture. Compared
to manually designing networks, neural architecture search
(NAS) algorithms [6], [26], [27]], [37], [55] can automatically
find network architectures that are more accurate and efficient.
However, the NAS algorithm typically requires training sam-
pled networks/sub-networks to get feedback on different neural
architectures, which makes NAS algorithms computationally
expensive to gain enough feedback and achieve good perfor-
mance. In practice, NAS algorithms either heuristically prune
the architectural search space or use proxy tasks to reduce the
computational cost, leading to sub-optimal DNN architectures.

The hardware design, in common practice, is performed
separately with software. Such practice can lead to sub-
optimal performance because quantization and NAS target
hardware-agnostic metrics such as model size or FLOPs. These
performance proxies do not guarantee high inference speed on
different hardware designs. As an example, the quantization
algorithm may select a mixture of every bitwidth from 1 bit
to 8 bit, and the NAS algorithm may choose to jointly use
convolution with different kernel and group sizes. Though
this solution can be small in model size or FLOP counts, on
embedded FPGA devices with limited resources (such as Zynq
ZU3EG), supporting all these operations at the same time is
inefficient or even infeasible.

Consequently, a joint search among quantization, neural
architectures, and hardware implementation is necessary to
expose the optimal configurations of DNN and the correspond-
ing accelerator design. Previous work [40]], [44], [49] searched
quantization schemes with different hardware configurations,
but left their DNN architecture untouched. [6f, [37], [43]
searched for efficient neural architectures on specific hardware
platforms, but did not consider the impact of quantization
and hardware design. [1fl, [[14f], [15], [21] covered hardware
design and neural architectures in their search space but did not
include quantization. Though [17], [20], [25], [28] considered
all three aspects, their search space is limited.

In this work, we explore the joint search space of neural

architecture, quantization, and hardware design. Instead of
pruning the space by heuristics, or applying reinforcement
learning or derivative-based search algorithms, we formulate
the search as an integer programming problem, so that ef-
ficient optimization algorithms can be used to reduce com-
putational cost. Based on our hardware latency model and
network accuracy predictor, we propose a hardware-aware
neural architecture optimization (HAO) method to generate
pareto-optimal DNN designs to run on embedded FPGAs. Our
contributions are as follows:

1) We formulate the design of neural architecture, quanti-
zation, and hardware design jointly as an integer pro-
gramming problem.

2) We use a subgraph-based latency model for FPGAs,
and we use a network accuracy predictor to reduce the
computational cost of the automatic design flow.

3) HAO achieves state-of-the-art performance on ImageNet
with Zynq ZU3EG FPGA. Our model can achieve 72.5%
Top-1 accuracy running with 50 FPS, which is 60%
faster than MnasNet and 135% faster than FBNet with
comparable accuracy.

II. RELATED WORK

A. Efficient Deep Learning

Quantization [7], [91, [11], [191, [400, [50], [53] is a
practical method to achieve efficient inference, which uses
low bitwidth to represent weights and activations in a given
neural network model. Since uniformly applying ultra-low
precision quantization can cause accuracy degradation, mixed-
precision quantization [[10f], [40], [54] is used to recover the
accuracy. Mixed-precision quantization allows different layers
in a neural network to have different bitwidth, leading to
an exponentially large search space for the optimal bitwidth
setting. [40] applies reinforcement learning to explore the
space, and [44] uses differentiable search to decrease the
required search time. [[10] introduces Hessian-based sensitivity
analysis to determine bitwidth, while obtaining the Hessian
information has a high computational cost.

Instead of compressing a large pre-trained model, previous
work [[18]], [29]], [33]], [38] focus on directly designing compact
neural network architectures that can achieve decent accuracy
with small model size or FLOPs. To avoid manual efforts, neu-
ral architecture search (NAS) algorithms have been proposed
to automatically design pareto-optimal network architectures.
Previous NAS methods [26], [55] use a reinforcement learning
agent to explore the design space of neural architectures, which
typically requires a large number of computational resources
(48,000 GPU hours). [32] applies evolutionary algorithm to
search for efficient neural architectures, which is feasible but
also costly (75,600 GPU hours). Differential search based NAS
methods [6], [27], [37], [43] significantly reduce the search
cost by 1) using a supernet with weight sharing [30]] and 2)
applying continuous relaxation on the discrete search space
so that gradients can be used to assist searching. However,
differentiable NAS algorithms often lead to a small search

space due to the limitation of supernets, which makes it
dependent on existing candidates of good operations. They are
sub-optimal if the design space is not already well-explored.

B. Hardware-aware Search

Since inference speed is dependent on characteristics of spe-
cific hardware platforms, simply applying quantization or NAS
algorithms based on proxy metrics (model size or FLOPs)
can be sub-optimal. To solve this problem, many hardware-
aware search algorithms have been introduced to seek efficient
deployment of DNNs on targeted hardware platforms. These
methods [4]-[6], 1221, 134, [37], [401, [43], [48] usually
retrieve latency or energy feedback from a given hardware
platform, and search for optimal DNNs that can meet certain
application constraints. Note that the hardware design is fixed
in these methods, and thus is not in the search space.

To further improve the efficiency, in recent years, a few
works have extended the NAS framework by integrating hard-
ware design into the search space [1]], [2[], [14]], [15], [20], [21],
[25], [28]], [46], [S1]]. Generally, these software/hardware co-
search algorithms adopt pre-defined hardware design templates
and incorporate several high-level design hyperparameters in
the search framework. In addition to neural architectures, some
works also incorporated quantization in their search space. [|28]]
captures the relationship between quantization bitwidth and
LUTSs consumption on FPGA, and developed a NAS algorithm
under the constraint of LUTs. In [20], the authors integrate
several model compression techniques in the search framework
and use quantization to reduce the latency of weight loading.
[25] proposes a uniformed differentiable search algorithm
using gumbel-softmax to sample discrete implementation hy-
perparameters including quantization bitwidth.

