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ABSTRACT

Compression technologies for deep neural networks (DNNs), such as weight

quantization, have been widely investigated to reduce the model size so that

they can be implemented on hardware with strict resource restrictions. How-

ever, one major disadvantage of model compression is accuracy degradation.

To deal with this problem effectively, we propose a new compressed net-

work inference scheme with a high accuracy but slower DNN coupled with

its highly compressed DNN version that typically delivers much faster infer-

ence speed but with a lower accuracy. During the inference, we determine

the confidence of the prediction of the compressed DNN, and infer the orig-

inal neural network for the inputs that are considered not confident by the

compressed DNN. The proposed design uses a balanced number of resources

available on the hardware and can deliver overall accuracy close to the high

accuracy model, but with the inference speed closer to the compressed DNN.

We demonstrate our design on two image classification tasks: CIFAR-10 and

ImageNet. Our experiments show that our design can recover up to 94%

of accuracy drop caused by extreme network compression, with more than

90% increase in throughput compared to just using the original DNN. This

is more than 17% extra accuracy recovery and 36% extra speedup compared

to the previous work with a similar concept on VGG-16. This is the first

work that considers using a highly compressed DNN along with the original

DNN in parallel to achieve high accuracy and speed at the same time, while

maintaining the resource balance by using two different main computation

sources on the field programmable gate array (FPGA).
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CHAPTER 1

INTRODUCTION

Machine learning is one of the most popular fields in the current era. It is

used in various areas, such as speech recognition, face recognition, medical

diagnosis, etc. However, the serious problem is that the neural networks for

machine learning applications [1, 2] are becoming too large and slow as they

get more complicated and powerful. This problem is further exacerbated

when neural networks are used for edge devices with a small chip for real-

time systems. As a result, researchers have proposed two major solutions to

tackle this problem.

The first is to use specialized hardware for neural network inference. One

popular device type is the graphics processing unit (GPU), which is widely

adopted for accelerating neural network computations. In this study, on the

other hand, we will focus on using field programmable gate array (FPGA)

devices as specialized hardware. There are many benefits of using FPGAs for

neural network computations, but the most important aspect is that it can

provide a more specialized and customized hardware that is designed solely

for a specific application. Developers can even design a customized hardware

for the application that is difficult to optimize with GPUs. This is possible

due to the fundamental design of FPGAs, where developers can allocate

any resources to design any circuits they want as long as they honor the

total resource limit available on the FPGA, and this feature of FPGAs often

provides an efficient way to implement or evaluate new ideas and designs.

The second is to reduce the size of neural networks so that their inference

latencies are low enough to handle real-time inputs [3, 4, 5, 6, 7, 8]. There

are numerous methods to reduce the size of neural networks for different

platforms, among which are CPUs, GPUs, and FPGAs. Of these methods,

only FPGAs offer the particular benefit of full customization compared to the

other two, so they have been studied extensively with a variety of methods

to optimize neural networks. Quantization of networks is the most popular
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and effective method to reduce the size and inference latency at the same

time [9] for FPGAs, as developers can also minimize the data size to reduce

the usage of both memory and computation resources required. In particu-

lar, extremely low bit-width networks on FPGAs, such as binary or ternary

neural networks, have been studied recently [10, 11, 12, 13, 14, 15, 16, 17].

These networks require significantly fewer resources compared to the regular

quantized networks. However, this benefit is not free, of course. One major

disadvantage of these low bit-width networks is that they tend to have even

more accuracy drop than regular quantized neural networks, as a result of

further reduced precision. Therefore, it is more difficult to use binary or

ternary neural networks as they are, especially in fields such as surveillance

or medical diagnosis systems, where the cost of that accuracy drop is much

larger than the inference speed improvement.

This study aims to accelerate neural network inference by using an ex-

tremely low bit-width network implementation on FPGAs, while maintain-

ing the accuracy of the original network by using a relatively high precision

network concurrently, without having to develop a single neural network ac-

celerator that meets both accuracy and inference speed requirements. This

design can also solve the resource bottleneck problem that arises when devel-

oping a neural network accelerator on FPGAs. Ideal implementation of this

concept can maximize the resource utilization of all computation resources

on FPGA and increase the throughput beyond the number of multipliers

available.

