
Heterogeneous Dual-Core Overlay Processor for
Light-Weight CNNs

Tiandong Zhao, Yunxuan Yu, Kun Wang, Lei He
Electrical and Computer Engineering Department

University of California, Los Angeles

Abstract—Light-weight convolutional neural networks (CNNs)
have small complexity and are good candidates for low-power,
high-throughput inference. Such networks are heterogeneous
in terms of computation-to-communication (CTC) ratios and
computation patterns between layers, especially for different
layer types. Yet, existing AI processors either use homogeneous
processing elements (PEs), resulting in low runtime PE efficiency,
or run different layers on heterogeneous PEs in sequential,
introducing resource redundancy. This paper proposes a het-
erogeneous dual-core architecture (dual-OPU), where one core
is optimized for regular convolution layers and the other for
depthwise convolution layers. PEs are homogeneous with each
core. To make full use of dual-core parallelism, we develop a
scheduling algorithm to concurrently execute layers for different
input images on dual-core and balance parallel workload. Mean-
while, we automatically tune the PE number for a core and tune
the input size for each PE to maximize throughput. Compared
with a single-core processor with the same area for a single
network, heterogeneous dual-OPU on average improves runtime
PE efficiency and throughput by 11% and 31%, respectively. For
a workload of multiple networks, dual-OPU improves average
throughput by 11% compared with the state-of-the-art processors
scaled to the same area. To the best of our knowledge, it is the
first in-depth study on the heterogeneous dual-core processor for
light-weight CNNs.

I. INTRODUCTION

CNNs have achieved extensive success on miscellaneous
artificial intelligence applications such as image classification
and object detection. A plethora of models emerge with
different operators and architectures, gradually shifting at-
tention from accuracy to efficiency in terms of speed and
power. Classified as light-weight CNNs, MobileNets [1][2]
adopt depthwise separable convolution to reduce computation
complexity and parameter amount, while other models, such
as SqueezeNet [3], alter model topology to spare computation
power.

However, such model-level changes reduce runtime hard-
ware efficiency. To be more specific, layers in modern light-
weight CNNs are heterogeneous concerning the computation
pattern, especially between depthwise convolution layers and
regular convolution layers. Even for the same layer type, CTC
(Computation to Communication) ratio diffs significantly for
various layer characteristic parameters such as input feature
map size and kernel size. Consequently, processors with
uniform PEs (Processing Elements) can barely accommodate
all types of layers efficiently, leading to a low runtime PE
efficiency. Separate engines for different layers, however,
result in hardware resource redundancy due to the sequential

execution of engines. In other words, the balance between
generality and specificity has not been addressed well. This
is particularly true for workload with multiple CNNs.

There exist two paradigms on how to deal with the het-
erogeneous CNN workload. One resorts to a uniform archi-
tecture, while the other applies custom architectures (often
called accelerators) to different models. For the first paradigm,
GPGPU focuses on the acceleration of matrix multiplication
with hardware multi-threading on parallel arithmetic cores and
performs poorly on memory-bound depthwise convolution.
Similarly, TPU [4] is optimized to perform fast, bulky matrix
multiplication with homogeneous systolic arrays. Neverthe-
less, it suffers from poor performance on workload with sparse
computation intensity, such as element-wise algebra. Light-
OPU [5] utilizes uniform overlay architecture on FPGA for
light-weight layers. Yet, special-purpose modules, e.g., line
buffer and squeeze-and-excitation block, might be redundant
for the majority of layers, indicating resource inefficiency and
potential room for further speedup. Xilinx DPU [6][7] also
includes a non-negligible additional resource cost for a sepa-
rate depthwise convolution engine and channel augmentation
module for small output channels.

On the other hand, accelerators like [8] adopt layer-wise
architecture tailored for bottom layers and uniform architecture
for top layers based on the observation that CTC ratios
fluctuate significantly between the two groups but just slightly
within top layers. [9][10][11] map one or some specific
layers to heterogeneous convolution accelerators to handle
various layer characteristics. However, light-weight models are
missing in these accelerators, so the performance is unknown
when applied to latest light-weight models that are far more
heterogeneous than traditional VGG-like models. [12] utilizes
separate PEs for depthwise and regular convolution layers to
improve individual throughput, which, in contrast, increases
the overall redundancy in hardware resources.

To sum up, existing work with homogeneous PEs suffers
from low resource efficiency on light-weight models, while
those with heterogeneous PEs have not shown support for
light-weight models or have exhibited resource redundancy.
To address these problems, we aim to find a balance between
generality and specificity by proposing a dual-core processor
(called dual-OPU), where one core is optimized for regular
convolution and the other one for depthwise convolution
with extra resource cost on light-weight hardware modules,
e.g., line buffer. Still, each core can handle all types of

ar
X

iv
:2

11
0.

01
10

3v
1

 [
cs

.A
R

]
 3

 O
ct

 2
02

1

layers but with different efficiency. To reduce the overall
resource redundancy, we run multiple heterogeneous layers
in parallel such that layers that prefer light-weight modules
can be accommodated by a single core. We interleave layers
from different models to increase the chance of parallelizing
heterogeneous layers. Then we tune the PE numbers and PE
input sizes of each core to balance the parallel workload, where
the balance is further finetuned in tile granularity by layer split.
As a result, runtime efficiency is maximized. Our contributions
are listed as follows:
• We propose a heterogeneous dual-core architecture with

fine-grained PE configuration space for high run-time PE
efficiency.