Although previous methods consider hardware design
choices, the size of searchable space is still limited by the
search algorithm efficiency and the total computation budget.
Consequently, enlarging hardware search space may result in
the shrinkage of software search space. In this work, we pro-
pose a subgraph-based hardware latency model, together with
an accuracy predictor for neural architectures and quantization.
Based on these, we are able to formulate the software/hardware
co-search as an integer programming problem, which can be
effectively optimized with a very small computational cost.

III. METHODOLOGY

In HAO, we expose a large design space in both hard-
ware and algorithm configurations to accelerate DNNs. To
efficiently navigate the search space, we first apply integer
programming to prune the hardware configuration space by
minimizing the latency subject to a set of hardware resource
constraints. We then narrow the DNN architecture space by
adopting Monte Carlo tree search (MCTS) [24]] to minimize
the quantization accuracy perturbation while satisfying a given
latency constraint. In addition, we develop an accuracy pre-
dictor to estimate the accuracy of the DNN to further reduce
the overall feedback time for each sample. Our flow produces
a pareto-optimal curve between latency and accuracy.

DW Conv KxK Conv KxK

o [,

: PI A
K : K2xPI

Conv 1x1

\4
A\ <Oy <PO-p A\ <-PO-
00 CLLD) OO
Quantization Quantization Quantization
Kernel Pool

Conv 1 Conv 2 Conv M

> @L,ek) (@3.Q%) | " (@, o)
Hardware Subgraph
\ 4
(DDR)

Fig. 1. Hardware design space. The dataflow accelerator template
consists of M convolution kernels that are selected from the kernel
pool and spatially mapped to hardware. The tunable design parame-
ters include the number of compute kernels M, the kernel type, filter
size K, input and output channel parallelization factor P/ and PO.

A. Hardware Design

We target FPGA in this work to demonstrate how co-
designed hardware and DNN fully exploit the optimization
opportunities in hardware with limited resources while achiev-
ing on-par accuracy. In this section, we model the resource
consumption and the computation latency for different types
of convolution kernels. On top of that, we formulate the
overall resource constraints and latency objectives as an integer
programming problem for the subgraph-based design, which
will serve as the latency simulator in the following DNN
architecture optimization.

1) Hardware Subgraph Template: As shown in Fig.[T] in
HAO, we adopt a subgraph-based hardware design. A sub-
graph consists of several convolution kernels that are spatially
mapped on hardware, which also corresponds to the major
building block of neural architecture. For a given hardware
subgraph, the possible building blocks for neural architecture
also include all the sub-layers of the subgraph since each
kernel is implemented with a skip signal to bypass its compute
in hardware. Each invocation to the accelerator computes one
subgraph in the DNN architecture. The intra-subgraph results
are buffered and streamed on FPGA and the inter-subgraph
activations are communicated through DRAM.

We implement a parameterizable accelerator template in
high-level synthesis (HLS). The generated dataflow accelerator
can contain M convolution kernels chained through FIFOs
to exploit pipeline-level parallelism. Each convolution kernel
can be chosen from one of the three convolutions from the
kernel pool: Conv k x k, Depthwise Conv k x k , and Conv
1 x 1. The hardware implementation of each kernel typically
comprises a weight buffer, a line buffer, a MAC engine, and a
quantization unit to rescale outputs.All the computational units
are implemented using integer-only arithmetics as in [19].

2) Hardware Resource Modeling: This section describes
the modeling details of different FPGA resources. We adopt a

LUTs Consumption

8 _ B _ -
7.8 .5 4 N\
Qa bit-wigth 3 2 2 oW

Fig. 2. LUT usage of multipliers with different input precisions.

Fig. 3. Example mapping of two low-precision MACs a X w; and
a X w2 onto a DSP with 27 x 18 multiplier support. The multiplexer
in DSP can choose between self-accumulating or chaining mode.

bottom-up design flow to model the utilization of LUTs and
DSPs for low-bit multiply-accumulate (MAC) operations on
FPGA. In addition, our model derives the BRAM utilization
based on data size and precisions as well as the parallelization
factors of the compute kernels. Table [[| lists the notations used
in this paper.

LUTs: Both DSPs and LUTs can be used for computa-
tion on FPGA. It is more efficient to perform ultra low-bit
computation on LUTs compared with DSPs. We use pragma
to direct the mapping of low-precision MAC operations to
LUTs in HLS. To build a precise model, we perform full logic
synthesis to obtain the LUTs consumption on low bitwidth
multipliers and adders. Fig. 2] shows the LUTs consumption
on different activation and weight bitwidths ranging from 2 to
8. We denote the LUT resource lookup function of multipliers
as Ly (Quw,Qq) where @, and @, represent the bitwidth of
weights and input activations respectively. Derived from the
logic synthesis results, the LUT consumption of the adders
L 4(Q,) for carrying out), bit partial sum accumulation can
be expressed as L4(Q,) = Qp + 7.

DSP: The embedded DSP slice on FPGA supports the
MAC operation in the following format:

P+=Ax (B+QC))]

In naive HLS mapping, one DSP slice is configured to support
one MAC. To improve DSP throughput for low-bit operations,
we use the shift-and-pack method in to efficiently map
two MACs on one DSP by leveraging the additional pre-adder.
Given the input activation a and the weights w; and ws for
two different output channels, as shown in Fig. [3] the packing
algorithm first sign-extends w; to 27 bits and left shifts wo
by 18 bits. The output P can be further accumulated with the
partial sum or separated into two products P; and P». This

shift-and-pack method can be applied to the situation when
wy and ws are no larger than 8 bits.

