
Verifying Consistency between Activity Diagrams
and Their Corresponding OCL Contracts

Christoph Hilken1 Julia Seiter1 Robert Wille1 Ulrich Kühne1 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{chilken,jseiter,rwille,ulrichk,drechsle}@informatik.uni-bremen.de

Abstract—Modeling languages such as SysML provide various
description means for a precise specification of the desired system.
As a system model typically uses multiple diagram types focusing
on different aspects, it is crucial to keep them consistent to each
other. In this paper, we propose a verification methodology which
ensures the consistency between activity diagrams as blueprints
for the implementation and their contracts from a block definition
diagram. For this purpose, activity diagrams are transformed to
OCL constraints that can be checked against pre- and post-
conditions. The proposed approach is evaluated in a case study
based on an industrial specification.

I. INTRODUCTION

System descriptions based on modeling languages are be-
coming increasingly popular. While software developers have
already been using languages such as the Unified Modeling
Language (UML, [12]) for years, also embedded systems
designers have started following this trend. In particular, the
Systems Modeling Language (SysML, [9], [17]) is a very
popular UML profile. These languages allow for a precise
specification of the desired systems on an abstraction level that
is appropriate for the first design steps. To this end, proper
description means are provided to (formally) specify the
structure and behavior of complex systems. At the same time,
unnecessary and distracting implementation details which are
addressed later in the design process are hidden.

The SysML covers a variety of different diagram types. The
structure of a system is usually represented by block definition
diagrams specifying the available blocks, attributes, and oper-
ations as well as their relations to each other. The operations
can be annotated with pre- and post-conditions which act as
contracts for a later implementation and, by this, constitute
an early formal specification of what the system is supposed
to do. Alternatively, the functional specification of operations
can also be described by state machines or activity diagrams.
Activity diagrams provide a graphical representation of the
control flow of an operation by making use of many imperative
elements such as sequential composition, conditionals, loops,
and parallel composition. They can be seen as a blueprint of
how an operation shall be implemented.

The use of different diagram types in a single model is
a common way to conveniently describe different aspects

and views of a system. Moreover, such models are precise
enough such that conceptional flaws introduced in this stage
can already be detected – an important benefit considering the
steadily increasing time-to-market constraints. However, it is
a difficult problem to keep the various descriptions consistent
and to avoid ambiguous or contradictory specifications.

Previous solutions addressing this problem of inter-model
consistency mostly consider description means on the same
level of abstraction (e.g. state machine vs. sequence dia-
grams [18]) – often by just providing syntactical rules to
check the consistency [13]. Other solutions focus on static
consistency (see e.g. [3], [5], [15]) or verify whether the
behavior has been specified as intended (see e.g. [7], [1],
[2], [14]), but only within a single description means for
this purpose (e.g. a representation of behavior in terms of
contracts only). In [8], an overview of further solutions is
provided. However, an important question in the model-driven
development of circuits and systems has not been addressed
yet: Does the blueprint of an implementation provided by an
activity diagram indeed satisfy the contracts defined before?

In this work, we propose a solution to this problem. We
observe that, in principle, the contracts and activity diagrams
already provide all details that are necessary to check their
consistency. But in practice an automatic verification was not
possible thus far since existing checkers rely on a formal
notion of the behavior provided in the Object Constraint
Language (OCL, [16]). Hence, a methodology is presented
which transforms the activity diagrams into OCL and, by this,
makes existing verification schemes applicable. A case study
based on an industrial specification confirmed the usefulness
of the proposed solution.

The remainder of this paper is structured as follows. Sec-
tion II briefly reviews the SysML and the considered diagram
types. Afterwards, Section III motivates and formalizes the
problem before the proposed methodology is presented. The
cornerstone of this methodology is the transformation of
activity diagrams to OCL which is described in detail in
Section IV. Finally, the paper concludes with a summary of
the conducted case study and conclusions in Section V and
Section VI, respectively.