• We develop a scheduling algorithm to interleave layers
from different models to exploit dual-core parallelism for
high throughput.

• Given a set of target CNN models, we can find a PE
configuration, with which high average throughput can
be achieved.

II. MOTIVATION

Light-weight CNN models typically include low-
computation-intensity operators, e.g., depthwise convolution
and pointwise convolution, to reduce operation count and
parameter amount. However, this model-level optimization
leads to significant irregularity on the computation complexity
between layers, where memory-intensive light-weight layers
are interleaved with compute-intensive regular convolution
layers. Therefore, deployed on processor with uniform PEs,
some layers have low runtime PE efficiency, as defined in
Eq.1, where Nop is the multiply-and-accumulate (MAC)
operation amount performed in the measurement with
frequency f . NPE is the number of allocated PEs, and α is
the number of MAC operations performed by each PE per
clock cycle. T is the measured latency in seconds.

runtime PE efficiency =
Nop

α ·NPE · T · f
(1)

Runtime PE efficiency measures the ratio between computa-
tion time and total latency of a layer. Memory-intensive layers
can barely fully overlap communication time with computation
time, and thus have lower runtime PE efficiency than compute-
intensive layers. Furthermore, the gap between runtime PE
efficiencies of different layers is exaggerated by variation of
layer characteristic parameters such as input/output channels,
input feature map height/width and kernel width/height. Only
when these layer-specific parameters match MAC unit sizes
can we make full use of arithmetic resources.

To show the layer-wise runtime PE efficiency differences,
we mimic the architecture of Light-OPU proposed in [5] to
measure the latency of each layer. Industrial processors like
TPU are not good candidates for layer-wise measurement due
to their high runtime variance for an individual layer. As shown
in Fig.1, the average runtime efficiency is 59%, 41% and
62% for MobileNet v1, MobileNet v2 and SqueezeNet v1,
respectively. We find zigzag curves for all three models, where

Fig. 1: Layer-wise runtime PE efficiency on uniform architec-
ture proposed in [5] with a single input image

high efficiencies are contributed by regular convolutions and
low ones come from depthwise convolutions for MobileNet
v1/v2 and pointwise convolutions for SqueezeNet v1. Both
source layers of low PE efficiency have limited computing
parallelism than regular convolution. Devoid of output channel
parallelism, depthwise convolution layers achieve 42% and
37% PE efficiency in MobileNet v1 and v2, respectively.
Pointwise convolution layers with small output channels lead
to 41% PE efficiency in SqueezeNet v1. The significant
performance gap between different layer types calls for het-
erogeneous PEs, which customize arithmetic structures for
specific layer types to improve runtime PE efficiency.

Even with heterogeneous PEs, we cannot ignore that these
light-weight models are almost purely sequential, which can
hardly make full use of the parallel heterogeneous PEs on
hardware. With the emphasis on the throughput of multiple
input images, prior work concurrently run layers for different
input images for better resource efficiency. [7] runs MobileNet
v2 in a layer pipeline schedule so that one pointwise convolu-
tion layer and one depthwise convolution layer for two input
images run on different engines in parallel. The fact that two
layers run in parallel, however, still results in low PE runtime
efficiency due to the imbalance of the latency even though
its depthwise engine already utilizes small number of PEs to
compensate. Since its PE number for depthwise engine is not
tunable, this imbalance worsens when the CTC ratios differ
more significantly between two types of layers in MobileNet
v1. So we need to optimize PE allocation as well as layer
scheduling.

III. HETEROGENEOUS DUAL-CORE ARCHITECTURE

A. Proposed Architecture

To overcome the aforementioned problems, i.e., low runtime
PE efficiency due to the heterogeneous workload and imbal-
anced schedule, we propose a novel dual-core architecture
with fine-grained PE array configuration and an automatic
design flow to find the best configuration for high through-
put. We define a core as computing unit with independent
input/output buffers, a PE array and a post-processing unit.
We introduce two types of cores, channel-parallel core (c-core)
and pixel-parallel core (p-core). c-core exploits input/output

channel parallelism for regular convolution, which usually has
large channel numbers. p-core takes advantage of the pixel
parallelism in the kernel window for depthwise convolution,
where line buffer is required as extra hardware support for
data fetch due to the reuse of input feature map pixels
from the sliding window. PE configurations of the two cores
are optimized with respect to layer characteristics for high
runtime PE efficiency. As shown in Fig.2, our heterogeneous

Fig. 2: Heterogeneous dual-core architecture. IB, OB and PP
are input buffer, output buffer and post-processing unit.

architecture consists of one c-core and one p-core. Inside a
core, PEs are homogenerous, and PE configuration and buffer
sizes are customized. Each core has ping-pong structured
buffers for input feature maps, weights and biases. Once a
group of memory blocks for input feature map, weight and
bias are loaded from off-chip memory to input buffers, the
MAC operation pipeline is initiated. Partial sums are stored
in the output buffer for further accumulation. Post-processing
operations, such as pooling and activation, are also included
in the computation pipeline and are initiated once a group of
output feature maps is ready.

B. PE Array Configuration

We optimize PE array in terms of (NPE , Nvector), where
NPE is the number of PEs and Nvector is the number of multi-
pliers for each PE. Each PE implements an inner product with
2×Nvector inputs including Nvector multiplication products,
which are then reduced to one sum with a balanced adder
tree. More adders follow the PE outputs to provide 2 to NPE

accumulated results. The number of accumulated results is
dynamically configured by instructions to obtain high runtime
PE efficiency.