In summary, we propose a system that consists of two distinct networks:

one extremely low bit-width network that is focused on speed, and another

moderately quantized network that is focused on accuracy. In this thesis, the

extremely low bit-width network will be called a compressed network, and

the moderately quantized network will be called an original network. These

two networks work in a way that can exploit advantages in both accuracy

and speed at the same time. Our main contributions are as follows:

• We design TwinDNN accelerators that are designed and optimized to

exploit both low and high bit-width networks, with pipelined and paral-

lelized computation engines that balance the utilization of both digital

signal processing blocks (DSPs) and look-up tables (LUTs).

• We build a software solution that allows the two accelerators to be run
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in a hierarchical fashion with a real-time parallel inference scheme that

maximizes the throughput of the design.

• For ImageNet and ResNet-18, our TwinDNN solution can deliver up

to 1.9× speedup with only 3% extra DSPs compared to the solution

when only a single original neural network is used, and up to 95% of

the accuracy loss is recovered during hierarchical inference compared

to the solution when only a single compressed network is used.

In Chapter 2, some background information and previous studies related

to this work will be introduced. In Chapter 3, the design flow of our im-

plementation and experiment will be explained. In Chapter 4, the results of

our experiments will be described. Chapter 5 will conclude the thesis with

discussion of future explorations.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Extremely Low Bit-Width Neural Networks

Recent researches have succeeded in binarizing or ternarizing parts of layers

in neural networks [10, 11, 12, 13, 14]. Many experiments claim that these

compression methods are very effective in terms of latency reduction with

some accuracy drops. As one would expect, as the number of bits used to

represent either weights or feature maps decreases, the accuracy drops more

significantly. Because the goal of our study is to compensate for the accuracy

loss caused by compression, we can forgive moderate accuracy loss, as long

as the benefit of using those networks is significant. First, we define the

quantized weights with extremely low precision as follows:

wb =

{
−wscale if b = 0

+wscale if b = 1

wt =


−wscale if t = −1

+wscale if t = 1

0 if t = 0

(2.1)

Equation 2.1 shows how these extremely low bit-width weights are used

in computation. The term b is a 1-bit value that can be either 0 or 1, and

t is a 2-bit value that can take either -1, 0, or 1. The key idea here is

that wscale value is the same across the weights. The bits are only used in

sign representations. In binary, as an example, a single bit of 0 represents

negative and 1 represents positive, and this logic can be implemented in

a simple condition, or a multiplexer in FPGAs. The wscale value is stored

separately, and the same wscale value is multiplied over all binary weights to

get the actual weight values. However, we do not need to perform all of these

multiplications separately. Considering b1 = 0 and b2 = 1 for the binary case,
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where a stands for activation, or feature map, then we can express a very

simple neural network computation as follows:

anext = wb1 × a1 + wb2 × a2

= −wscale × a1 + wscale × a2

= wscale × (−a1 + a2)

(2.2)

This shows how binary and ternary weight computations can be handled

with a single multiplication. Reducing the number of actual multiplications

reduces the need of DSPs, and indeed makes the overall computation faster.

For ternary, the only difference is that two bits now represent positive, nega-

tive, and zero. Therefore, the main benefit of using extremely low bit-width

neural networks is more effective and balanced resource utilization, specifi-

cally on FPGAs. For a typical DNN implementation on FPGAs, DSP is the

one that directly determines the performance, and so is the limiting factor of

the performance. Therefore, typical DNN implementations on FPGAs utilize

nearly all DSPs available, and other resources, including LUTs, are left un-

derutilized. Extremely low bit-width network, on the other hand, only uses

a minimal number of DSPs and mainly utilizes LUTs as a main computa-

tion source instead of DSPs. In this study, we instantiate both the original

DNN and the extremely low bit-width DNN (compressed DNN) at the same

time, in a way that the original DNN uses most of the DSPs available on the

board, and the compressed DNN uses extra LUTs that were not used by the

original DNN. This method allows us to utilize both DSP and LUT resources

as much as possible to ultimately speed up the overall inference.