«block»
Phone
attributes

credit: Integer
operations

charge()
call()

constraints
credit >= 0

(a) Structure

context Phone::charge()
post: credit >= credit@pre

context Phone::call()
pre: credit > 5
post: credit < credit@pre

(b) Contracts

credit = credit + 5

act Phone::charge()

credit = credit - 5

[credit >= 5]

act Phone::call()

(c) Activity diagrams

Fig. 1. Simple SysML model

II. BACKGROUND

The Systems Modeling Language (SysML, [9], [17]) offers
proper description means to precisely specify both the struc-
ture and the behavior of the intended system. To keep the
paper self contained, this section briefly reviews the considered
diagram types.

A. Specifying the Structure of the System

In SysML, the structure of a system is described by a
Block Definition Diagram (BDD) which consists of blocks.
Each block is composed of compartments that contain different
information such as attributes, operations, constraints, or
references. Attributes for example describe the data elements
of the block, whereas operations can be used to modify them.
Furthermore, constraints, so called invariants e.g. provided in
the Object Constraint Language (OCL, [16]), can restrict the
possible values of attributes. Different blocks can be related
to each other using associations.

Example 1: The usage of BDDs is illustrated in Fig. 1(a).
This diagram specifies a simple mobile phone consisting of
a single block Phone. The phone contains an attribute credit
storing the amount of money which is left in order to perform
calls. The constraint in the Phone block ensures that the credit
never drops below 0.

B. Specifying the Behavior of the System

The behavior of a system is given by the functionality of all
available operations. Their behavior is usually specified in two
steps. First, it is defined what an operation is supposed to do.
This is done by contracts, e.g. by using OCL expressions that,
in a pure functional fashion, describe in which system states
an operation can be called and what its effects on the system
state are. Afterwards, it is specified how an operation works.
For this purpose, activity diagrams allow for an imperative
and algorithmic specification which can be used as blueprint
for an actual implementation.

1) Contracts: Contracts describe the desired behavior of an
operation by a set of pre- and post-conditions. Pre-conditions
specify the assumptions on the system state in which an
operation shall be called whereas post-conditions describe how
the state is supposed to be modified by the execution. Textual
constraints, e.g. provided in OCL, are used for this purpose.

Example 2: Figure 1(b) shows the contracts that specify
the behavior of all operations introduced in the BDD from
Fig. 1(a). More precisely, the mobile phone application is
composed of two operations:
• charge(): The charge operation increases the credit. The

amount of increase is not further specified leaving room
for the later implementation.

• call(): The operation call() decreases the credit by an
unspecified amount for each call which is made. A call
is only possible when the credit is greater than 5 which
is ensured by the pre-condition.

Given these contracts, the full behavior of this (simple) mo-
bile phone application is defined: The credit can be increased
at any time and calls can only be made if the credit is greater
than 5. After a call is made, the credit is decreased.

2) Activity Diagrams: An activity diagram can be used
to graphically sketch procedures and to describe the steps
which an operation is performing. By this, the behavior of
an operation is described in an imperative fashion specifying
how the respective operation is executed. Several graphical
description means such as actionNodes (performing a com-
putation), guards (restricting execution paths), decisionNodes
(branching the flow), forkNodes (splitting the flow), etc. are
available for this purpose.

Example 3: Figure 1(c) shows activity diagrams that spe-
cify an implementation of all operations introduced in
the BDD from Fig. 1(a) according to the contracts from
Fig. 1(b). The operation charge() is realized by a single
actionNode which adds 5 to the value of credit in the Phone
block. In the activity diagram specifying call(), a guard ensures
that the actionNode subtracting 5 to the attribute credit is only
called if credit is greater than 5. This operation is associated
to the Phone block as well.

C. Specifying the Model Transformations

Model transformations are used to transform a model A
of a metamodel MA to the corresponding model B of
metamodel MB . In case of SysML, the Meta Object Facil-
ity Query/View/Transformation Specification (QVT, [11]) can
be used to specify such transformations. QVT allows the
specification of a transformation with relations (descriptive,
usually bidirectional) or operational mappings (imperative,
unidirectional).