Regarding data fetch for c-core, input feature maps are
duplicated and broadcast to PEs to exploit channel parallelism.
p-core has an alternative way of data fetch, by using line
buffer. Tkh

and Tkw
are tiling sizes of kernel height and kernel

width to compute for one single memory load from external
memory to on-chip buffer. When Tkh

>1 or Tkw>1, line buffer
expands input feature maps by Tkh

×Tkw
before broadcasting.

Our PE may use multiple DSP macros on FPGA. We
decompose each DSP into two 8-bit multipliers to make full
use of computation resources. However, the two decomposed

multipliers must share of one input due to hardware con-
straints. Two multipliers in c-core share one input feature map
pixel with two output channel weights, while two pixels share
one input channel weight in p-core. Double input feature map
buffers are integrated with the p-core PE array. As a result,
two groups of sliding window pixels on the dimension of input
feature map height are computed in parallel to make full use
of DSP resources.

While c-core is more computationally powerful for channel
parallelism, p-core is flexible for both channel parallelism
and pixel parallelism at the cost of some computation power
and extra hardware components. In addition to multipliers, p-
core requires more resources for auxiliary components, such
as line buffer and extra input feature map buffers, than c-
core. Processors using a single p-core not only leads to low
runtime PE efficiency but also results in inefficient use of
auxiliary components. For example, when deploying regular
3 × 3 convolution with 64 input channels and 16 output
channels on p-core P(16,64), we prefer not to use line buffer,
since PE array configuration perfectly matches layer channel
numbers. Line buffer is not useful in such case. If line buffer
was used, it should generate multiple of Tkh

× Tkw pixels as
inputs of inner product, which ranges from 1 to 9 and leaves
most of 64 PE inputs idle. Therefore, we need to carefully
allocate resource for p-core and c-core to make full use of all
resources.

C. Design Flow

To determine the resource allocation for c-core and p-
core, we propose an automatic design flow to achieve high
throughput of target workload. Our flow in Fig.3 takes CNN
model description and FPGA resource budget as inputs. CNN

Fig. 3: Automation Flow

model description is parsed for layer-wise characteristics,
such as input feature map height/width, input/output channels,
kernel height/width, as well as data dependencies between
layers. We partition the layers into two groups, where layers
in one group are assigned to c-core and layers in the other one
are assigned to p-core. For each group, we search for the PE
configuration that leads to the highest runtime PE efficiency,
under the constraint that the total allocated resources cannot
exceed resource budget. For each configuration, we decide
tiling sizes on all dimensions with the objective to maximize
runtime PE efficiency. Based on the chosen tiling sizes, latency
model and resource model are developed for c-core and p-core
to estimate latency and resource. Moreover, we balance the

workload executed in parallel on c-core and p-core to improve
the throughput.

One can see from runtime PE efficiency shown in Fig.1,
high efficiency and low efficiency are interleaved in all three
cases. Adjacent layers with large difference are good candi-
dates for potential balanced parallel execution. To leverage
this, we choose to interleave layers for two input images
of the same CNN model and use topological order. Then
PE numbers on c-core and p-core are tuned based on the
interleaved schedule to minimize the latency gap between
parallel workload. We further reduce the latency gap by a
heuristic to split convolution layers along input feature map
height dimension for tile reassignment. Finally, we generate
hardware code and instructions based on the PE allocation
and scheduling.

IV. MODELING

A. Tile Sizing

We aim to find tiling sizes of each layer for minimal total
latency. We use (n, v) as the abbreviation of (NPE , Nvector)
in the following sections. Given (n, v), we aim to find the
buffer sizes and if p-core is required for each layer so as to
estimate the latency and the total resource. Since tiling sizes
compose the tensor size to load and compute at each time and
are correlated with the memory and computation resource, we
first determine the tiling sizes (Tci , Tco , Tkh

, Tkw
, Th, Tw) for

each layer. Since each PE can implement inner product with
multiple v multiplications, product of Tci , Tco , Tkh

and Tkw

matches total multiplier count, as shown in Eq.2, where c-core
has Tkh

=1 and Tkw
=1 without line buffer. The multiple factor

of v, denoted as i, aims to maximize runtime PE efficiency
in Eq.3. In other words, i is the used number of PE among n
total PEs. Larger i indicates higher portion of PEs are utilized
and thus higher runtime PE efficiency.

Tkh
·Tkw ·Tci ·Tco = n · v, Tkh

·Tkw ·Tci = i · v, i ∈ N+ (2)

i = argmin
i
d Co

Tco
e · d Ci ·Kh ·Kw

Tci · Tkh
· Tkw

e (3)

We iterate i from 1 to dKh·Kw·Tci

v e. For each i, we iterate Tkh

and Tkw
to get Tci = i · d v

Tkh
·Tkw
e and Tco = n·v

Tkh
·Tkw ·Tci

.
(Th, Tw) relate to input buffer depth. To simplify, we assume
Th = Tw, since most convolutions have square input size.
Eq.4 decides (Th, Tw) by memory efficiency in terms of buffer
depth.

(Th, Tw) = argmin
H ·W

d HTh
e · dWTw

e · Th · Tw
(4)

It aims to minimize total input block numbers in size of (Th×
Tw). Some available options of tiling sizes might hold the same
runtime PE efficiency, in which case we pick the one with
less resource cost using the resource model to be discussed in
Section IV-C.