BRAM: We assume a buffering scheme in which we fully
exploit reuse opportunities. The 18-Kb BRAMs usage B,, for
the weight buffer can be calculated as:

By = [Ny X Qu/PF/18Kb] x PF @)

where N, is the maximum number of weights to store on-
chip, @, is the bitwidth of weights, and PF' is the BRAM
partition factor of the weights buffer. For convolution kernel
with size £ > 1, we implement a line-buffer to maximize input
reuse. The number of BRAMs B; needed for line buffer is:

B, = |—(W X C)max X Qa/ngb-‘ x k (3)

where (W X C) 4z is the maximum product between the size
of image width W and channel C' over the entire network. Our
line buffer implementation merges the input width and channel
dimension of the feature map into one dimension, and k rows
of line buffers are allocated for k£ x k convolution kernel.

3) Hardware Resource Allocation: With the resources mod-
eling, we can further estimate the optimal resource allocation
for a hardware subgraph under the resource constraints of the
target FPGA. For full k¥ x k Conv, given the input channel
parallelization factor PI and output channel parallelization
factor PO, the compute engine loads k% x PI inputs in parallel
and computes PO output partial sums. The total BRAM usage
Nypuy for on-chip buffers is:

By,+B k>1
Nuwe =4 270 07 “)

The engine is composed of k% x PI x PO MAC units that
can be mapped to either DSPs or LUTs, incurring usage in
LUTs Njyts or DSPs Nygp,:

Nap = k* x PI x PO/2
Nus = k* X PI x PO x (La(Qu, Qa) + La(Qy))

For k x k Depthwise Conv where each output channel result
is corresponding to the inputs from the same channel, we use
only PO to denote the channel dimension parallel factor. The
k x k computation engine takes k% x PO input and computes
PO partial sums concurrently. Similarly, the BRAM usage for
the compute kernel is:

Nuwvut = Bw + By (6)

(&)

The LUT or DSP usage to support depthwise convolution
grows linearly with the PO parallelism factor:

Nasp = k* x PO
Nuws = k% x PO % (Lot (Qu, Qa) + La(Qp))
Regarding the Quantization unit that converts partial sum
in high-precision to quantized input for the next layer, we

implement it with DSP with a parallelization factor of PO.
Its overall resource usage is:

N

Ndsp = P07 Nsbuf = Bs (8)

TABLE I
NOTATIONS FOR HARDWARE DESIGN
Notation Description Notation Description
H feature map height PI parallelism on input channel
w feature map width PO parallelism on output channel
Q quantization setting PF array partition factor
Qa activation bitwidth Ly LUTs usage of a Multiplier
Quw weights bitwidth La LUTs usage of an Adder
Qp partial sum bitwidth By line buffer BRAM usage
kernel size By weights BRAM usage
Latcomp computation latency Ny number of weights buffered
Laton/off latency of activation Nuasp total DSP usage of a kernel
communication Niram total BRAM usage of a kernel
Lat,, latency of loading weights Nius total LUTSs usage of a kernel
S hardware subgraph Nywii BRAM usage for weights buffer
A neural architecture Nypuf BRAM usage for scale buffer
M number of kernels in .S N number of layers in A

Since we perform channel-wise quantization on weights, each
output channel has its own quantization scale. We thus set the
number of buffered scales N, to OC. The calculation of B
is similar to B,, in Eqn. [2| The bitwidth of scale ()5 ranges
from 16-24 depending on the actual value range after obtaining
the integer scale using the inference scheme in [19]]. The total
BRAM usage Npam is a sum of weight buffer usage Nypur
and scale buffer usage Ngpys:

Noram = Nwbuf + Nsbuf ©)

4) Hardware Latency Objective: Given a layer with input
channel size IC, output channel size OC, input height H and
width W, the compute latency is:

Loy [HXW x [IC/PI] x [0C/PO] if full
@heomp = 5 x W x [1C/PO] if depthwise
(10)

depending on if the kernel type is full or depthwise convo-
lution. The communication latency for loading the activation
on-chip and off-chip can be roughly calculated as:

Lateyy = H X W X IC X Qa/bw

11
Latos = H X W x OC X Qq/bw (an

where bw is the practical bandwidth of off-chip memory.

Similarly, the latency of loading weights can be estimated as:

E* x IC x OC X Qu/bw
Lat, = 2
E* X IC X Qu/bw

if full

12)
if depthwise

Based on the latency model for a single layer, we can further
derive the latency of computing a subgraph. A hardware
subgraph design with M convolution kernels can be repre-
sented as S = {Ki,Ks,...K)} with specific quantization
bitwidths Q@ = {(QL,QL), ..., (QM , QM)}. For a given net-
work architecture A = {ay, ag, ...an }, the subgraph mapping
{g1,-..,gr} can be generated using a grouping function f,:

{917927"‘79L}:fm({a17a’27"'7aN}) (13)

To model the overlapping of the dataflow architecture, the
latency of computing each g; can be approximated using the
maximum latency over all the subgraph layers. Besides, to
execute each layer on hardware, the accelerator will preload
the weights to the on-chip buffer before the kernel starts, and
apply double-buffering to hide the communication overhead

of the input activations. The overall latency for computing a
subgraph can be written as:

Lat(g;) = max(Latly, Lat(a:), ..., Lat(aiar), Latiy")
M ..
ij
+ Zj:l Lat,,

With the hardware analytical model above, we can then

formulate the automatic hardware design problem as an integer
programming that minimizes the overall latency:

L
min Z_il Lat(g:)

k
st Y Ngp < Tug
kesS

Z Nlﬁls < Tus X B

kesS

k
Z N bram S Tbram
keS

(14)

15)

where Tysp, Tius, Toram are the total resources available on the
target FPGA device. Note that § is an empirical parameter
describing the percentage of total LUTs allocated for MAC
computation, which is set to 50% in our experiments. We treat
this formulation as a sub-program to the DNN design opti-
mization which will be covered in the next section. Given the
explicitly expressed constraints and objective, we are able to
directly generate the corresponding hardware implementation
that minimizes the latency for different DNN design choices
with different quantization schemes and kernel types.

