

Newcastle University ePrints - eprint.ncl.ac.uk

Rafiev A, Xia F, Iliasov A, Gensh R, Aalsaud A, Romanovsky A, Yakovlev A.

Selective abstraction and stochastic methods for scalable power modelling of

heterogeneous systems.

In: Forum on Specification and Design Languages (FDL). 2017, Bremen,

Germany: IEEE Computer Society.

Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

https://doi.org/10.1109/FDL.2016.7880376

Date deposited:

30/05/2017

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=237651
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=237651
https://doi.org/10.1109/FDL.2016.7880376

Selective Abstraction and Stochastic Methods for
Scalable Power Modelling of Heterogeneous Systems

A. Rafiev, F. Xia, A. Iliasov, R. Gensh, A. Aalsaud, A. Romanovsky, A. Yakovlev – Newcastle University, UK
{ashur.rafiev, fei.xia, alexei.iliasov, r.gensh, a.m.m.aalsaud, alexander.romanovsky, alex.yakovlev}@ncl.ac.uk

Abstract—With the increase of system complexity in both
platforms and applications, power modelling of heterogeneous
systems is facing grand challenges from the model scalability
issue. To address these challenges, this paper studies two system-
atic methods: selective abstraction and stochastic techniques. The
concept of selective abstraction via black-boxing is realised using
hierarchical modelling and cross-layer cuts, respecting the con-
cepts of boxability and error contamination. The stochastic aspect
is formally underpinned by Stochastic Activity Networks (SANs).
The proposed method is validated with experimental results from
Odroid XU3 heterogeneous 8-core platform and is demonstrated
to maintain high accuracy while improving scalability.

I. INTRODUCTION

Continued scaling of semiconductor technology has caused
an increase of computing system capabilities, and with it, a
seemingly unstoppable expansion of system application space.
This is leading to a rapid increase of system complexity and
diversity, exacerbating the scalability of system modelling. A
typical example of such complex and diverse systems is multi-
core heterogeneous platforms.

Addressing the model complexity is highly challenging due
to the trade-off between quality (i.e. the accuracy, precision,
and fidelity) of the model and its usability (defined by scalab-
ility, computation complexity, and design effort), as shown in
Figure 1.

Modelling non-functional properties, e.g. power dissipation,
is as crucial as modelling functional properties, such as
operational correctness [6]. Non-functional models typically
include functional representations. A widely-used method of
modelling power uses Virtual Prototypes (VP) to generate
states from a functional simulation for use in power simulators
forming a co-simulation [17], [12].

Analogue hardware models such as SPICE models provide
some of the highest representational quality, but they are not
usable for studying entire computers with software running
on hardware. For such studies, discrete event models, such
as Instruction Set Architecture- (ISA-)accurate [7], cycle-
accurate and RTL models [5], are useful when studying func-
tional properties. Instruction Set Simulators (ISS), however,
commonly have simulation speeds of the order of a few
Million Instructions Simulated per Second (MISPS) [1], [17],
and this puts a limit on their usability when the system scales
to many-cores, especially for statistical analysis [8].

There have been, as a result, significant efforts in model
simplification for power studies. One way of simplifying
away from ISA- or cycle-accuracy targeting multiple cores is
extrapolation [9]. In this approach, a typical subsystem (e.g.

M
o

d
el

 Q
u
al

it
y

Model Usability

trade-off

Sacrificing some usability
for major quality gain

Sacrificing some quality
for major usability gain

Ad-hoc
methods

Figure 1. The realm of complexity control.

a single core) is fully characterized and represented with a
complete model, and other similar cores are represented by
simplified models obtained through extrapolation. However,
this method tends to be less effective for highly heterogeneous
systems. It is also possible to depart from ISA-accuracy
through abstraction. For instance, Transaction Level Modelling
(TLM) concentrates on the functional properties of larger
system blocks [4], [13].

Functional modelling can be highly abstracted by using
stochastic techniques, shrinking models by regarding system
behaviours as stochastic, rather than deterministic [8].