B. Latency Modeling

We calculate latency for each layer and then add them up.
For each layer, Tload and Tcompute are latencies of memory
load and computation, respectively. The three terms on the
numerator of Eq.5 are the data amount to load for input
feature map in shape of (H ×W × Ci), weight in shape of
(Kh ×Kw × Ci × Co) and bias in shape of (Co), which are
loaded sequentially through the limited bandwidth of external
DRAM memory. Memory load works in pipeline with Ldram

as the last part of latency. Ldram is the column address
strobe (CAS) latency of DRAM access, and it stands for the
delay between memory read request and the moment data is
available for on-chip buffers. Eq.6 depicts the computational
latency as the product of tile numbers on each dimension.
Computation following by post-processing runs in a deep
pipeline. Assuming that the data bitwidth is BWdata, when-
ever min(Co, bBWdram

BWdata
c) number of output feature map data

are ready, they will be passed to post-processing unit and
then stored to DRAM, resulting latency Lpost. Both Ldram

and Lpost are not constant in practice. For estimation, we use
average values based on multiple execution traces on FPGA.
We use ceiling operators for the accuracy of modeling. When
the compiler generates and schedules ISA instructions, it aims
to overlap Tload and Tcompute as much as possible. Therefore,
we use the maximum between Tload and Tcompute in Eq.7 to
estimate latency of each layer.

Tload = dH ·W · Ci +Kh ·Kw · Ci · Co + Co

BWdram
e+ Ldram

(5)

Tcompute = d
Co

Tco
e·dH

Th
e·dW

Tw
e·d Ci

Tci
e·dKh

Tkh

e·dKw

Tkw

e+Lpost

(6)

Ttotal =

l∈layers∑
l

max(T l
compute, T

l
load) (7)

C. Area Modeling

We will discuss the resource model that varies with PE
configuration (n, v). Total resource is the sum of the variants
from PE and buffers and the invariant from memory controller,
instruction decoder, post-processing unit, etc. The variant
cost on computation and memory resources are discussed as
follows.

a) DSP: We only use DSP to build multipliers for
efficiency. α is the MAC number that one DSP can handle.
In our design, each DSP48E1 slice is decomposed to two 8-
bit×8-bit multipliers that can work simultaneously with one
common input. So α is 2. The required number of DSP is
indicated as follows:

NDSP = dn
α
e · v (8)

b) Memory Resource: We assume PE array has two types
of on-chip input buffers that are built by BRAM. Bfm is
for feature maps and Bweight is for weights. Bias amount is
usually small so it will be implemented by logic resource. The
buffer depth of Bfm is Th ·Tw. Width of Bfm and Bweight are

Tci and Tci ·Tco to match the input bandwidth of PE array. For
p-core, if depthwise convolution is applied, Bfm should have
2 banks as that in the C-core model. The depth of Bweight

is d Co

Tco
e · d Ci

Tci
e. Xilinx FPGAs provide RAMB18K macro

for 18kb block RAM. Within total 18kb memory capacity,
RAMB18K has configurable width × depth combinations,
such as 36×512, 18×1k, 9×2k, 4×4k, 2×8k and 1×16k. We
count the number of required RAMB18K given buffer width
and depth with priority for width, which means that we tend
to use minimum number of RAMB18K in term of width size.

c) Logic Resource: LUT and FF cost comes from three
aspects. (1) the adders following multipliers in the PE array:
For each PE with v inputs, they are accumulated to one with
these adders. Input data width of adder increases with the
depth of the adder tree. (2) the delayers in a PE: Delayers
are required when v is not power of two. Delayers are imple-
mented by simple register insertion. (3) line buffer: To match
memory bandwidth with input buffer, Tci is the number of line
buffer channels required. For each layer with Tkh

× Tkw > 1,
the length of line buffer should be Tw× (Tkh

−1)+Tkw such
that pixels in sliding window Tkh

× Tkw
are preloaded before

computation. We select the parameter sizes to accommodate
all the layers that require line buffers. We collect resource
costs from different sizes of adders, delayers and line buffers
implemented by Xilinx toolchain and build model for each
component.

LUT FF DSP BRAM
[5] 137816(67.29%) 251433(57.41%) 577(68.69%) 237.5(53.26%)

our resource model 137149(67.62%) 234046(61.67%) 577(68.69%) 237(53.37%)

TABLE I: Validation of resource modeling on core modules
(external-memory-related modules excluded).

d) Validation of Resource Model: As shown in Table
I, [5] is a p-core with input/output buffers as well as other
resource-invariant modules. To show the effectiveness of our
resource model on PEs and buffers, we compare the resource
estimation with the real implementation results. Our model is
able to obtain < 3% resource estimation error.

V. OPTIMIZATION

A. Scheduling

Given CNN graph G(V,E) and separated (n,v) of c-core
and p-core, we aim to find a schedule that maximizes the
throughput of heterogeneous dual-OPU. As shown in Fig.4(a),
nodes are layers, and edges indicate the data dependencies
between layers. We first partition the graph to layer groups,
and each group includes one or multiple layers. Groups are
assigned to c-core or p-core following topological order. Since
the topology limits the chance for groups assigned to different
cores to be executed in parallel (i.e., c-core-assigned g3 and
p-core-assigned g4), we interleave layers for two input images
of the same CNN graph such that more groups will be able
to run simultaneously. In Fig.4(b), the second region from
top indicates that g2 for the first input image and g1 for the
second image are scheduled on p-core and c-core in parallel.