2.2 Multiple Neural Networks Architecture

There have already been researches on this concept of hierarchical neural

network design, where compressed and original networks are both used in

neural network inference [18, 19, 20]. They have succeeded in achieving

balanced accuracy and latency results by using different techniques, such as

low-power MCU [18], or FPGA [19, 20], to realize the concept. Although

this work also mainly uses the concept of hierarchical neural network design,

there are several major differences from previous studies.

Previous studies have focused only on the accuracy and inference speed of
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the design, and they are indeed the most important factors when evaluating

neural network accelerators. However, these numbers cannot really represent

the best performance if the design cannot utilize all the resources that are

available. For FPGAs specifically, most accelerator designs are focused on

utilizing DSPs, which are the main computation units on FPGAs, but not so

much on LUTs, which can also be used as computation units in special cases,

such as binary and ternary networks. However, in this study, both DSP and

LUT utilizations are maximized in a flexible and efficient way by implement-

ing two different networks with different main computation units. This is an

aspect that CPU-based solutions [18] or even previous FPGA-based solutions

[19, 20] did not offer. Previous FPGA-based solutions either implemented

only one of the networks on FPGAs [20], which resulted in LUT being a

bottleneck, or did not use extremely low bit-width networks [19], which re-

sulted in DSP being a bottleneck. Our work represents a novel direction

in hardware accelerator design, which can potentially achieve the maximum

throughput beyond the number of DSPs and break the traditionally thought

limitation of FPGA accelerators.

Furthermore, our hardware and software design provides a true real-time

parallel inference scheme, which allows its users to exploit all resources for

the entire time. Such customization of accelerators and their concurrent

execution are big advantages of FPGAs, and this is fundamentally different

from the sequential approaches that previous studies [18, 19, 20] took, which

could make one network idle when the other network is running.

Finally, our work also applies more advanced training methods [14, 13, 11,

12], which allow the network to be compressed down to binary and ternary

networks with a reasonable accuracy. These methods significantly improve

the overall accuracy and speed of the design.
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CHAPTER 3

DESIGN FLOW AND IMPLEMENTATION

Our implementation flow consists of three parts: creating the original network

and compressed network models, implementing high-level-synthesis (HLS)

accelerator intellectual properties (IPs) for those networks, and creating a

software system for TwinDNN inference.

3.1 Model Generation

Creating the original network starts with a typical floating-point training,

which can also be completed by using a pretrained model available. For

training, we used a Caffe framework [21], which was also customized to be

used by other works (e.g., [14]). To enhance the accuracy, we use a variety

of well-known techniques, such as learning rate decay and batch normaliza-

tion. After the floating point model finishes training, network weights are

quantized to designated bit-widths, which are 16-bit and 8-bit in our exper-

iments. These moderately quantized networks are called original networks

in our study, and they typically maintain the accuracy of the floating point

network. Quantization scheme is determined by the accuracy drop and dis-

tribution of weights. First, we try a uniform quantization scheme, where we

apply the same integer and decimal bit widths for all layer weights. We always

use uniform quantization whenever possible because nonuniform quantization

requires extra logic and computation required for bit shifting in hardware.

If the accuracy drop is significant, we then try a nonuniform quantization

scheme depending on the distribution of weights and activations. There can

still exist a slight accuracy drop after non-uniform quantization, and there

are a few ways presented in [22, 23] to recover this accuracy drop, which can

be implemented in the future.

Compressed network model, on the other hand, cannot be generated with-
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out a training scheme that is specifically designed for binary and ternary

neural networks. For the binary neural network, which was used in our

CIFAR-10 experiment, we used the same model in [13], which was trained

using the method proposed by [11]. This model showed approximately 5%

accuracy drop compared to the floating point network model.

For the ternary neural network, which was used in our ImageNet experi-

ments, we trained the model by using the framework explained in [14]. Our

trained model, however, could not reach the exact accuracy reported in [14],

and this is due to the additional fine-tuning and data augmentations that

they performed. Our trained model also showed approximately 5%-8% accu-

racy drop compared to the floating point network model, which seems valid

for the purpose of this work.

3.2 Accelerator Development

Xilinx’s Vivado high-level-synthesis tool was used to generate IPs for both

original and compressed networks. Their tools allow developers to apply

various optimizations, such as loop pipelining and array partitioning, more

easily on their FPGAs. We targeted Ultra96 and ZCU102 FPGAs, which

are both Arm-based Xilinx Zynq UltraScale+ MPSoC development boards.