B. DNN Design

Co-search of hardware-friendly neural network architectures
and mixed quantization precisions is computationally intensive
and time-consuming. In HAO, we formulate the search to
an integer programming problem. In Sec. we present
our search space of neural architectures. Given a latency
constraint, we can first search feasible neural architectures and
corresponding mixed-precision bitwidth settings by applying
the aforementioned hardware latency model as well as a model
quantifying the effect of quantization perturbation. We then
use an accuracy predictor to compare across different networks
and find the pareto-optimal architectures and quantization
settings among all candidates.

1) Search Space of Neural Architectures: In HAO, we
construct the neural network architectures from subgraphs with
feasible hardware mappings on FPGAs. Our subgraphs are
combinations of operations such as convolution or depthwise
convolution with kernel size of 1 x 1 or k x k as mentioned
in the previous section. Although only one subgraph can be
chosen on hardware, the possible building blocks for neural
architecture search include the sub-layers of the subgraph. This
is because each layer in the subgraph can be decided whether
to bypass or not using a skip signal in hardware.

We set no limit on the total number of subgraphs
and choose the channel size for different layers from
{16,32,64,128,256,512,1024}. We also consider input
resolution in HAO with potential configuration from
{96,128, 160, 192, 224, 256}. Consequently, our search space

is significantly larger compared to the prior work [6], [27],
[37], [43], [45]. For example, in [37]], the same cell configura-
tion is repeated within every block. A standard search setting
is to use 5 blocks with 3 identical cells in each block, and
each cell, typically with 3 layers, has a sub-search space of
432, resulting in a search space of size 432° =~ 10'3. In
comparison, even with a simple subgraph {I/xI convolution,
3x3 depthwise convolution}, assume the number of layers
is 45 (same as [37]), the size of search space in HAO is
(2 x 7)% =~ 10°!. The large search space of HAO makes
it more likely to encompass designs with good efficiency and
high accuracy for broader deployment scenarios with various
hardware and latency constraints.

2) Integer Programming: Given a latency constraint Lat,
we use integer programming to obtain feasible neural archi-
tectures and corresponding quantization settings. Specifically,
based on the aforementioned hardware simulator, inference la-
tency (Lat) is a function (denoted as L) of neural architecture
(A) and the quantization setting (@) for subgraph. In Eqn. [I6]
i and j are layer index, IV represents the total number of layers,
and M represents the number of layers in a subgraph.

Lat =L(A,Q),
A:{ki,Hi,Wi,ICi,OCi,Siaie [I,N]}, (16)
Q= {Q,Ql,j € [1,M]}

In HAO, perturbation, denoted as Pert, is used to esti-
mate the accuracy degradation caused by quantization. For a
given neural architecture, the accuracy of the full-precision
pretrained model is irrelevant to quantization setting (). The
perturbation models the relative accuracy change to the per-
trained network among different (). As shown in Eqn.
the perturbation should be multiplied with a constant A to
have the same scale as accuracy, but this will not change
relative accuracy ranking since PretrainedAcc in Eqn.
is a constant. As in [10]], the total perturbation Pert can be
estimated by summing the perturbation contributed from each
layer Pert;. Using the norm of AW; (the distance between
the quantized tensor and the original tensor W;) and the trace
of Hessian matrix H;, the Pert; can be calculated as follows
(i is the layer index).

Acc = PretrainedAcc — APert,

N
Pert =P(A,Q) = Z Pert;, (7)
i=1

Pert; = Tr(H;) - | AW;]|2,

With a latency constraint Laty, we need to find feasi-
ble neural architecture A and then determine corresponding
quantization setting () to minimize perturbation. Note that A
contains integer architectural parameters (kernel size, feature
resolution, channel number, stride, etc), and () contains the
bitwidths of layers in the subgraph, which are integer values
chosen from {2, 3, 4, 5, 6, 7, 8}. Therefore, the task to find
A and (@ satisfying latency constraint Laty can be formulated
as an integer programming problem as shown in Eqn.

- ~ - ~ :1131 Accuracy
a . . 2 2 g
Neural Architecture Space Quantization Latency Predictor
Inout Resoluti Subaranh Pool Space Simulator SelechTop
nput Resolution ubgraph Poo ; Candidates
{96, 128, 160, ..., 256} {DW 33, 1x1} A Sitwidih A+Q Sangzs';f;‘:t‘w
{Full 3x3, 1x1} :(> A B @Training
Channels {x1, DW3a, bt} B 7 bl Minimize
16,32, 64, ..., 1024 R PATEE ED] Quantization Lat - Acc
{16,32,64, ..., }
Perturbation Pareto Frontier
N\ J . J A

Integer Programming

Fig. 4.

min P(4,Q),
sit. L(A,Q) < Lato

(18)

The latency constraint in Eqn. [I§] can be modified to
Eqn.[I9to reduce the number of neural architecture candidates.
This modification is based on the assumption that neural
architectures with higher latency tend to have more complex
structures and higher expression capability, and therefore
higher accuracy. « here is a hyperparameter ranging from 0
to 1. A larger « can lead to a lower search cost.

aLaty <L(A,Q) < Lato (19)

We apply Monte Carlo tree search (MCTS) [24] for better
sample efficiency on finding feasible neural architectures and
quantization bitwidths that satisfy Eqn. [I8] and Eqn. [19
Benefiting from its online model, MCTS can dynamically trade
off exploration and exploitation, which makes MCTS hard
to be trapped in local optimum compared to other methods
such as Bayesian optimization or greedy algorithms. With the
heuristic that L(A,2bit) < L(A,Q) < L(A,8bit), we first
find A that satisfies Eqn. and then solve for appropriate
quantization setting (). We follow the standard to set A (then
@ in the next step) as state, and our actions are selected
from {increase/decrease channel, increase/decrease resolution,
skip/unskip a layer, add/delete a subgraph, termination}. More
details about MCTS can be found in [3]], [24], [41].