Due to the fact that layer characteristics and topology vary
with different CNN graphs, two parallel groups can still show
large latency difference even with the best allocation and
partitioning scheme. As a result, one core is idle during the
gap, which lowers the performance. We split some layers to
sub-layers along the dimension of input feature map height
to reduce the latency gap. For example, layer 4 in Fig.4(b) is
split to layer 4a and 4b in Fig.4(c). Layer 4a forms g3 with
layer 3, while layer 4b forms g4 with layer 5. Consequently,
latency gap between g2 and g3 is reduced. Although latency
gap between g3 and g4 increases in Fig.4(c), split is applied
as long as the total throughput is improved. Among multiple
partitioning choices with load balancing strategy, we pick the
one with highest throughput estimation as the final schedule.

Fig. 4: Layer scheduling of MobileNet v2 snippet on heteroge-
neous dual-OPU (a) MobileNet v2 snippet where layer groups
are assigned to c-core and p-core separately. (b) Execution
trace where we interleave layer groups for two input images.
(c) Execution trace where we further split layer 1 and layer
4 according to input feature map height to balance workload
between two cores and improve runtime PE efficiency.

1) Allocation-aware Partitioning: We perform layer allo-
cation followed by partitioning to find a scheme suitable for
the scheduling method in Fig.4(b). We adopt three simple
allocation schemes, including greedy allocation, layer-type
based allocation and robin-round allocation. Greedy allocation
decides the core assignment based on the latency estimation of
a layer on two cores. Each layer is allocated to the core with
less latency. Regardless of hardware configuration, layer-type
based allocation assigns regular convolution layers to c-core
and depthwise convolution layers to p-core such that we can
exploit channel parallelism and pixel parallelism, respectively.
As a work-around in case the two allocation scheme above
cannot work, robin-round allocation assigns layers to two cores
one by one in circular order. We partition the graph to layer
groups according to allocation results. Interleaving layers for
two input images, we aim to find such an allocation that the
variance of gi/gi+1 for all odd i and gi+1/gi for all even i
is minimized. Each group includes one or more layers instead

of single layer for smaller variance. Once we have a small
variance, workload can be balanced well with appropriate
PE allocation on c-core and p-core. The partitioning result
is shown in Fig.4(a) as an example, where layer 3 and layer
4 form g3.

2) Load Balancing: Partitioning in layer granularity cannot
completely eliminate latency gap between all two parallel layer
groups. For example, a regular convolution layer is scheduled
to c-core and run in parallel with a depthwise convolution
layer with same parameter sizes. The former one has far more
MAC operations than the latter, leading to large latency gap
when c-core and p-core have same MAC units. To balance
the workload, we propose a heuristic method to split layers.
Since input feature map pixels run in pipeline on either core,
we pick the height dimension to split for simplicity, since it
does not complicate the partial sum accumulation along input
channels. As shown in Alg.1, we first compute latency gap
for each parallel group pair and pick the pair with largest gap.
Once layer lsplit to split is located, we aim to find the height
h to remain in the layer to minimize the average latency of
interleaved two batch runs Tb2, as defined in Eq.9. Tb2 is the
sum of the maximal latency between any parallel groups. The
input feature map size is updated from H×W to h×W . The
rest of the layer is reallocated to the other core. The height
h′ accommodates the new Tkh

in the reallocated part. We
continue splitting layers until there is no further improvement
of Tb2.

Tb2 =
∑

i∈[1,N−1]

|Tgi − Tgi+1
|+ Tg1 + TgN (9)

Algorithm 1: Load-balance-heuristic Scheduling
Input: Layer groups {gi}
while Tb2 gets improved do

compute |Tgi − Tgj | for each neighboring (gi,gj)
pick (gp,gq) with largest latency gap
/* assume Tgp > Tgq and gp proceeds gq */

find layer to split lsplit ← gp.back()
find height to remain h ← argmin

h∈[1,lsplit.H−1]
Tb2

lsplit.H ← h, h′ ← lsplit.H − h+ lsplit.Tkh
− 1

gq .push front(lsplit.copy(H=h′))
update latency of each layer group and Tb2

end

B. Co-optimization of PE Allocation and Scheduling
Aforementioned scheduling methods aim to obtain good

throughput given arbitrary PE allocation of c-core and p-core.
Clearly, the PE allocation that better matches the heterogeneity
of target workload leads to a higher throughput. On the
other hand, given PE allocation, we need to find a specific
scheduling methods that can make full use the workload-
matching PE allocation. PE allocation and scheduling depend
on each other. We will first define the design space for PE
allocation and then discuss how to find the best PE allocation
along with scheduling for target workload.

1) Design Space for PE Allocation: Our proposed hetero-
geneous dual-core design is driven by PE array configurations
of c-core and p-core. We pre-design memory buffers to meet
bandwidth requirements of PE arrays, and define parameter
vector (sch,nc,vc,np,vp) in Table II as the design space for
PE allocation, where sch specifies the scheduling with respect
to layer allocation according to input model and hardware.
(nc,vc) and (np,vp) are PE configuration (n,v) for c-core and
p-core, respectively. For the constraint from target FPGA de-
vice, (NDSP ,NBRAM ,NLUT ,NFF) stand for upper-bounds
of DSP, BRAM, LUT, FF resources, which define the valid
design space. Another constraint is the bandwidth between
core and external memory, BWdram.

Parameters Constraints
Scheduling PE Allocation (NDSP ,NBRAM ,NLUT ,NFF)

sch (nc,vc,np,vp) BWdram

TABLE II: Design space for PE allocation. Tuning knobs are
PE array configuration of c-core/p-core and scheduling.