Non-functional parameters like power also open up further
ways to systematic model simplifications based on what may
be called the “significance factor” [14]. During any particular
operation of a heterogeneous system consisting of multiple
parts, some parts of the system may consume more power
than other parts. If a quantitative power model is to be precise
to a certain degree, it makes sense to make the model power-
proportional by using a simpler model for a less power hungry
part and a detailed model for a more power hungry part. This
approach can be broadly described as selective abstraction, i.e.
the level of abstraction (and therefore the cost and quality) of
each part of the model depends on the part’s contribution to
the parameter under study.

This work aims towards the scalable modelling of multi-
core heterogeneous systems by concentrating on stochastic
modelling and selective abstraction. By doing so, we seek to
support designers to systematically traverse the trade-off space
between modelling quality and model scalability in “good”
trajectories, shown in Figure 1 as vectors, as opposed to ad-
hoc techniques targeting specific points in this trade-off.

Boxability

System Design

Order Graph

SAN

selective abstraction
using power-

proportionality

Dependency Graph

error
contamination?

solve the model

yesno

re-design

re-select
abstraction

Characterisation

Figure 2. The flowchart of the proposed method.

A. Research Methodology and Contributions

In order to validate the presented ideas, we created a
model of a real hardware multi-core heterogeneous system
using a mature stochastic modelling method, applied the
proposed method of selective abstraction to optimise the
model for scalability, and evaluated the cost and the ac-
curacy against the actual measurements. Stochastic Activity
Networks (SANs) [16] is a well-known modelling method
with an extensive support by the Möbius tool [2] provides
the capabilities to model power as a reward function, thus
has been used to facilitate the stochastic modelling aspect of
the method. Odroid XU3 development board [3] based on the
ARM big.LITTLE architecture has been selected as the target
system for modelling.

The following contributions have been made:
• We developed new structuring methods to tackle com-

plexity and scalability in modelling by providing a power-
proportionality metric for selective abstraction and meth-
ods to retain accuracy by avoiding error contamination.

• We validated these methods using power modelling in
SANs and showed their effectiveness in improving the
trade-offs between accuracy, scalability, and usability.

The paper is organised as follows. Section II described the
workflow and the method. Section III presents the design
of supporting experimental studies. Section IV describes the
developed model and discusses the results from the simulation
results. Section V concludes the work.

II. THE PROPOSED METHOD

The workflow of the proposed method is illustrated in Fig-
ure 2. A hierarchical representation of the system resources
in the form of an Order Graph (OG) [14] is derived from
the system design knowledge. The behaviour of the system is
captured in a detailed SAN model [16]. System power charac-
teristics, usually obtained from initial experiments, are applied
to the OG to compute the power-proportionality metric for
selective abstraction, which determines the regions for black-
boxing in the SAN model. The next step is to combine OG and
SAN to capture dependencies within the model in the form of
a graph, which will help identify any error contamination. If
no contamination found, the SAN model can be used further in

a b

a1

a2

a3 b1

b2

b3

C

T

t1 t2

Figure 3. Example vertical view of an Order Graph with a cross-layer cut.

power studies, e.g. simulations. In case of error contamination,
the designer has to redo the abstraction selection with the
updated knowledge on the model’s boxability, or even re-
design the system.

A. Hierarchical Modelling and Selective Abstraction

Hierarchical representations have been used for modelling
complex systems for a long time. The idea of separating
the “vertical” relation between the layers of abstraction from
the “horizontal” knowledge of the system at each particular
layer of abstraction has been hinted in [20] and then formally
defined in Zoom structures [10] as the concepts of verticality
and horizontality. Zoom structures are based on partial orders
and are very permissive. In contrast, OGs put a number of
constraints on the modelling, which guarantee consistency
between the abstraction layers.

An OG is a graph with nodes representing various system
resources arranged in tree hierarchies; different concepts can
be represented by separate trees. For example, in Figure 3, T
can represent the hierarchy of tasks, and C – computational
units. The hierarchies can be built from the knowledge of the
system structure and by similarities of its constituents. The
distance from the root relates to the level of abstraction. The
formal definition and properties can be found in [14].