aLaty < L(A, 8bit)

20
L(A, 2bit) < Lato 20

3) Accuracy Predictor: As discussed in Sec. [[II-B2] given
a latency constraint Latg, neural architecture candidates and
corresponding quantization settings can be obtained with
different perturbation. To compare among different neural
architectures, a predictor is used to estimate the accuracy
of pre-trained models with given architectures. In HAO, we
directly stack architectural parameters of each layer together
as the input vector, and then we apply a support vector
regression (SVR) model to predict the accuracy. It should
be noted that we choose SVR predictor for simplicity and
better sample efficiency, since SVR models generally require
fewer data to train compared to neural networks used in [39],
[42]. To quickly train the predictor, we collect {architecture,
accuracy} data by training 10 large neural networks from

=
A
+—

Tlustration of HAO pipeline.

scratch and then reusing the weights while fine-tuning them
to 200 different architectures. In our experiments, all neural
networks are built by linearly stacking subgraphs, meaning
that they are generally similar to each other. To support
more complicated architectures such as DenseNet [16] or
LSTMs [36], as suggested in [39], [42], using a better strategy
(such as autoencoder) for neural architecture representation,
using semi-supervised learning with unlabelled data, and using
graph convolutional networks (GCN) as the predictor can fur-
ther improve performance, with the cost of more computation
resources and time.

We use the accuracy predictor to sort candidates that satisfy
the latency constraint Latg. Since the accuracy predictor can
be shared with different subgraphs, we repeat the aforemen-
tioned process for all subgraphs and select the top neural
architectures and corresponding quantization settingsﬂ We
finally train them from scratch on ImageNet and then quantize
the models as the final results of HAO.

IV. RESULTS
A. Simulator Performance

In Sec. we present an analytical latency simulator
that can quickly estimate the inference latency given a DNN
architecture. The optimization algorithm in Sec. uses
the simulator to obtain quick latency feedback.

To test the effectiveness of our latency simulator, we synthe-
size several accelerators for different MobileNetV2 and HAO
designs. The hardware parameters of different implementa-
tions are automatically generated by hardware optimization
in Eqn.[T5] To calibrate our latency model for the target FPGA,
we first perform linear regression to fit the cycle prediction to
the hardware execution latency. We obtain a calibrated latency
model 1.27 x Lat 4 3.8 and use it for our latency prediction.
Then for different accelerator implementations, we obtain
the latency pairs from our simulator and the real hardware
execution and plot them in Fig. [5] We observe a strong linear
relationship (r = 0.998) between the real inference latency
and the estimated latency.

In addition to the hardware latency simulator, HAO also
uses an accuracy predictor to reduce the computational cost.
We show the performance of the predictor in Fig. 5| As can
be seen, for different CNN models in our search space, the

'In our experiments we train top 5 architectures with corresponding
quantization settings and choose the best one for a given latency constraint.

0
E o — —
< | B
8 224 e y=x S
& r=0.998 &
=207 % Hro §oe]
S 18] m MobileNetv2 B .
() i o
< 16 o -
=1 I =
@ 14 4 I * .
= -
= 121 * -
2104 & a
o L —— v v v v v
< 10 12 14 16 18 20 22 24
Latency Predicted by Simulator(ms)
—
734 | Tl
~ Ty X * ")*
R 721 HAO 22 5
3714 b o .
5 704 o .
[&] *
& 69+ .,.r-'* i
7 =
5t]
67 .
LTk
66 4

66 67 68 69 70 71 72 73
Predicted Accuracy(%)

Fig. 5. (Top) The correlation between latency predicted by the hard-
ware simulator (after calibration) and the latency directly measured
on FPGA. (Bottom) The correlation between predicted accuracy and
the accuracy tested on ImageNet validation set.

results of our accuracy predictor align well with the actual
test accuracies on ImageNet validation dataset.

B. Experimental Results

In this section, we present the accuracy and latency results
of HAO on the Ultra 96 board with a Xilinx Zynq ZU3EG
FPGA. We show that HAO outperforms manually designed
solutions, as well as solutions with automatically searched
DNN architectures and quantization settings.

Fig. [6] shows the pareto frontier of HAO with respect to
accuracy and latency. MobileNetV2 [33]] is a popular neural
architecture manually designed for efficient inference. The
original MobileNetV2 is in floating-point format. To achieve
a fair comparison, we quantize MobileNetV2 to 8-bit weights
and 8-bit activations, and then run it on FPGA with a {1x1
convolution, 3x3 depthwise convolution, 1x1 convolution}
subgraph. We follow [33]] to change the channel width multi-
plier (selected from {1.0,0.75,0.5,0.3}) and input resolution
(selected from {224,192,160,128,96}) of MobileNetV2, in
order to trade-off latency and accuracy. In comparison, the
neural architecture (including input resolution) and quantiza-
tion bitwidth setting are automatically selected in HAO. As
can be seen, HAO outperforms MobileNetV2 on a wide range
of latency values. HAO can achieve 72.5% top-1 accuracy with
20ms latency (50 fps), which is more than 1% higher accuracy
than MobileNetV2 while running 15% faster. In the cases
with a more strict latency constraint (for example autonomous
vehicles), HAO can still preserve 66% accuracy with only 8ms
latency (125 fps). This is significantly higher than the 63% of
MobileNetV2 while being faster. Furthermore, we compare
with results from MnasNet [37]], which is a hardware-aware

73] . . . ——— —T —
72 : | ;
714 * —u
70
69]
O\o 68- i
674 * N /- 2
S 664 / |]
5 654 -
S 64 .Y,
< 63
624
61-.
601 " |
59-. ! 1 il