Example 4: Figure 2 shows a QVT specification of a small
transformation. This transformation takes a SysML model and
adds the prefix string Mobile to the name of each block. A
specification like this would transform the model from Fig. 1
into a new one in which the block Phone is replaced by the
block MobilePhone.

transformation makeMobil(inout m:SysML)
main() {
m.objectsOfType(Block)->map makeMobil();
}

mapping inout Block::makeMobil() {
name := ’Mobile’ + self.name.firstToUpper()
}

Fig. 2. Simple transformation

III. VERIFYING ACTIVITY DIAGRAMS

Using SysML, a precise specification of a system to be
implemented is provided by several different diagrams. At this
early stage of the design process, it is an important task to
keep these diagrams consistent with each other. Particularly
BDDs and activity diagrams are of interest here, since BDDs
provide information about the structure as well as operation
contracts, whereas activity diagrams form a blueprint for the
following implementation of the system. As activity diagrams
are supposed to satisfy the contracts from the BDD, it is of
great interest to ensure consistency between the two diagram
types. Otherwise, the implementation will deviate from the
original design intent.

Besides their use for sketching procedures with actions
described in natural language, activity diagrams also allow
for a formal, executable description. In this case, these two
descriptions can be automatically checked against each other.
By this, the correctness of the specified implementation can be
verified right at the beginning of the design process and even
before a single line of code is written – an important benefit
considering the steadily increasing time-to-market constraints.
In this section, first the outlined scenario is briefly illustrated
by an example. Afterwards, the problem is formally defined
and the proposed verification methodology is sketched.

A. Motivation

Even in the initial design steps and at the specification
level, errors might occur. In fact, already the specification
of the (rather simple) mobile phone application discussed in
Section II contains an inconsistency.

Example 5: Consider again the specifications from Fig. 1.
The activity diagrams are not consistent with all contracts.
In fact, the activity diagram of the operation call() requires
that credit is greater than or equal to 5 whereas the pre-
condition of the same operation only requires the greater than-
relation. Hence, when credit is set to 5, it should be possible to
call the operation – this is not possible in the activity diagram
due to the failing guard.

While this error is obviously rather simple and easy to
detect, less obvious inconsistencies might be hidden in real
designs. Detecting them manually is a time-consuming task.
However, inconsistencies like this can also be detected au-
tomatically – even prior to the implementation process. In
fact, all descriptions are provided in a formal fashion and,
hence, are applicable to automatic verification methods. This
is sketched in the following section.

B. Problem Formulation & General Idea

The problem illustrated above is formulated as follows: An
operation o transforms a system state σ (i.e. an instance of
the model) to a succeeding system state σ′. As outlined in
Section II-B1, contracts restrict those states by pre- and post-
conditions (denoted by C and B, respectively), i.e. a transition
from σ to σ′ by the operation o is valid, if σ satisfies the pre-
condition of o (denoted by Co(σ)) and σ′ satisfies the post-
condition of o (denoted by Bo(σ′)). At the same time, both
system states σ, σ′ obviously have to satisfy the invariants of
the model. This is denoted by I(σ) and I(σ′), respectively.

In a similar fashion, the execution of an operation described
by an activity diagram (denoted by act) is formalized. Here,
we distinguish explicitly between the initial guard condition go

(i.e. the guard which is applied directly after the initial node)
and the actual execution fo (i.e. the symbolic representation of
all actions in the activity diagram). Then, an activity diagram
for an operation o transforms a system state σ to a succeeding
system state σ′ (denoted by acto(σ, σ′)), if σ satisfies the
initial guard of o (denoted by go(σ)) and σ′ is consistent with
the execution of o (denoted by fo(σ, σ′)).

On this basis, the problem considered in this work can
be formalized. In order to ensure that, for an operation o,
the design intent (provided by the contracts Co,Bo) has
been implemented correctly in an activity diagram acto
(with go, fo), the following constraints must hold:

1) Whenever the pre-conditions Co are satisfied, then the
activity diagram must be executable, i.e. the guard con-
dition go of the implementation must be satisfied:

∀σ : Co(σ)⇒ go(σ) (1)

2) Whenever the invariants as well as pre-conditions are
satisfied and the activity diagram is executed, then the
succeeding system state must satisfy the invariants and
the post-conditions, i.e.