OG contains the static knowledge of the system and needs
to be paired with a dynamic model to capture the system
behaviour (in our case: SANs). Each branch of a tree must
have a representative element in the dynamic model, but
multiple nodes from a single branch cannot be included. The
nodes in OG that are included in this model relation form a
cut. If the cut goes through different depths in the hierarchy
(layers of abstraction), it is called a cross-layer cut. The cut
containing all leaves relates to the most concrete (detail) model
of the system.

Moving up in the abstraction hierarchy, thus grouping
multiple nodes into one, represents grouping the corresponding
elements in SANs into a single entity by averaging/totalling
their parameters (known as black-boxing). This reduces the
size of a model, but also introduces inaccuracy.

Ideally, the goal of selective abstraction is to obtain a
cut that provides the minimal model while its added error

satisfies the given threshold ε: |∆E| < ε. Our proposed power-
proportional metric of selecting the cut is:

|∆E| = |∆exqx| , (1)

where ∆ex is the local change of the percentage error, as
a result of the black-boxing, in the part being black-boxed,
and qx = px

p is the proportion of power consumed by this
part in relation to the total power consumption. The values
of px and p can be found from the model characterisation
experiments, but ∆ex is typically not known before solving
the model. Thus, instead of using the precise metric, one may
rely on heuristic approximations. A number of methods are
suggested in [15]. In this paper, we use constant ∆ex under
the assumption of only black-boxing similar component sub-
models. Cross-layer cuts for deeper hierarchies can be found
iteratively in polynomial time.

Equation (1) assumes that black-boxing one part of the
system does not effect the accuracy of the other parts in the
model. However, this is not the case if the behaviour of a
detail part is dependent on the behaviour of an abstract part.
It is important to remember that ∆ex is a percentage error, so
the total deviation from the real value is amplified when the
error leaks from a part with smaller qx to a part with larger
qx. This concept of error contamination has been discovered
in our work with selective abstraction.

The proposed method of detecting and localising contamin-
ating errors is done by deriving a dependency graph from the
dynamic model in relation to OG. The errors from the black-
boxed parts propagate along the paths in this graph: the error
of a node is maximum of its own error and errors of its preset
nodes. The structure of the dependency graph puts restrictions
on what resources can be used in selective abstraction (i.e.
are boxable). Section IV gives concrete examples of the
models and obtained dependency graphs with and without
error contamination.

It is also important to note that the method benefits from
heterogeneity in the system: a bigger difference in the power
consumption of the system parts provides better error tolerance
in a cross-layer cut.

B. Background on Stochastic Modelling

SANs is an extension to General Stochastic Petri Nets
(GSPNs) which is based on Petri Nets (PNs) [16]. It inherits
the general attributes of PNs including a distributed represent-
ation of system states, making it easy to represent parts of a
system directly as local subsystems, and more straightforward
representations of such important issues as concurrency and
synchronisation. A well-established method, it is supported
by the mature software tool-kit: Möbius [2].

SANs are capable of representing both deterministic and
stochastic events, and event durations in time. The elements
used in this work include a) transitions whose firing speeds
(rates) are specified as stochastic, following given distribu-
tions, b) transitions with multiple firing cases with specific
probabilities for each case, and c) input and output gates with
predicates and implications specified through logic functions.

CPU

Avail. A7

cores

A15

cores

Core 4 Core 7

...

Core 1 Core 3

...

Core 0

OS reserved

cores

Figure 4. Hierarchical structure of Odroid XU3 CPU cores. In the experi-
ments, Core 0 is reserved for OS and tools.

The Möbius tool, used in this paper, incorporates a set
of solvers including both Monte-Carlo simulation and state-
space related solvers. Numerical Markovian solutions can be
done for steady-state or time averaged interval rewards, but
limited to models with exponentially distributed firing rates.
The tool’s concept of “rewards” can be easily extended to
physical parameters, such as power. In our examples, we
compute time-interval average power and use average error
as an accuracy metric. The method is not limited to this and
can give probabilistic estimation for transient power values.