&~ —*x—HAO
? ileNetv2 1.0
“MobileNetv2 0.75 7
~MobiteNetv2 0.5

MaohileNet\/2-0-3—
MODHENETVZ U0

Mn
MRAa!

lot*
SNet

8 10 12 14 16 18 20 22 24
Latency(ms)

Fig. 6. Pareto frontier for accuracy and latency. We generate pareto
frontier of MobileNetV2 and MnasNet by varying width multipliers
as well as the input resolution, as suggested in the references [33],
[37]. As can be seen, HAO results outperform MobileNetV2 and
MnasNet by a large margin on Zynq ZU3EG.

neural architecture search method. As in Fig. [6l HAO also
outperforms MnasNet by a large margirﬂ

In addition to comparing pareto-frontier performance with
our own hardware implementation, we also compare HAO
with various previous work in Table [13], 12301, [31],
[35] are manually designed solutions. [20]], [25] are search-
based methods. Note that these prior works target larger
FPGA boards with more resources, and some use more
complex neural architectures, 16-bit fixed-point or floating-
point precision. For a fair comparison, we further compare
HAO with [4], [33], [37], [43], [47], which have the same
hardware platform (Zynq ZU3EG) as our For HAO, we
apply layer-wise quantization for activations and channel-wise
quantization for weights, with standard linear quantizer and
static quantization for the simplicity of deployment. As can
be seen in Table[l[, HAO achieves state-of-the-art performance
on embedded FPGA with limited resources. With higher top-
1 accuracy (68.8% vs 68.3%), HAO solution is significantly
faster than Synetgy [47]] (94fps vs 66fps), albeit Synetgy is
assisted by extra operations such as shift. Moreover, when the
framerate is 50fps, HAO can achieve 72.5% top-1 accuracy
on ImageNet, which is more than 1% higher than MnasNet-
Al (71.4%) while being 14% faster. Comparing with FBNet-
iPhoneX, HAO obtains slightly better accuracy (72.7% vs
72.6%), while having a much higher framerate (45 vs 21).
It should be noted that for different hardware platforms or
different latency constraints, previous methods need to repeat
the whole search pipeline to find appropriate solutions, while
the predictor in HAO can be shared so that no additional search
cost will be required.

Table |[Il} shows the hardware resource utilization and power
usage for HAO on Zynq ZU3EG FPGA. We observe 4.3W

ZPart of the MnasNet pareto curve is out of the latency range in Fig. E] We
present these extra results in Table

3Note that [37)), [43] are well-known hardware-aware search algorithms,
and we implement their searched results on Zynq ZU3EG for comparison.

TABLE II
PERFORMANCE COMPARISON ON IMAGENET WITH PRIOR WORKS.

Platform Input Resolution | Framerate(fps) | Quantization Bitwidth | Top-1 Accuracy(%)

EDD-Net-2 []él] Zynq ZU9EG 224 x 224 125.6 WI16A16 74.6

HotNas-Mnasnet Zynq ZU9EG 224 x 224 200.4 NA 73.24
HotNas-ProxylessNAS Zynq ZU9EG 224 x 224 205.7 NA 73.39
EDD-Net-3 Zynq XCT7Z045 | 224 x 224 40.2 WI16A16 74.4

VGG16 Zynq XC7Z045 | 224 x 224 27.7 W16A16 69.3

VGG-SVD | Zynq XC7Z045 | 224 x 224 4.5 W16A16 64.64
VGGI16 [35 Stratix-V 224 x 224 3.8 W8A16 66.58
VGG16 [13] Zynq 72020 224 x 224 5.7 W8AS8 67.72
Dorefa \E}l Zynq 72020 224 x 224 106.0 W2A2 46.10
Synetgy \Eﬂl Zynq ZU3EG 224 x 224 66.3 W4A4 68.30
FINN-R [4] Zynq ZU3EG 224 x 224 200.0 WI1A2 50.30
MobileNetV2 || Zynq ZU3EG 224 x 224 435 WS8A8 71.40
MnasNet-Al [37] Zynq ZU3EG 224 x 224 22.3 WS8AS 74.60
MnasNet-A1 [37 Zynq ZU3EG 192 x 192 27.8 WB8AS 73.33
MnasNet-A1-0.75 Zynq ZU3EG 224 x 224 31.0 WS8A8 72.70
MnasNet-A1 Zynq ZU3EG 160 x 160 358 WS8A8 71.35
FBNet-B Zynq ZU3EG 224 x 224 24.6 W8AS 73.20
FBNet-iPhoneX Zynq ZU3EG 224 x 224 21.3 WS8A8 72.62
HAO Zynq ZU3EG 256 x 256 449 W-mixed A8 72.68
HAO Zynq ZU3EG 256 x 256 50.0 W-mixed A8 72.45
HAO Zynq ZU3EG 224 x 224 58.9 W6A8 71.76
HAO Zynq ZU3EG 224 x 224 77.0 W-mixed A8 70.06
HAO Zynq ZU3EG 192 x 192 93.5 W-mixed A8 68.80

2
=1
=2
=1
=2

32 W7A8
64 W7A8
64 W7A8

ol =
HELE
3;3
< N
koﬂ_(v)
©

128 WGA8

128 W7A8 S
128 WGA8
128 W7A8 S
256 WGA8

256 W7A8 S
256 WGA8

[L)
gf\(
N-B
A
LOH
N

Fig. 7.

il
1

1
2

DW Conv 3x3

512 WGEA8
512 W7A8 S
128 W7A8
512 WEA8
512 W7A8 S
256 W7A8
1024 WB5A8
256 W7A8

1024 W7A8 S
1024 WGAS

1024 W7A8 S

lustration of neural architecture and quantization setting searched by HAO. W and A stand for weight and activation quantization

bitwidth, S is the stride of a specific convolutional layer. DW Conv stands for depth-wise convolution.