∀σ, σ′ : I(σ)∧Co(σ)∧acto(σ, σ′)⇒ Bo(σ′)∧I(σ′) (2)

This problem formulation follows the established idea of
design by contract [10].

C. Proposed Methodology

In principle, the contracts and an activity diagram already
provide all details that are necessary to check for these
constraints. Moreover, in the recent past effective methods for
the verification of UML and/or SysML descriptions have been
presented (see e.g. [7], [1], [2], [14]). However, they mainly
rely on a formal notion of the behavior by means of OCL.
While BDDs already provide contracts written in OCL for
each operation, activity diagrams are usually not supported.

In this work, we propose to solve this problem by transform-
ing the activity diagram into OCL and, afterwards, utilizing
the resulting descriptions together with one of the approaches
mentioned above to verify the two constraints. By this, the
research question to be addressed in this work is reduced to:

How to transform an activity diagram into an equivalent OCL
description?

IV. TRANSFORMATION OF ACTIVITY DIAGRAMS

In this section, we introduce a structured approach that
transforms a given activity diagram automatically into an
equivalent description in terms of OCL. More precisely, since
the BDD already provides contracts in the terms of pre- and
post-conditions, the activity diagram is transformed to pre-
and post-conditions as well. To cope with the complexity
of description means which may occur in activity diagrams,
the proposed methodology incorporates a divide and conquer
scheme. That is, the set of description means in the considered
activity diagram is subsequently reduced until a sufficiently
simple representation results which can be transformed prop-
erly. We follow a two-stage approach: First, the considered
activity diagram is normalized to the desired form; afterwards
the actual transformation to contracts is performed. For the
first step, a model transformation specified in QVT is used.
However, for sake of a more inutitive description, the different
mappings are described in an informal way in the following.
Before we describe the above steps in detail, our general
assumptions on the considered activity diagrams are discussed
first. The application of the proposed approach is later illus-
trated by an industrial example in Section V.

A. Assumptions

In order to apply the proposed approach, a couple of
assumptions have to be made on the description means which
may occur in the considered activity diagrams. While these
assumptions are an essential requirement for the proposed
methodology, the resulting restrictions are also justified by
the fact that the verification methods applied afterwards would
have eventually enforced them nevertheless. The applied as-
sumptions read as follows:
• Formal Specification: All descriptions must be formally

specified. Although e.g. actionNodes in activity diagrams
may also include non-formal descriptions (e.g. in natural
language), those cannot automatically be transformed to
unambiguous contracts.

• Parallelism: All parallel (sub-)operations have to be
consistent with themselves. For example, forkNode and
joinNode have to be used pairwise (i.e. all token generated
by a forkNode must be joined in a joinNode) and parallel
operations have to be independent of each other. In other
words neither order nor timing aspects of parallel exe-
cution are supported. Otherwise, no unique verification
result can be obtained.

• Object Flow: The object flow is only seen as a mapping of
objects so that the control flow has to be added explicitly.
This is necessary to avoid the introduction of further
parallelism.

• No Interrupts and Exceptions: To the best of our know-
ledge, no formal verification approach for the modeling

level is available yet that supports interrupts and/or ex-
ceptions. Verification methods that are being applied on
software implementations exist, e.g. [6]. In this work
only activity diagrams without interruptible regions are
considered.

• No Dynamic Loops: The automatic verification of dy-
namic loops remains an open research question, and is
undecidable in general. As a result, existing approaches
(e.g. [4]) still rely on inputs by the designer. This
contradicts the desired fully automatic approach. Hence,
corresponding loopNodes are not supported.

B. Normalization

The first step aims at reducing the set of description means
in the considered activity diagram until a representation results
which is sufficiently atomic to enable a proper transformation
to contracts. This normalization is conducted in five steps.

1) Flatten Hierarchy: Operations might be specified
through an elaborated hierarchy of activity diagrams. Re-
spective parts of an operation are then called e.g. through
callAction. In order to normalize that, the whole hierarchy
of an operation’s description is flattened, i.e. the respective
callAction nodes are replaced with the corresponding activity
diagrams.

Example 6: Figure 3(a) shows a hierarchic activity diagram
including a callAction node. This description is normalized as
shown in Fig. 3(b).