2) Search Algorithm: We use branch-and-bound to find
the best PE allocation that minimizes the two-batch latency
Tb2 within the resource constraints. A naive approach is to
determine if a DSP is included in our design along branches
for all DSPs by enumeration, which, however, leads to huge
search space in size of 2NDSP . This search space is redundant
in our dual-core design, since we only care about the DSP
numbers allocated to c-core and p-core. So, instead, we choose
to branch upon the c-core DSP ratio θ, as defined in Eq.10,
where α is the MAC number one DSP Macro can perform per
clock cycle.

θ =
nc · vc

α ·NDSP

(10)

To compute the lower bound given θ, we greedily allocate the
remaining DSPs to p-core until we run out of logic resources
or DSP resources. We estimate the lower bound of Tb2 by
Eq.9, where Tcompute is estimated with its lower bound of
T lb
compute defined in Eq.11. N core,l

DSP is the DSP number of the
core allocated for the layer l, which is θ · NDSP for c-core
and (1− θ) ·NDSP for p-core.

T lb
compute =

Co ·H ·W · Ci ·Kh ·Kw · 2
α ·N core,l

DSP

+ Lpost (11)

This is a lower bound of Tcompute because it does not include
the potential unmatch between layer characteristic parameters
and PE array configuration sizes, which results in higher
latency. We try different sch based on the current θ and choose
the lowest Tb2 as the lower bound for θ. Then we branch to the
two middle points of the unvisited subsets split by θ. We start
with θ = 0.5 and search for the θ with minimal lower bound
of two-batch latency. The early termination happens whenever
we reach the resource limit or we cannot have a better lower
bound.

For the best θ found in the branch-and-bound global search,
we then locally search for (nc,vc,np,vp) for best throughput.
To reduce the search space, we select limited available options

for v. Although our PE array is able to provide runtime
configurable 2 to n outputs, with fixed n× v, small v leads to
huge cost on registers for accessibility of intermediate results.
On the other hand, as the unit input length, large v can easily
result in low runtime PE efficiency. Therefore, we choose
{8, 9, 10, 12, 14, 15, 16, 18} as candidates of v. Prime numbers
are excluded since common channel numbers are not multiple
of prime numbers. We exhaustively search all valid pairs of
(n,v) for c-core and p-core based on the best θ. The (n,v) and
sch corresponding to the best throughput is our design choice.

VI. EXPERIMENT

A. Experiment Settings

a) Software: We leverage parser of TVM [13] framework
that handles input models from different CNN developing
frameworks (i.e., PyTorch, Tensorflow), and then transform
Relay IR to our customized IR, which is used to generate ISA
simar to that in [14] for dual-OPU.

b) Workload: Our test cases include MobileNet v1, Mo-
bileNet v2 and SqueezeNet v1. We denote SqueezeNet v1
as SqueezeNet for simplicity. These test cases cover typical
light-weight operators such as depthwise convolution in Mo-
bileNet v1/v2 and expand/squeeze layers with small channels
in SqueezeNet. We set batch size as 2 for evaluation on
throughput and report on average values for each CNN model.

c) Hardware: We use the notation C(n, v) for c-core with
a PE array with n PEs, which have v multipliers for each
PE. Same notation is applied to p-core, where PEs are further
coupled with line buffers. We run workload on three types
of different designs, including single-core design P(128,9),
homogeneous dual-core design P(64,9)+P(64,9) and heteroge-
neous design with one c-core and one p-core C(128,8)+P(64,9)
to show the effectiveness of heterogeneous dual-OPU. For
fair comparison, PE configurations in each experiments below
have same equivalent area. To be more specific, three example
designs have roughly same area, so are C(128,8) and P(64,9)
in the heterogeneous one. P(64,9) has half multipliers, buffer
depth and line buffer channels of P(128,9). C(128,8) has the
same buffer depth as P(64,9). Without line buffer, C(128,8)
saves LUT resource for more multipliers than P(64,9). Since
line buffer only costs LUT while multipliers primarily cost
DSP, it is difficult to compare the total resource cost. To
quantify the resource cost of PE array in c-core and p-core, we
use the equivalent LUT cost as the equivalent area cost. We
count the equivalent LUT cost of each multiplier as the LUT
cost to achieve the same functionality to one decomposed 8-bit
multiplier implemented by DSP. p-core PE array in P(64,9) and
c-core PE array C(128,8) have close equivalent LUT cost as
shown in Table III. P(64,9) has 128-channel line buffer to make
full use of double input feature map buffers for extra pixel
parallelism on the height dimension of depthwise convolution.
We use single p-core design P(128,9) as the baseline for
comparison.

Equivalent Area/LUT Cost
Line Buffer Multipliers Adders Total

P(64,9) 39868 40896 17859 98623
C(128,8) 0 72704 31749 104453

TABLE III: Equivalent LUT cost of PE structures in P(64,9)
and C(128,8). Similar total equivalent cost indicates similar
area.

d) Evaluation: We have built a cycle-accurate instruction
level latency simulator with configurable core type (c-core/p-
core), PE size (n,v) and memory bandwidth. We run the
complete compilation flow to generate ISA instructions for
the simulation. For each instruction, we adopts the latency
model discussed in Section IV-B, which takes CAS latency of
DRAM access into account for accuracy. As shown in Table
IV, the cycle-accurate instruction-level simulator shows <1%
error on cycle count compared with that on board-level FPGA
implementation. All the results in the experiment section are
measured with cycle-accurate simulation.