III. CASE STUDY

In this work, we aim to evaluate the impact of selective
abstraction on the total error in the model. In order to do this,
we want to build three models of the same system: a detailed
model without any black-boxing, a cross-layer model with
selective black-boxing, and an abstract model with maximum
black-boxing. The result of analysing the power consumption
using each of these models has to be compared with actual
measurements from the platform.

A. Platform Description

One of the best off-the-shelf examples of a heterogeneous
system for power analysis is the Odroid XU3 board [3].
The main component of Odroid XU3 is the 28nm 8-core
Application Processor Exynos 5422. This System-on-Chip is
based on the ARM big.LITTLE architecture [11] and consists
of a high performance Cortex-A15 quad-core processor block,
a low power Cortex-A7 quad-core block, a Mali-T628 GPU
and 2GB LPDDR3 DRAM. The board contains four real-
time current sensors allowing the measurement of power
consumption on the four separate power domains: A7, A15,
GPU and DRAM.

For each domain, the supply voltage and clock frequency
can be tuned through a number of pre-set pairs of values.
The performance-oriented A15 quad core block can scale its
frequencies from 200MHz to 2000MHz, whilst the low-power
A7 block has a frequency range from 200MHz to 1400MHZ.
Core 0 in the A7 domain has an additional speciality of
running the OS kernel and drivers, and it cannot be switched
off. We avoid using this core for stress tests and benchmarks
to reduce the impact from the OS on the measurements. The
CPU structure is represented as an OG hierarchy in Figure 4.

B. Power modelling

The average system power consumption can be found
analytically as the function of the system workload and the
system’s power characteristics [19]. This work uses a sim-
plified workload-based power model, which has been shown
to provide sufficient accuracy [18]. The method of selective
abstraction can be applied to advanced power models as well.

In our model, the power is a function of the type of executed
task T , core type C, frequency F , voltage V , and the number
of cores (of this type) running n. In the experiments, the
frequencies and voltages of the cores remain constant per
power domain, hence the values of F and V are tied to C and
do not need to be considered separately. The system workload
is modelled on a per-task basis as the ratio of the task’s CPU
time t (T) to the total duration of the experiment texp.

Additionally, the cores are never put to sleep. Because of
this, there is a constant background power Pidle consumed
regardless of the workload, called idle power, which depends
only on the core type C (considering constant F and V). The
power spent to do actual computation Pact is called active
power. The total power of a power domain C is found as a
time-averaged active power added to the constant idle power:

Ptotal (C) = Pidle (C) +
∑
T

t (T)

texp
Pact (n, T, C) . (2)

The values for Pact and Pidle can be characterised offline
in a form of a table function. However, the exact value of
t (T) is known only during run-time. In our work, we use
stochastic modelling to predict this value. The parameters for
workload prediction models include the spawn rates for the
tasks and the average CPU time required to complete a task
(completion rates). It is reasonable to assume these are known
to the model designer.

The presented simplified power model does not take into
account system temperature. In fact, it is suspected to be the
main source of error in our experimental results, as the models
were characterised on fully-loaded cores, much hotter than
during the actual experiments. This baseline error contributes
to all layers of abstraction, including the detail model. The
focus of the presented research is to investigate the additional
error due to black-boxing.

C. Experiment Setup

Figure 5 shows the model evaluation framework. The fixed
rates are used to generate random execution traces – list of
task spawning events, affinities, and completion events. These
traces are executed on the platform to produce power traces –
sets of timestamped power measurements. At the same time,
the rates and platform characteristics are used to parametrise
the SAN models, which are analysed in the Möbius tool.
The models do not know the actual execution traces. The
mean power from the model analysis is then compared to the
mean power obtained from the power traces to estimate the
modelling error. The computational cost (time) of analysing
the models is also evaluated.