2) Resolve the Object Flow: In a next step, the object
flow, i.e. pins, objectNodes, and parameterNodes, are removed,
leaving only the control flow. For this purpose, every object
flow is replaced by its source. The source of an object flow
can only be an operation parameter or an attribute. Both are
known inside the BDD, i.e. a simple replacement is sufficient
to remove all object flows.

3) Handle Parallelism: Parallel executions are introduced
through forkNode and joinNode, i.e. control nodes that split a
flow into multiple parallel flows or synchronize multiple flows
back to a single one, respectively. In order to derive the desired
contracts, only the initial condition and the final result of an
operation are relevant – not whether its actions are supposed
to be executed in parallel or not.

Here, two cases have to be considered to handle this:
• Using the default and-semantic, parallel flows are re-

placed by one valid sequence. Since the order of actions
is not relevant, any order can be chosen.

• Using another semantics, e.g. or-semantic in combination
with guards, forkNodes and joinNodes are replaced by
decisionNodes, respectively mergeNodes, with all valid
guard combinations and one valid flow of actions.

Example 7: Figure 4(a) shows an activity diagram includ-
ing a forkNode/joinNode-pair using or-semantics and guards.
During normalization, the forkNode/joinNode is replaced by
a decisionNode and a mergeNode, respectively, as shown
in Fig. 4(b). Every path is representing one possible guard
evaluation and the corresponding flows.

A

exOp2

D

act exOp1

B

C

act exOp2

(a) Before

A

B

C

D

act exOp1

(b) After

Fig. 3. Flatten hierarchy

A

B C

D

{joinspec
= 1 or 2}

[gb] [gc]

1 2

act exOp

(a) Before

A

B

C

B C

D

[gb
and gc]

[gb and
not gc]

[gc and
not gb]

act exOp

(b) After

Fig. 4. Handle parallelism

trigger

act send

trigger

act receive

(a) Before

trigger=1

act send

trigger=0
[trigger == 1]

act receive

send < receive

(b) After

Fig. 5. Handle events

A1 Ai An.

g
g1

gi

gn

act exOp

Fig. 6. Normalized

a = a + 1

A B

C D

[a<10] [a>=10]

[b==0] [b==1]

act exOp

(a) Before

a = a + 1
A
C

a = a + 1
A
D

a = a + 1
B
C

a = a + 1
B
D

[a<9 and
b==0]

[a<9 and
b==1]

[a>=9 and
b==0]

[a>=9 and
b==1]

act exOp

(b) After

Fig. 7. Normalize paths

a=1 a=b

[a==0]
[b==0] [b>=1]

act exOp

(a) Before

context exOp()
pre: a == 0
post: (a=1 and

(a=1 implies b@pre=0))
or (a=b@pre and
(a=b@pre implies b@pre>=1))

(b) After

Fig. 8. Transformation to OCL

4) Handle Events: Events are introduced by sendSignalAc-
tion/acceptEventAction, i.e. control nodes that send events or
wait for the occurrence of an event meeting the specified
conditions, respectively. In the proposed solution, event signals
are represented by attributes. Then, simple actionNodes and
guards together with additional constraints on the order of
execution allow for a normalization of the description.

Example 8: Figure 5(a) shows two activity diagrams, one
with a sendSignalAction and another one with an acceptEvent-
Action node. This description is normalized as shown in
Fig. 5(b). Here, the corresponding event signal is represented
by a global variable trigger. Then, the actionNodes and the
guard equivalently represent the behavior. In addition, the
order of execution is restricted by the constraints as shown
in the bottom of Fig. 5(b).

5) Normalize Paths: Applying the steps from above, the
resulting activity diagrams satisfies the following characteris-
tics:
• The initialNode and the flowFinalNode simply describe

the begin and the end of an operation, respectively,
• decisionNodes/mergeNodes as well as guards describe

conditions on which actions are executed, and
• actionNodes describe actual computations to be per-

formed in the operation.
As a last step, these activity diagrams are normalized,

resulting in the structure shown in Fig. 6. More precisely,
the nodes in the activity diagram have to be re-ordered such

that all decisionNodes and guards occur in the top of the
diagram, all mergeNodes occur in the bottom of the diagram,
and all actionNodes occur between them. This transformation
is possible by applying the following rules:
• Merge: If two elements of the same type occur directly

after another, they are merged. Guards at decisionNodes
and computations inside of actions are concatenated.