Cycle Count
Board-level Performance Cycle-accurate Simulator

MobileNet v1 755857(±0%) 757149(-0.2%)
MobileNet v2 637551(±0%) 642940(+0.8%)
SqueezeNet 447457(±0%) 443129(-0.9%)

TABLE IV: Validation of cycle-accurate instruction-level la-
tency simulator on P(128,9).

B. Impact of Scheduling
Table V shows the effectiveness of our scheduling method

on different (NPE , Nvector) combinations. C(128,8)+P(64,9)
and C(180,8)+P(32,9) have different NPE ratio between
two structures. C(112,9)+P(72,8) further changes Nvector.
We compare the performance among four scheduling meth-
ods. The first three only apply layer-type based allocation,
greedy allocation and round-robin allocation for layer group
partitioning. Then we measure the average throughput of
two interleaved batches. The last one, load-balance-heuristic
scheduling, further balances the parallel workload of layer
groups on two cores based on the three aforementioned
schedules. We choose the best one as our final schedule. Load-
balance-heuristic scheduling improves throughput by 10% on
average from the three basic schemes. MobileNet v1 and v2
prefer layer-type based schedule as the basic scheme, while
SqueezeNet gets more room for load balancing staring with
round-robin scheme.

PE Array Configuration Throughput(fps)
Layer-type Greedy Round-robin Load-balance-heuristic

MobileNet v1
C(128,8)+P(64,9) 267.4 267.4 269.8 304.3
C(180,8)+P(32,9) 318.9 259.3 266.6 320.2
C(112,9)+P(72,8) 234.7 238.5 235.0 269.9

MobileNet v2
C(128,8)+P(64,9) 378.4 378.4 338.5 427.6
C(180,8)+P(32,9) 392.0 304.9 214.4 384.9
C(112,9)+P(72,8) 323.7 346.6 317.0 371.1

SqueezeNet
C(128,8),P(64,9) 413.9 413.9 391.1 529.9
C(180,8)+P(32,9) 483.9 483.9 228.4 520.4
C(112,9)+P(72,8) 328.3 375.2 372.5 451.3

TABLE V: Throughput comparison of different scheduling
methods on different PE array configurations. Best throughputs
are bolded.

C. Impact of PE Array Configuration

Within the resource budget, Table VI shows the best PE
array configuration for single workload. We use single p-

PE Array Configuration DSP/PE Eff† Throughput/fps

MobileNet v1 P(128,9) 577/59% 264.6(±0%)
C(128,12)+P(8,16) 832/70% 358.4(+35.4%)

MobileNet v2 P(128,9) 577/41% 313.4(±0%)
C(160,8)+P(48,8) 832/51% 438.4(+38.8%)

SqueezeNet P(128,9) 577/62% 446.9(±0%)
C(130,8)+P(64,10) 840/75% 534.7(+19.6%)

TABLE VI: Throughput comparison between PE array con-
figurations optimized for single CNN and single-core baseline
with same area. PE Eff† is the runtime PE efficiency.

core design P(128,9) as the baseline. Generated configurations
have similar equivalent area in LUT cost on PE structure,
including line buffer, multipliers and adders. The results show
that our design flow is able to generate PE array configuration
with 31% improvement on throughput and 11% improvement
on runtime PE efficiency on average over baseline. On the
generated configurations, we find the best configuration for
MobileNet v1 holds the largest θ, indicating highest hetero-
geneity between parallel layer groups. With largest workload
difference between regular convolution and light-weight con-
volution, MobileNet v1 thus needs the largest θ among the
three workloads to balance the load. The result indicates that
more heterogeneous workload can lead to more improvement
by our heterogeneous dual-OPU.

Targeting on workload consisting of multiple CNN models,
our flow is able to find the PE array configuration with higher
average throughput than designs that are optimized for a
single CNN model specifically. We use harmonic mean of
throughput for different models as the average throughput.
Our design flow finds C(128,10)+P(32,12) as the configuration
with highest average throughput. As shown in Table VII,
C(128,10)+P(32,12) shows 7.8% improvement on average

throughput of multiple CNNs with 3.8% performance loss on
individual-best configurations for single CNN. Results show
the effectiveness of our design space exploration approach on
searching for which configuration can lead to best average
throughput.

D. Comparison with state-of-the-art processors

We compare our work with Xilinx DPUv3 [6] and other pro-
cessors from industry and academia, respectively, since they
can handle regular convolution and depthwise convolution.
Xilinx DPUv3 is implemented on Xilinx ZCU102 board with
three B4096 EU cores. In Table VIII, we include extra 48
DSPs per core in allocated DSP count for DPU on MobileNet
v2 due to the depthwise convolution, besides the basic cost for
regular convolution. DPU performance on MobileNet v1 is not
included since it has never been reported by Xilinx. Scaled to
same area, our heterogeneous dual-core processor improves
throughput/DSP by up to 85% and 15% compared with the
latest works from industry (Xilinx DPU) and academia.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we propose a heterogeneous dual-OPU to
achieve high throughput of light-weight CNNs with high
runtime PE efficiency. In dual-OPU, one core is optimized for
channel parallelism and regular convolution, and the other core
is optimized for pixel parallelism and depthwise convolution.
Moreover, the PE number of each core and the input size of
each PE can be tuned automatically with our design flow given
target CNNs and FPGA device. Meanwhile, we concurrently
run layers for different input images of the same CNN and
schedule with layer split to optimize the overall runtime PE
efficiency. The experiment shows that heterogeneous dual-
OPU can improve throughput and runtime PE efficiency of
homogeneous baseline with the same area by 31% and 11%
for single CNN. For a workload of multiple CNNs, compared