ZCU102 has more overall resources than Ultra96 and is used for MobileNetV2

experiments only.

Our design process was as follows. First, we design an accelerator for the

original network without considering the compressed network, except for the

few DSPs that the compressed network may use. This is the same as the de-

velopment process of a normal neural network accelerator. Here, we can even

use neural network IPs that are already optimized for the specific FPGA in

use, as long as it has some leftover LUTs, which is typically the case because

accelerator designs on an FPGA are mostly limited by the number of DSPs.

Then, we design an accelerator for the compressed network with leftover

LUTs. In our experiments, more than half of LUTs remained unused by the

original network, which left a significant amount of resources available for

the compressed network design. Thus, we were able to design a very reason-

ably optimized compressed network accelerator with these leftover resources,

which does not require additional balancing for these two accelerators.

8



Figure 3.1: Basic accelerator architecture
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Two accelerators are designed to take Caffe [21] network model definition

as an input. This is to ensure that our accelerators can be used with any net-

work configurations. Specifically, for each layer, accelerators will be aware of

whether the layer is convolutional or fully connected, the convolutional layer

parameters such as kernel size and stride, and whether to perform additional

computations such as pooling. Therefore, the original and compressed net-

work accelerators can work individually with different network definitions.

This feature of our accelerators provides an extra flexibility in network con-

figurations, so allows users to utilize different networks without additional

design overhead. Currently, our accelerators are only generalized for neu-

ral networks with ImageNet-based image classification tasks due to resource

constraints, but we plan to further generalize the input and output layer as

well so that it can work with any type of neural networks.

Figure 3.1 shows the overall architecture of accelerators. For convolutional

and fully connected layer computations, the main technique we used was to

have multiple pipelined computation engines that compute partial multiply-

accumulate (MAC) operations. It will perform element-wise multiplication of

weights and input features, and then compute the sum of the products using

an adder tree. These computation engines are pipelined so that they can

produce a MAC of 16 weights and 16 features every single cycle. For a 16-bit

network, every orange node uses a single DSP each, which takes each input

feature (A) and weight (W ) as operands and computes their product. As a

further optimization for DSPs, for an 8-bit network, because each DSP block

on Ultra96 FPGA supports up to 25× 18 bit multiplication, we were able to

allocate two 8 × 8 multiplications on one DSP, with a method proposed by

[24]. Finally, for binary and ternary networks, we modified our computation

engines to utilize multiplexers (MUX) for multiplication computations and

a single DSP for the final scaling. For binary networks, wb is used as a 1-bit

selector to determine the output between −A and +A. For ternary networks,

wt is used as a 2-bit selector to determine the output between −A, 0, and

+A. Then, the sum of those outputs will be computed using the adder tree,

same as before. At the end of all computations, we will multiply wscale values

from Equation 2.1.

Typical neural network models also include additional layers such as rec-

tified linear unit (ReLU), pooling, and addition layers. These layers are

appended to the computation engine outputs and receive selector bits to de-
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termine whether these additional computations are needed. As these layers

only take a small portion of overall inference time compared to convolutional

and fully connected layers, their computations are not parallelized. Instead,

they are pipelined so that we can maximize the throughput of these compu-

tations while allocating more resources to computation-heavy layers.

Another optimization method we used is to utilize on-chip memory to store

partial weights, features, and intermediate results. For 16-bit networks, for

example, we have a 16 × 16 weight buffer, which fetches only the weights

needed for current computation. Convolution computation was redesigned

so that every weight needs to be fetched only once. Partial input and output

features are also stored in on-chip block memory. Both input and output

features are divided into blocks with 16 channels, which are stored in on-chip

block memory at a time. Utilization of on-chip memory allows the majority of

global memory accesses to become a local memory access instead. Without

this optimization, global memory access is likely to become a bottleneck

of accelerator performance, as it is many times slower than on-chip block

memory and flip-flops.

The last optimization to discuss is to maximize the utilization of bus width.