• Swap and Copy: If a decisionNode follows an actionNode
or an actionNode follows a mergeNode, their positions are
swapped by copying the actionNode into all paths.

• Delete and Copy: If a decisionNode follows a mergeN-
ode, the subgraph below the decisionNode is copied to
its corresponding mergeNode into every branch. Guard
conditions are to be moved to the top as well.

Due to the replacement of actions when applying these rules,
the guards have to be recalculated. The same is necessary when
merging two actions into one.

Example 9: Figure 7(a) shows an activity diagram includ-
ing several decisionNodes/mergeNodes, guards, and action-
Nodes. The normalized description shown in Fig. 7(b) is
reached by applying the rules and recalculating the guards
a < 10 and a >= 10.

C. Transformation

After the normalization, each activity diagram has the form
as shown in Fig. 6. Using model to text transformations, the
desired contracts are derived from this description as follows.

1) Pre-condition: The guard go at the edge between the
initialNode and the decisionNode constitutes the pre-condition.
Since go is by definition a Boolean expression, this can easily
be transformed to OCL syntax.

2) Post-condition: The post-condition is constituted by the
disjunction of the single branches following the decisionNode.
More precisely, a post-condition represents the behavior of the
considered activity diagram, iff for each branching guard gi

(1 ≤ i ≤ n) the respective computations in the actionNode Ai

are represented, i.e. iff
∨

gi∈GAi ∧ (Ai ⇒ gi)1 (where go

together with all gi and Ai form the execution fo). For a
single path in the normalized diagram, Ai evaluating to true
indicates that the path on which Ai is executed has been taken.
Consequently, the guard gi of said path has to be true as well.
This is expressed by the implication. Considering a disjunction
over all paths in the diagram, this expresses the fact that one of
the n existing paths must have been taken and that the guard
of this path must be satisfied. If no Ai evaluates to true or the
corresponding condition gi evaluates to false, then none of the
paths can be taken and the activity is not executable.

The respective actionNodes Ai represent a set Si of state-
ments. Since all actionNodes formally argue only over at-
tributes as well as parameters and the activity diagram has been
normalized as described above, each actionNode Ai can be
transformed to

∧
s∈S(s.lhs = s.rhs@pre), where s.lhs (s.rhs)

denotes the left-hand side (right-hand side) of a statement s
and @pre refers to the frozen attribute values from the system
state in which the operation is being called.

Hence, the resulting post-condition is composed as follows:∨
gi∈G

(∧
s∈Si

(s.lhs = s.rhs@pre)

∧
∧

s∈Si

(s.lhs = s.rhs@pre)⇒ gi@pre
)

where G represents the set of all guards G = {g1 . . . gn} at
the edges following the decisionNode. This formula guarantees
that one path in the activity diagram has been taken because
it can only evaluate to true when one of the Ai evaluates to
true. This again implies that the corresponding guard has to
be true as well. Otherwise, the post-condition would not hold.
Finally, this formula is transformed to OCL syntax.

Example 10: Figure 8(a) shows a normalized activity dia-
gram. The pre- and post-condition derived from this descrip-
tion are shown in Fig. 8(b).

V. CASE STUDY

The proposed methodology has been implemented in Java.
As underlying verification technique, the solution presented
in [14] has been utilized. Afterwards, the applicability of
our method has been confirmed by means of an industrial
specification, a SysML description of a turn indicator used in
Mercedes Benz cars.

1This can be simplified to
W

gi∈G Ai ∧ gi

The turn indicator offers functionality for controlling the
flash signal of the car by a lever (indicating left or right) and
a switch for the warning lights. Once the driver moves the
lever up or down, the corresponding light is turned on and off
at least three times. The light keeps flashing for as long as the
lever is left in the respective position. Pushing the switch turns
on both lights simultaneously. As an additional function, the
warning lights can always get interrupted by the regular flash
signal, i.e. when the warning lights are active and the lever is
pulled, the respective flash signal is turned on instead.