Execution traces reflect the following scenarios of the
system operation. During the experiment, two types of tasks

Rates:

- types of tasks

- task spawn rates

- task completion rates

- affinity weights

abstract SAN
model

cross-layer SAN
model

detail SAN
model

Characterised P

Generated random
execution traces

ODROID
Experiments

Power traces

Pestim

Pactual

Error

Cost

Simulation / Analysis
in Möbius tool

Figure 5. Model evaluation framework.

(T0 and T1) spawn continuously. The spawn intervals, in
ms, are exponentially distributed with rates respectively
λspawn,T0 = 0.003 and λspawn,T1 = 0.002. Both tasks
are CPU-heavy: T0 performs a floating point square root
computation in a loop; T1 performs integer multiplication
and addition. The tasks are then scheduled on the available
cores. In order to increase the heterogeneity of the system,
we assigned different probabilities to scheduling onto different
cores (affinity weights) providing three possible scenarios:
Scenario EQ represents equal scheduling chances for all cores
regardless on their type, Scenario CA differentiates between
cores, while Scenario TCA has weights dependant on the type
of a task as well as the core.

Each tasks is executed on a core until it is finished and
then removed. Completion times are random and exponen-
tially distributed1 with constant rates (the frequencies of the
cores are kept unchanged during the experiments). In real-
life situations, low-power A7 cores typically operate on lower
frequencies than A15, so their performance is reduced. To
mimic this behaviour in the experiments, A15 is set to work
approximately twice as fast as A7, and the completion rates
for A7 domain in the model are halved. The rate values are
shown in Table I as “target completion rates”. During the
model characterisation, these values are re-adjusted for more
precision, as discussed in Section III-D.

D. Characterisation Experiments

Platform characteristics required to parametrise the models
include per-core power consumption for each core type when
idle and when running each type of a task. We set A7 cores to
run at 1000MHz, and A15 cores are set to run at 1800MHz.
The core frequencies are set below the highest mark to avoid
throttling. Since the power can be measured only per domain,
which consists of 4 cores, it requires additional experiments
and calculations to be performed.

Idle power is measured directly for each power domain.
Core0 is reserved for running the OS, the scheduler, and
the power trace logger, and is not used directly for running

1We had to limit our examples to exponential distribution in order to test
Markovian solvers. In simulation-only studies, any other random distribution
can be programmed in.

Table I
POWER AND TIME CHARACTERISTICS

domain A7 A15
number of cores N 3 4

idle power, W 0.0737 0.6211
task T0 T1 T0 T1

1 core active power, W 0.1392 0.1427 1.4684 1.4281
N cores active power, W 0.2703 0.2771 4.0101 3.9066

exec time, ms 8745 9730 9827 8184
target completion rate 0.001 0.0015 0.002 0.003

adjusted comp. rate 0.00114 0.00154 0.00204 0.00367

the experiments. Its impact on power consumption is viewed
as a background noise included in the idle power of the
A7 domain. To measure the active power we ran each task
separately on each domain, i.e. providing characterisation
data for each 〈T,C〉 pair. Also, since we didn’t know if
the power consumption scales linearly by adding more cores,
we ran each set on 1 ≤ n ≤ N active cores. The active
power of a single core is then related to the measured power
as Pact (1) = (Pmeas − Pidle) /n + Pidle. Similarly, the
power of running all cores in the domain is Pact (N) =
(Pmeas − Pidle) · N/n + Pidle. All instances of measured or
computed values are within 3% range from the respective
mean values across all experiments with the exception of a
single A7 core executions, which deviate by 5%. This is within
the acceptable error range, so we can still assume linear power
scaling: Pact (n) = n · Pact (1). The final values used in the
model are shown in Table I.

Since rates and characteristics are the only things connecting
the models with the actual experiment, we take extra care
when generating traces and executing them on the platform. A
specialised scheduler has been designed to address this issue.