Although most weights and features that are loaded and stored to DRAM

have a bit-width of less than 16, it does not mean that the data need to be

transferred at that bit-width. Most FPGAs have much larger DRAM bus

bit-width than 16-bit. In order to utilize the memory bus as much as possible,

we reorder parameters and features into 256-bit blocks that can be loaded

or stored on DRAM as a single element. Furthermore, the parameters and

features are organized in a way that would allow the accelerator to invoke

burst contiguous memory reads to maximize the bandwidth. It is possible to

have bigger blocks, such as 512-bit blocks, but after this point the memory

interfaces use a lot more LUTs, which are supposed to be used to increase

the speed of the low bit-width network.

3.3 Confidence Score for Decision Making

In neural network image classifications, output of the final layer is a list of

values for each class, and the class with the highest final layer output is

typically chosen as a prediction. Here, each value represents how possible is
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Figure 3.2: Handwritten digit recognition examples for confidence score

that image in the class, and based on these values, we will define what we

call a confidence score of an inference. Confidence is defined as the difference

between the two largest output values of the neural network and is used to

determine if the prediction of the compressed network is reliable enough to

be used as an actual output without verification from the original network.

Simply speaking, the confidence score of a compressed network output will

be used to determine whether to infer the original network.

Here is an explanation of the logic behind utilizing the confidence score

during inference. We present Figure 3.2 as an example. Let us define Out(x)

as final output value for label x, and the top two output values and confidence

score are shown. For the left image, where Out(9) = 21.7075 and Out(4) =

1.0118, we consider it as confident, because the network is almost sure that

the digit is 9. However, for the right image, where Out(5) = 5.9120 and

Out(3) = 5.5383, we consider it not confident, because even though 5 has

the highest possibility, 3 seems to have a reasonably high possibility as well.

Especially when we are using an extremely low bit-width network, such small

difference could have resulted from the noise of computing in low precision.

Therefore, instead of just finding a label with maximum possibility, our

TwinDNN system will now find two labels with the first and second maximum

possibilities and compute the difference between those two possibilities. If

the difference is large (i.e., beyond a threshold determined empirically), the

compressed network prediction is considered confident and will be used as

a final output. If the difference is small, however, the compressed network

prediction is considered not confident, and in this case, the image will need

additional verification from the original network that is designed to have
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Figure 3.3: Graphical representation of hierarchical architecture

maximum accuracy.

3.4 Software Development

The accelerators are invoked from the software running inside the processing

system of the FPGA. Because the two accelerators are both instantiated in a

single design, they support concurrent execution. Figure 3.3 shows a graph-

ical representation and Algorithm 1 describes a behavioral pseudocode of

TwinDNN’s software system, which is designed to fully utilize both networks.

First, an image from the source will be processed by whichever network be-

comes available first. Note that for the image to be processed by the original

network directly, the queue in Figure 3.3 should be empty, as it takes priority.

If the original network was used for the initial inference, its prediction, or the

index with the maximum output value (ArgMax in Algorithm 1), will always

be used as the final prediction, because the original network has a higher

accuracy. If the compressed network was used for the initial inference, the

software will compute two maximums and the index of the first maximum

(Max1, Max2, and ArgMax1 in Algorithm 1, respectively) of the compressed
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Algorithm 1: Behavioral pseudocode of TwinDNN’s software sys-
tem
Input : Images[], Threshold
Output: Labels[]
Configure CompressedNetwork, OriginalNetwork, and Queue
Thread Compressed Network

while Images is not empty do
CurrentImage ← Images.next()
Output ← CompressedNetwork(CurrentImage)
Max1, Max2, ArgMax1 ← GetTwoMax(Output)
Confidence ← Max1 − Max2
if Confidence > Threshold then

Labels.add(ArgMax1)
else

Queue.push(CurrentImage)
end

end

Thread Original Network
while Images is not empty do

if Queue is not empty then
CurrentImage ← Queue.pop()

else
CurrentImage ← Images.next()

end
Output ← OriginalNetwork(CurrentImage)
Max, ArgMax ← GetMax(Output)
Labels.add(ArgMax)

end

Figure 3.4: Worst case inference diagrams for serial and parallel inference
schemes
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network output. Then, the confidence score is calculated by subtracting those

two maximums to determine whether the image needs additional inference

on the original network. If confidence is above the threshold, its prediction,

or the index of the first maximum, will be used as the final prediction, but if

the confidence is below the threshold, the input image will go into the queue

for the original network inference, which will be processed later by the origi-

nal network. This way, we can ensure that both accelerators are running for

the entire time until all images are processed.