TABLE III
HARDWARE RESOURCES UTILIZATION AND POWER

LUTs FF DSP BRAM | Power

61362(87.0%) | 55136(39.0%) | 360(100%) | 431(99.8%) | 5.5W

power consumption with no workload running on the program-
ming logic side and 5.5W power when running the network.
Besides, we are able to utilize 100% of DSP and 87% of
LUTs on the FPGA, showing the effectiveness of our hardware
resource modeling. In the optimization program in Eqn. [T3]
we allocate 8 percent of LUTs as computation resource to
search for optimal design parameters, which makes the LUTs
utilization more controllable. In this way, the simulator can
automatically decide whether to implement a kernel on DSP
or LUTs based on the quantization setting (). As a result, we
can achieve high resource utilization by leveraging the benefits
of mix-precision operations on FPGA.

In Fig. [7, we show one of the searched results by HAO. A
subgraph {1x1 convolution, 3x3 depthwise convolution, 1x1
convolution} is used in this solution. As can be seen, HAO
finds that a 6-bit/7-bit mixed-precision quantization setting is
better than 8-bit uniform quantization for weights. In general,
lower bit-width means more computation units under the same
resource constraints, but it can lead to larger quantization
perturbation. HAO can balance the efficiency and perturbation,
and we observe that the 8-bit counterpart of HAO 6/7-bit result

runs 5% slower with negligible accuracy gain. Moreover, the
results of HAO show that, for our implementation on Zynq
ZU3EQG, solutions with solely 3 x 3 depthwise convolution
perform better than those with a mixture of 3 X 3 and 5 x 5
depthwise convolution. This is due to the fact that when using
a mixture of 3 x 3 and 5 x 5 depthwise convolution, either
3 x 3 or 5 x5 kernel will be idle when invoking the accelerator,
which is a waste on platforms with limited hardware resources.

V. CONCLUSIONS

In this work, we propose HAO to jointly optimize the neural
architecture, quantization, and hardware design. To reduce the
computation required for evaluating different designs, we de-
velop a subgraph-based hardware latency model as well as an
accuracy predictor for neural architectures. We formulate the
algorithm and hardware co-search as an integer programming
problem, which significantly prunes the total search space. On
an embedded FPGA device, we show that our HAO method
finds the pareto-optimal designs which outperform previous
solutions on both latency and accuracy.

ACKNOWLEDGMENTS

This work was supported by Facebook Reality Labs, Google
Cloud, Alibaba, Samsung SAIT, by the Berkeley ADEPT Lab,
Berkeley Deep Drive, the Berkeley Wireless Research Center, by the
Croucher Innovation Award, and by CONIX Research Center.

[1

—

[2

—

[3]

H
B

[5]

[6]

[7]

[8

=

[9

—

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

Mohamed S Abdelfattah, Lukasz Dudziak, Thomas Chau, Royson Lee,
Hyeji Kim, and Nicholas D Lane. Best of both worlds: Automl codesign
of a cnn and its hardware accelerator. arXiv preprint arXiv:2002.05022,
2020.

Mohamed S Abdelfattah, Lukasz Dudziak, Thomas Chau, Royson Lee,
Hyeji Kim, and Nicholas D Lane. Codesign-nas: Automatic fpga/cnn
codesign using neural architecture search. In The 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
315-315, 2020.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine learning, 47(2-3):235-256,
2002.

Michaela Blott, Thomas B Preufer, Nicholas J Fraser, Giulio Gam-
bardella, Kenneth O’brien, Yaman Umuroglu, Miriam Leeser, and
Kees Vissers. Finn-r: An end-to-end deep-learning framework for
fast exploration of quantized neural networks. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 11(3):1-23, 2018.
Han Cai, Tianzhe Wang, Zhanghao Wu, Kuan Wang, Ji Lin, and Song
Han. On-device image classification with proxyless neural architecture
search and quantization-aware fine-tuning. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 0-0,
2019.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neu-
ral architecture search on target task and hardware. arXiv preprint
arXiv:1812.00332, 2018.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. Zeroq: A novel zero shot quantization
framework. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13169-13178, 2020.

Francois Chollet. Xception: Deep learning with depthwise separable
convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1251-1258, 2017.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830, 2016.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W.
Mahoney, and Kurt Keutzer. HAWQ-V2: Hessian aware trace-weighted
quantization of neural networks. Advances in neural information
processing systems, 2020.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. Hawq: Hessian aware quantization of neural networks with
mixed-precision. In Proceedings of the IEEE International Conference
on Computer Vision, pages 293-302, 2019.

Yao Fu, Ephrem Wu, Ashish Sirasao, Sedny Attia, Kamran Khan, and
Ralph Wittig. Deep learning with int8 optimization on xilinx devices.
White Paper, 2016.

Kaiyuan Guo, Song Han, Song Yao, Yu Wang, Yuan Xie, and Huazhong
Yang. Software-hardware codesign for efficient neural network acceler-
ation. /EEE Micro, 37(2):18-25, 2017.

Cong Hao, Yao Chen, Xinheng Liu, Atif Sarwari, Daryl Sew, Ashutosh
Dhar, Bryan Wu, Dongdong Fu, Jinjun Xiong, Wen-mei Hwu, et al.
Nais: Neural architecture and implementation search and its applications
in autonomous driving. arXiv preprint arXiv:1911.07446, 2019.

Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong,
Kyle Rupnow, Wen-mei Hwu, and Deming Chen. Fpga/dnn co-design:
An efficient design methodology for lot intelligence on the edge. In
2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1-
6. IEEE, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 47004708, 2017.