This functionality is modeled as a BDD as shown in
Fig. 9(a) with the respective contracts of the operations
partially shown in Fig. 9(b)2. The block Flash represents
the controls available to the driver, i.e. the lever and the
switch for the warning lights. The respective operations are
employed for taking the inputs from the driver and controlling
the lights of the car. The lights themselves are part of the
block Output, which is responsible for switching the lights
on or off depending on the driver’s input. According to the
contracts, flashOn() can only be called if one of the signals for
turning the lights on is set and if both lights are turned off.
After calling the operation, one or both lights are to be turned
on. In addition to the BDD and its contracts, a blueprint for the
implementation of each operation is given by activity diagrams
(see Fig. 9(c) for a description of the flashOn()-operation).

Even for those rather simple descriptions, it is not obvious
whether the activity diagram from Fig. 9(c) is indeed consis-
tent to the contracts from Fig. 9(b). Manually verifying the
consistency would be a time-consuming and probably error-
prone task. In contrast, the proposed methodology can tackle
this problem automatically in almost no time. For this purpose,
the activity diagram is transformed as described in Section IV
leading to the automatically generated OCL constraints shown
in Fig. 9(d). Although they appear more complex and longer,
they are equivalent to the activity diagram and can be used to
be verified against the originally given contracts. The applied
verification engine, presented in [14], is able to verify the
consistency in just a fraction of a second. The same holds
for all other operations in this specification.

VI. CONCLUSIONS

In this work, we have considered the verification of ac-
tivity diagrams against their corresponding contracts. This
represents a crucial task in model-driven development since
errors in activity diagrams are likely to be propagated into
the implementation. A methodology has been presented which
transforms a given activity diagram to OCL and utilizes
existing verification schemes for the actual comparison. A
case study based on an industrial specification confirmed that,
using the proposed methodology, the task can automatically
be performed in almost no time.

2For brevity, we only consider one operation, namely flashOn() in the
following.

«block»
Output
attributes

cnt: Integer
lOld: Boolean
rOld: Boolean
left: Boolean
right: Boolean
lampsL: Boolean
lampsR: Boolean

operations
flashOn()
flashOff

«block»
Flash

attributes
tilLevel: Integer
tilOld: Integer
warnSwitch: Boolean

operations
setTil(l: Integer)
switchWarnMode()
manageIndicating()
manageWarnMode()

output
1

flash
1

(a) BDD

context Output::flashOn()
pre: left or right or (cnt>=1 and cnt<3)
pre: not lampsL and not lampsR
post: (left@pre or lOld@pre) implies lampsL
post: (right@pre or rOld@pre) implies lampsR
post: (not left@pre and not lOld@pre and

not right@pre and not rOld@pre)
implies (not lampsL and not lampsR)

post: cnt@pre<3 implies cnt=cnt@pre + 1
post: cnt@pre>=3 implies cnt=cnt@pre

(b) Given Constraints

lampL = true lampR = true

lOld = false
rOld = false

cnt=cnt+1

{joinspec = A or B}

[not lampL and not lampR]

[left or lOld] [right or rOld]

A B

[ctr>=3] [ctr<3]

act Output::flashOn()

(c) Activity Diagram

context Output::flashOn()
pre: not lampsL and not lampsR
post:
((lampsL and cnt=cnt@pre + 1)
and ((lampsL and cnt=cnt@pre + 1)
implies ((left@pre or lOld@pre) and
not (right@pre or rOld@pre) and cnt@pre<3)))

or
((lampsL and not lOld and not rOld)
and ((lampsL and not lOld and not rOld)
implies ((left@pre or lOld@pre) and
not (right@pre or rOld@pre) and cnt@pre>=3)))

or
((lampsR and cnt=cnt@pre + 1)
and ((lampsR and cnt=cnt@pre + 1)
implies (not (left@pre or lOld@pre)
and (right@pre or rOld@pre) and cnt@pre<3)))