This dynamic parallel inference scheme provides one of the main differ-

ences between this work and [18, 19], in terms of the worst case inference

time. Figure 3.4 is presented to support this claim. In this diagram, red im-

ages represent compressed network inferences, which are all considered not

confident in the worst case, green images represent original network infer-

ence, and blue arrows represent the images waiting in the queue. For a serial

network inference system, the worst case total inference time for an image

set is the sum of the time taken by the compressed network and the time

taken by the original network, which means in the worst case it will perform

slower than using the original network alone. However, our FPGA parallel

inference scheme drives both original and compressed network accelerators

simultaneously. Note that the original network starts with Image 2. This is

because right after the compressed network starts processing Image 1, Image

2 will look for an idle accelerator, which will always be the original network as

Image 1 has not completed processing yet so the queue is empty. This allows

both networks to run in parallel for the entire time until the input source is

depleted, so the original network will process all the images without delay

because there are more and more images coming from the compressed net-

work constantly. This ensures that the worst case total inference time for

an image set is just the time taken by the original network alone, ignoring

the queue managing time, which is negligible compared to the time taken for

neural networks. Therefore, our parallel inference scheme ensures that the

system will not perform slower than using the original network alone, even

in the worst case.

Threshold value is determined from experiment. Threshold value of 0

means all compressed network predictions will be considered confident, and

none of the inputs will go into the queue. This results in both networks

running in parallel independently, as the original network will also get the
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input from source. Higher threshold value means that more images go into

the original network compared to the low threshold value case, thus it results

in higher accuracy but longer inference time. Note that when the threshold

value goes above a certain point, the queue will contain some images even

after all images from the source are depleted. From that moment, only

the original network will be running, and this reduced parallelism impacts

the inference speed significantly. Therefore, it is recommended to choose a

threshold value that will keep the queue small. Threshold value of infinity,

in fact, is the same as just running the original network alone, because all

compressed network outputs will be considered not confident and require

original network inference. We test a variety of threshold values to see which

one gives the most balanced result between accuracy and speed, and will use

it to obtain the final result.
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CHAPTER 4

EXPERIMENT

We tested our design on two different datasets—CIFAR-10 and ImageNet—

and three different networks—ConvNet, ResNet-18, and MobileNetV2. Con-

vNet and ResNet-18 were used for CIFAR-10 dataset, and ResNet-18 and

MobileNetV2 were used for ImageNet dataset. Multiple datasets and net-

works are used to evaluate the proposed solutions more thoroughly with

different image formats and network architectures. We also tried different

combinations of different bit-widths to evaluate the generalization of the

method, to prove we can use flexible bit-width combinations that can match

the designated amount of resources available.

Throughout our experiment, we will define the baseline network as the

moderately compressed network (i.e. original network as used throughout

this thesis), instead of the floating point network. This also means when

we are comparing to the baseline, we are comparing to the configuration

where the original network is used alone. There are three reasons behind this

choice. First, moderately quantized networks typically maintain the accuracy

of floating point networks, with less than 0.1% accuracy difference. Second,

we want to show the accuracy recovery of our TwinDNN structure itself,

independent of the base network we use. This means even if our moderately

quantized network provides lower accuracy than the floating point network,

resulting in relatively lower final accuracy, we do not want to conclude that

our TwinDNN structure is ineffective, as long as the final accuracy is close to

the moderately quantized network accuracy. Finally, if we use floating point

network as a baseline, speedup would be too high and impractical because

floating point networks are too slow and are rarely implemented on FPGAs.
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Table 4.1: Experimental results and comparison with previous work

[20] TwinDNN CascadeCNN[19] TwinDNN

Dataset CIFAR-10 CIFAR-10 ImageNet ImageNet

Platform ZC706 Ultra96 ZC706 Ultra96 ZCU102

Frequency (MHz) N/A 100 150 150 200

Number of DSPs* N/A 256/4 900/900 900/900 274/8 274/8 536/64
Total number of DSPs N/A 260 1800 1800 282 282 600

Number of LUTs* N/A 22110/25074 N/A N/A 24114/25416 30970/25416 60424/27507
Total number of LUTs N/A 63727 N/A N/A 56922 63610 119851