PE Array Configuration
C(128,12)+P(8,16) C(160,8)+P(48,8) C(130,8)+P(64,10) C(128,10)+P(32,12)

Optimized for individual CNN Optimized for average throughput of multiple CNNs
MobileNet v1 358.4(+9.9%)† 249.3(-23.6%) 314.6(-3.6%) 326.2(±0%)
MobileNet v2 329.3(-24.8%) 438.4(+0.2%)† 428.1(-2.2%) 437.8(±0%)
SqueezeNet 527.9(+0.2%) 436.9(-17.0%) 534.7(+1.5%)† 526.6(±0%)
Average∗ 388.5(-6.1%) 349.6(-15.5%) 406.2(-1.9%) 413.9(±0%)†

TABLE VII: Throughput comparison of PE array configurations on single-CNN workload and multiple-CNN workload.
Average∗ stands for the average throughput of multiple-CNN workload. † indicates the configuration found by our search
algorithm. Best throughput for each workload is bolded.

CNN Model MobileNet v1 MobileNet v2 SqueezeNet
Design [15] [5] Ours Xilinx DPU [6] [5] Ours Xilinx DPU [6] [5] Ours
Device Stratix-V XCK325T XCK325T ZCU102 XCK325T XCK325T ZCU102 XCK325T XCK325T
PE Precision Int16 Int8 Int8 Int8 Int8 Int8 Int8 Int8 Int8
Allocated DSP 1278 704 832 2070 704 832 1942 704 832
Frequency(MHz) 133 200 200 287 200 200 333 200 200
Throughput(fps) 237.1 264.6 326.2 587.2 325.7 437.8 1048 420.9 526.6
Throughput/DSP∗ 0.11 0.21 0.23 0.08 0.14 0.16 0.20 0.19 0.22(GOPs/DSPslice)

TABLE VIII: Comparison between our work and existing works. Throughput/DSP∗ is normalized to 8-bit operations.

with state-of-the-art processors, our design can improve the
throughput by 11% on average than the latest works from
industry and academia scaled to the same area.

REFERENCES

[1] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[2] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510–4520, 2018.

[3] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[4] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, pages 1–12, 2017.

[5] Yunxuan Yu, Tiandong Zhao, Kun Wang, and Lei He. Light-OPU:
An fpga-based overlay processor for lightweight convolutional neural
networks. In The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 122–132, 2020.

[6] DPU for Convolutional Neural Network: https://www.xilinx.com/
support/documentation/ip documentation/dpu. 2020.

[7] Di Wu, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li, Lingzhi Sui,
Dongliang Xie, and Yi Shan. A high-performance cnn processor based
on fpga for mobilenets. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), pages 136–143. IEEE,
2019.

[8] Xiaofan Zhang, Hanchen Ye, Junsong Wang, Yonghua Lin, Jinjun Xiong,
Wen-mei Hwu, and Deming Chen. Dnnexplorer: a framework for
modeling and exploring a novel paradigm of fpga-based dnn accelerator.
In Proceedings of the 39th International Conference on Computer-Aided
Design, pages 1–9, 2020.

[9] Xuechao Wei, Yun Liang, Xiuhong Li, Cody Hao Yu, Peng Zhang, and
Jason Cong. Tgpa: tile-grained pipeline architecture for low latency cnn
inference. In Proceedings of the International Conference on Computer-
Aided Design, pages 1–8, 2018.

[10] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn
accelerator efficiency through resource partitioning. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA),
pages 535–547. IEEE, 2017.

[11] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli
Wang. A high performance fpga-based accelerator for large-scale
convolutional neural networks. In 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–9. IEEE,
2016.

[12] Jiang Su, Julian Faraone, Junyi Liu, Yiren Zhao, David B Thomas,
Philip HW Leong, and Peter YK Cheung. Redundancy-reduced mo-
bilenet acceleration on reconfigurable logic for imagenet classification.
In International Symposium on Applied Reconfigurable Computing,
pages 16–28. Springer, 2018.

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. TVM: An automated end-to-end optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 578–594, 2018.

[14] Yunxuan Yu, Chen Wu, Tiandong Zhao, Kun Wang, and Lei He. Opu:
An fpga-based overlay processor for convolutional neural networks.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
28(1):35–47, 2019.

[15] Lin Bai, Yiming Zhao, and Xinming Huang. A cnn accelerator on fpga
using depthwise separable convolution. IEEE Transactions on Circuits
and Systems II: Express Briefs, 65(10):1415–1419, 2018.

https://www.xilinx.com/support/documentation/ip_documentation/dpu
https://www.xilinx.com/support/documentation/ip_documentation/dpu

	I Introduction
	II Motivation
	III Heterogeneous Dual-core Architecture
	III-A Proposed Architecture
	III-B PE Array Configuration
	III-C Design Flow

	IV Modeling
	IV-A Tile Sizing
	IV-B Latency Modeling
	IV-C Area Modeling

	V Optimization
	V-A Scheduling
	V-A1 Allocation-aware Partitioning
	V-A2 Load Balancing

	V-B Co-optimization of PE Allocation and Scheduling
	V-B1 Design Space for PE Allocation
	V-B2 Search Algorithm

	VI Experiment
	VI-A Experiment Settings
	VI-B Impact of Scheduling
	VI-C Impact of PE Array Configuration
	VI-D Comparison with state-of-the-art processors

	VII Conclusions and Discussions
	References