or
((lampsR and not lOld and not rOld)
and ((lampsR and not lOld and not rOld)
implies (not (left@pre or lOld@pre)
and (right@pre or rOld@pre) and cnt@pre>=3)))

or
((lampsL and lampsR and cnt=cnt@pre + 1)
and ((lampsL and lampsR and cnt=cnt@pre + 1)
implies ((left@pre or lOld@pre)
and (right@pre or rOld@pre) and cnt@pre<3)))

or
((lampsL and lampsR and not lOld and not rOld)
and ((lampsL and lampsR and not lOld and not rOld)
implies ((left@pre or lOld@pre)
and (right@pre or rOld@pre) and cnt@pre>=3)))

(d) Generated OCL

Fig. 9. Specification of a turn indicator

ACKNOWLEDGMENTS

We would like to thank Mathias Soeken for fruitful dis-
cussions. This work was supported by the Graduate School
SyDe (funded by the German Excellence Initiative within
the University of Bremen’s institutional strategy), the German
Federal Ministry of Education and Research (BMBF) within
the project SPECifIC under grant no. 01IW13001, as well as
the German Research Foundation (DFG) within the Reinhart
Koselleck project under grant no. DR 287/23-1 and a research
project under grant no. WI 3401/5-1.

REFERENCES

[1] A. Baruzzo and M. Comini. Static Verification of UML Model
Consistency. In Proc. 3rd Workshop Model Design and Validation, pages
111–126, 2006.

[2] J. Cabot, R. Clarisó, and D. Riera. Verifying UML/OCL Operation
Contracts. In M. Leuschel and H. Wehrheim, editors, Integrated Formal
Methods, volume 5423 of Lecture Notes in Computer Science, pages
40–55. Springer, 2009.

[3] M. Gogolla, M. Kuhlmann, and L. Hamann. Consistency, Independence
and Consequences in UML and OCL Models. In Test and Proof, pages
90–104. Springer, 2009.

[4] A. Ireland and J. Stark. On the Automatic Discovery of Loop Invariants.
In NASA Conference Publication, pages 137–152, 1997.

[5] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der
Zwaag, T. Arons, and H. Kugler. Formalizing UML Models and OCL
Constraints in PVS. Electronic Notes in Theoretical Computer Science,
115:39–47, 2005.

[6] X. Li, J. Hoover, and P. Rudnicki. Towards Automatic Exception Safety
Verification. In J. Misra, T. Nipkow, and E. Sekerinski, editors, Formal
Methods, volume 4085 of Lecture Notes in Computer Science, pages
396–411. Springer, 2006.

[7] X. Li, Z. Liu, and J. He. Consistency checking of UML requirements. In
International Conference on Engineering of Complex Computer Systems,
pages 411–420. IEEE Computer Society, 2005.

[8] F. J. Lucas, F. Molina, and A. Toval. A Systematic Review of UML
Model Consistency Management. Information and Software Technology,
51(12):1631–1645, 2009.

[9] G. Martin and W. Müller. UML for SOC Design. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

[10] B. Meyer. Applying ’Design by Contract’. Computer, 25(10):40–51,
1992.

[11] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Version 1.1, 2011.

[12] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling
Language reference manual. Addison-Wesley Longman, Essex, UK,
1999.

[13] P. G. Sapna and H. Mohanty. Ensuring Consistency in Relational
Repository of UML Models. In International Conference on Information
Technology, pages 217–222, 2007.

[14] M. Soeken, R. Wille, and R. Drechsler. Verifying Dynamic Aspects
of UML Models. In Design, Automation and Test in Europe, pages
1077–1082, 2011.

[15] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler.
Verifying UML/OCL models using Boolean satisfiability. In Design,
Automation and Test in Europe, pages 1341–1344, 2010.

[16] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
modeling with UML. Addison-Wesley Longman, Boston, MA, USA,
1999.

[17] T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Anal-
ysis, Design. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[18] X. Zhao, Q. Long, and Z. Qiu. Model Checking Dynamic UML
Consistency. In Z. Liu and J. He, editors, Formal Methods and Software
Engineering, volume 4260 of Lecture Notes in Computer Science, pages
440–459. Springer, 2006.