Original Network‖ Model C ResNet-18 AlexNet VGG-16 ResNet-18 ResNet-18 MobileNetV2
(Precision) (32-bit) (16-bit) (7-bit) (7-bit) (16-bit) (8-bit) (32-bit)

Compressed Network FINN[17] ConvNet[13] AlexNet VGG-16 ResNet-18 ResNet-18 MobileNetV2
(Precision) (Binary) (Binary) (4-bit) (4-bit) (Ternary) (Ternary) (Ternary)

Threshold N/A 1.5 N/A N/A 0.7 1.0 0.3

Accuracy (%)† 87.0 (O3.7) 92.8 (O1.3) N/A (O3.75)§ N/A (O3.25)§ 69.2 (O0.3) 67.1 (O0.8) 68.5 (O1.3)

Accuracy Recovery (%) 69.7 71.1 79.9§ 77.4§ 94.9 81.4 82.9

Inference Speed (FPS)‡ 11.98 (3.87×) 12.90 (5.0×) N/A (1.48×) N/A (1.55×) 6.25 (1.91×) 6.54 (1.66×) 7.14 (1.65×)

* Represented as resources used by original network/resources used by compressed network
‖ Baseline network
† Represented as Raw accuracy (Accuracy drop compared to baselines)
‡ Represented as Raw speed (Speedup compared to baselines)
§ Based on top-5 accuracy
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4.1 CIFAR-10

We first tested our design on the CIFAR-10 dataset. The experiment was

performed with a 16-bit ResNet-18-based network created by us, and a binary

ConvNet-based network created by [13], on Ultra96 development board, with

a frequency of 100 MHz. Table 4.1 shows the experimental results. In terms

of resource utilization, as expected, 16-bit network mainly uses DSPs. A total

of 256 DSPs were used for 16×16 computation engines. The binary network,

on the other hand, only uses 4 DSPs, which are used for wscale multiplica-

tions. It uses more LUTs than the 16-bit network since it mainly performs

computation on LUTs. Note that the entire design uses more LUTs than the

sum of the two accelerators. This is because extra LUTs are used for inter-

connects and memory interfaces. Although LUT usage for individual models

may seem small, we are actually utilizing more than 90% of LUT resources

available for the TwinDNN solution. In terms of performance, a combination

of 16-bit and binary network gives more than 71% accuracy recovery, with

5× speedup compared to the baseline 16-bit network. Accuracy recovery

is the fraction of the compressed network accuracy drop recovered by the

TwinDNN architecture, mathematically defined as 1 − AccuracyDropcombined

AccuracyDropcompressed

(%).

Table 4.1 also provides a comparison with a previous work on CIFAR-10

[20]. Model C is a customized neural network with the highest accuracy

among the three networks that [20] presents. Here, our TwinDNN solution

gives 5.8% higher final accuracy with 1.4% extra accuracy recovery compared

to their highest accuracy configuration. We also have 7% higher throughput

and 113% extra speedup compared to each baseline, even though [20] uses

a much larger FPGA ZC706, which has 900 DSPs. This proves that our

TwinDNN solution is highly optimized and much more effective than previous

studies through parallel execution scheme and efficient resource utilization.

4.2 ImageNet

Next, we tested our design on a much bigger dataset, ImageNet. This

time the experiment was performed with two different networks on differ-

ent FPGA configurations: ResNet-18 on Ultra96 with 150 MHz frequency
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and MobileNetV2 on ZCU102 with 200 MHz frequency. For this experiment,

a larger FPGA, which is ZCU102, was used along with Ultra96 to show that

this design works on a much more scaled environment.

We use 16-bit, 8-bit, and ternary versions of ResNet-18, and 32-bit and

ternary versions of MobileNetV2. Ternary networks were used as compressed

networks, and other networks were used as original networks. Table 4.1

shows that similar to our CIFAR-10 experiment, ternary networks use many

fewer DSPs than other fixed-point networks. Additionally, for ResNet-18,

8-bit network uses more LUTs than 16-bit network, and this is because 8-

bit network uses additional logic for bit shifting and introduces additional

parallelism by using 1 DSP for 2 multiplications. In general, we can combine

two differently quantized accelerators in parallel to increase the throughput

with only a small number of extra DSPs compared to the original network

accelerators.