Qijing Huang, Dequan Wang, Zhen Dong, Yizhao Gao, Yaohui Cai,
Tian Li, Bichen Wu, Kurt Keutzer, and John Wawrzynek. Codenet:
Efficient deployment of input-adaptive object detection on embedded
fpgas. In The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 206-216, 2021.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters andj 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2704-2713, 2018.
Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu, and
Yiyu Shi. Standing on the shoulders of giants: Hardware and neural
architecture co-search with hot start. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(11):4154-4165,
2020.

Weiwen Jiang, Lei Yang, Edwin H-M Sha, Qingfeng Zhuge, Shouzhen
Gu, Sakyasingha Dasgupta, Yiyu Shi, and Jingtong Hu. Hard-
ware/software co-exploration of neural architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2020.
Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, Qingfeng
Zhuge, Yiyu Shi, and Jingtong Hu. Accuracy vs. efficiency: Achieving
both through fpga-implementation aware neural architecture search. In
Proceedings of the 56th Annual Design Automation Conference 2019,
pages 1-6, 2019.

Li Jiao, Cheng Luo, Wei Cao, Xuegong Zhou, and Lingli Wang. Ac-
celerating low bit-width convolutional neural networks with embedded
fpga. In 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), pages 1-4. IEEE, 2017.

Levente Kocsis and Csaba Szepesvdri. Bandit based monte-carlo
planning. In European conference on machine learning, pages 282—
293. Springer, 2006.

Yuhong Li, Cong Hao, Xiaofan Zhang, Xinheng Liu, Yao Chen, Jinjun
Xiong, Wen-mei Hwu, and Deming Chen. Edd: Efficient differentiable
dnn architecture and implementation co-search for embedded ai solu-
tions. arXiv preprint arXiv:2005.02563, 2020.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua,
Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy.
Progressive neural architecture search. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 19-34, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

Qing Lu, Weiwen Jiang, Xiaowei Xu, Yiyu Shi, and Jingtong Hu. On
neural architecture search for resource-constrained hardware platforms.
arXiv preprint arXiv:1911.00105, 2019.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shuf-
flenet v2: Practical guidelines for efficient cnn architecture design. In
Proceedings of the European conference on computer vision (ECCV),
pages 116-131, 2018.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean.
Efficient neural architecture search via parameter sharing. arXiv preprint
arXiv:1802.03268, 2018.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin
Zhou, Jincheng Yu, Tiangi Tang, Ningyi Xu, Sen Song, et al. Going
deeper with embedded fpga platform for convolutional neural network.
In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 26-35, 2016.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pages 4780—
4789, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510-4520, 2018.

Florian Scheidegger, Luca Benini, Costas Bekas, and A Cristiano I
Malossi. Constrained deep neural network architecture search for iot
devices accounting for hardware calibration. In Advances in Neural
Information Processing Systems, pages 6056—6066, 2019.

Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei
Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized
opencl-based fpga accelerator for large-scale convolutional neural net-
works. In Proceedings of the 2016 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, pages 16-25, 2016.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney. Lstm neural
networks for language modeling. In Thirteenth annual conference of
the international speech communication association, 2012.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V Le. Mnasnet: Platform-aware neural
architecture search for mobile. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2820-2828, 2019.
Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. arXiv preprint arXiv:1905.11946,
2019.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Boxin Shi, Chao
Xu, Chunjing Xu, Qi Tian, and Chang Xu. A semi-supervised assessor
of neural architectures. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1810-1819, 2020.
Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq:
Hardware-aware automated quantization with mixed precision. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8612-8620, 2019.

Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong
Tian. Sample-efficient neural architecture search by learning action
space. arXiv preprint arXiv:1906.06832, 2019.

‘Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-
Jan Kindermans. Neural predictor for neural architecture search. In
European Conference on Computer Vision, pages 660-676. Springer,
2020.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun,
Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt
Keutzer. Fbnet: Hardware-aware efficient convnet design via differen-
tiable neural architecture search. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 10734-10742, 2019.
Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Va-
jda, and Kurt Keutzer. Mixed precision quantization of convnets via dif-
ferentiable neural architecture search. arXiv preprint arXiv:1812.00090,
2018.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi,
Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel connections
for memory-efficient differentiable architecture search. arXiv preprint
arXiv:1907.05737, 2019.

Lei Yang, Weiwen Jiang, Weichen Liu, HM Edwin, Yiyu Shi, and
Jingtong Hu. Co-exploring neural architecture and network-on-chip
design for real-time artificial intelligence. In 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 85-90. IEEE,
2020.

Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma,
Giulio Gambardella, Michaela Blott, Luciano Lavagno, Kees Vissers,
John Wawrzynek, et al. Synetgy: Algorithm-hardware co-design for
convnet accelerators on embedded fpgas. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 23-32, 2019.

Yang Yang, Chao Wang, Lei Gong, and Xuehai Zhou. Fpnet: Cus-
tomized convolutional neural network for fpga platforms. In 2079
International Conference on Field-Programmable Technology (ICFPT),
pages 399-402. IEEE, 2019.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali
Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang, Michael W
Mahoney, et al. Hawqv3: Dyadic neural network quantization. arXiv
preprint arXiv:2011.10680, 2020.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lg-
nets: Learned quantization for highly accurate and compact deep neural
networks. In Proceedings of the European conference on computer
vision (ECCV), pages 365-382, 2018.

Xinyi Zhang, Weiwen Jiang, Yiyu Shi, and Jingtong Hu. When neural
architecture search meets hardware implementation: from hardware
awareness to co-design. In 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pages 25-30. IEEE, 2019.

Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong,
Wen-mei Hwu, and Deming Chen. Dnnbuilder: an automated tool
for building high-performance dnn hardware accelerators for fpgas. In
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1-8. IEEE, 2018.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incre-
mental network quantization: Towards lossless CNNs with low-precision
weights. International Conference on Learning Representations, 2017.
Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and
Pascal Frossard. Adaptive quantization for deep neural network. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

10