In terms of performance, our result suggests that our software—with the

original network and using confidence—can identify the majority of inputs

that are likely to be incorrect with the compressed network. For ResNet-18

16-bit and ternary configuration, with a threshold value of 0.7, our design

shows almost 95% accuracy recovery with more than 1.91× speedup com-

pared to the baseline. For 8-bit and ternary configuration, with a thresh-

old value of 1.0, our design shows more than 81% accuracy recovery with

1.66× speedup compared to the baseline. Finally, for MobileNetV2 32-bit

and ternary configuration, with a threshold value of 0.3, our design shows

82.9% accuracy recovery with 1.65× speedup.

Table 4.1 also provides a comparison with CascadeCNN [19] on ImageNet

with AlexNet and VGG-16. Exact final accuracy and inference speed are not

available, but the accuracy drop and speedup compared to their 7-bit base-

line are shown. Accuracy recoveries for these experiments were calculated

manually based on their other results, assuming their 7-bit accuracy is the

same as their 16-bit accuracy. The result shows that our TwinDNN solution

on 16-bit and ternary ResNet-18 provides 17.5% extra accuracy recovery and

36% extra speedup compared to [19]. In addition, note that they used a

larger FPGA ZC706, and utilized all available 900 DSPs for both configura-

tions. A total DSP usage of 1800 represents the resources consecutively used

by both accelerators. This means that DSPs are still the bottleneck of their

design, even for their lowest bit-width configuration. They also did an FPGA
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reconfiguration to switch between networks, instead of having both networks

on one design. To minimize the time taken by FPGA reconfiguration, they

had to batch the images, which may result in non-real-time inference results,

as the images have to wait for FPGA reconfiguration for high accuracy net-

work inference. However, because our design implements both networks in

parallel, we can ensure that the images are always processed in real-time.

The overall result indicates that our parallel inference scheme with hierar-

chical network structure works well for accuracy recovery given two optimized

neural network accelerators, with a fairly high speedup against the baseline.

Our definition of confidence also proves to be a useful metric for verifying

neural network output.
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CHAPTER 5

CONCLUSION

In this thesis, we proposed a TwinDNN system with a high-accuracy net-

work and a low-latency network using a hierarchical inference logic that will

infer high-accuracy network when the prediction of low-latency network is

not considered confident. This design becomes especially more effective on

the FPGAs where DSP resources are limited compared to LUT resources, as

the compressed network latency will mainly depend on the number of LUTs.

The ultimate goal of this design would be achieving a true maximum resource

utilization of FPGAs, which means utilizing all DSPs and LUTs for the entire

time. There are several aspects that make this study stand out. The first

aspect is its high flexibility. Although in this project we mostly used ResNet-

18 and MobileNetV2, we can put any two ImageNet-based neural networks

into our current TwinDNN system without any extra design effort, or we

can even put other neural networks through a proper hardware accelerator

design process. There are already many neural network accelerators that are

built for different focuses: accuracy and speed. We only need to find two

accelerators that would fit on the target FPGA, and apply the same logic

presented in this thesis for experiments. The second is better concentration.

Accelerator development becomes much more difficult when developers need

to care about multiple aspects at the same time. However, this work can

potentially allow one group of developers to solely focus on increasing accu-

racy, and the other group of developers to solely focus on reducing latency.

It will ultimately reduce the time and effort it takes to build a high-quality

accelerator that achieves both accuracy and speed goals.

There are also several aspects where this work can be enhanced further.

The first aspect is specialized training. If we can train a specialized network

that is trained only to classify between the top few predictions of the com-

pressed network, we may be able to save resources and improve the confidence

of the compressed network. Another specialized training scenario can be to
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train the compressed network to classify or detect easy objects and train

the original network to target difficult objects. This way, the two networks

can complement each other better. Second is heterogeneous computing with

GPUs. GPUs are usually much more efficient than FPGAs in floating-point

operations, and floating-point precision indeed gives higher accuracy than

low bit-width fixed-point precision. If we can make the GPU run the original

network as floating-point, and make the FPGA run the compressed network,

we may be able to achieve an even more efficient solution for this study.
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