Each entry of the execution trace contains the timestamp of
spawning a task, the task type, its affinity and input data (a
single integer value T), which affects the task completion time.
To guarantee that the execution times follow the exponential
distributions with the given rates and to simplify the trace
generation, T is equal to the requested execution time in ms.
The tasks T0 and T1 henceforth are required to match their ex-
ecution time to T as close as possible. It is possible to achieve
by reading the system timer, but calling kernel functions may
cause unwanted interference. Instead, we achieve this by doing
a task in a loop and calibrate the number of iterations to
complete in the given time. The task calibration function for
some core i and task j is f (i, j, T) = xi ·yj ·T ; the constants
xi and yj are found experimentally: xA7 = 21, xA15 = 40
(confirming that A15 running at 1800MHz is roughly twice
as fast as A7 at 1000MHz), yT0 = 95, yT1 = 1700. Thus, for
example, in order to run T1 on A7 for 100ms, we need to
do 3,570,000 loop iterations. However, this calibration is not
perfect and requires further adjustment.

During the characterisation experiment, we request the tasks
to run for 10s by specifying T = 10, 000 and then measure the
actual completion time. Considering that the target completion
rates are used for generating the traces, but the actual times are
skewed, as shown in Table I, we apply a simple proportion to
calculate the adjusted completion rates to be used in the model.

T0 spawn T0 queue T0 sched
T0C0 exec T0C0 complete

C0 idle

T1C0 exec T1C0 complete

T0C1 exec T0C1 complete

C1 idle

T1C1 exec T1C1 complete
T1 spawn T1 queue T1 sched

Figure 6. Model for the naïve scenario leading to error contamination.

T0 spawn
T0C0 exec T0C0 complete

C0 idle

T1C0 exec T1C0 complete

T0C1 exec T0C1 complete

C1 idle

T1C1 exec T1C1 complete

T0C0 queue

T1C0 queue

T0C1 queue

T1C1 queue
T1 spawn

T0C0 sched

T1C0 sched

T0C1 sched

T1C1 sched

Figure 7. Fixed affinities in the scenario produce a better model.

IV. MODELS AND RESULTS

Following Section II-A, by using black-boxing some x cores
can be grouped into more abstract meta-cores combining the
performance, power consumption, and scheduling probabilities
of constituent cores. We sacrifice the accuracy by considering
the task completion in the meta-core to be exponentially
distributed with the rate λxexec, while it is in fact the sum
of exponential distributions.

The model template for scaling is a parametrised SAN
where the elements are replicated to a given target number of
system resources. In our case, the templates scale to n cores
and m tasks. Figures 6 and 7 show example models scaled to
2 tasks and 2 (meta-)cores. Hence, some model elements are
added per task (prefixed with Ti, 0 ≤ i < m), some appear per
core (prefixed with Cj , 0 ≤ j < n); the others are instanced
n×m times: per-core and per-task (interfaces). Different types
are shown in different colours. Colour is not a part of an actual
model and is used solely for visual aid.

All the scenarios in Section III use two types of tasks (m =
2), and the scaling is done only on the number of cores. The
models representing different levels of abstraction are:

3+4 model (n = 7) is the most detailed model considering

read

arc

Figure 8. Rules for SAN mapping to dependency graphs.

(a)

T0

T1

T0C0

T0C1

T1C0

T1C1

C0

C1

(b)

T0

T1

T0C0

T0C1

T1C0

T1C1

C0

C1

| e| | e|

Figure 9. Dependency graphs with highlighted error contamination paths:
(a) for Figure 6, (b) for Figure 7.

each core separately.
1+4 model (n = 5) is the model obtained using the

proposed method of selective abstraction. Here, three A7 cores
are grouped into a single meta-core representing the entire
domain.

1+1 model (n = 2) is the most abstract model with
two meta-cores, one representing the A7 domain, the other
representing A15.

Table I gives qA7 = 0.065, and from (1), under the
assumption of constant ∆ex, we have ∆E = 0.065 · ∆ex
for the (1+4) model. This assumption can be justified by
simulation results if∣∣E(1+4) − E(3+4)

∣∣ ≈ qA7 ·
∣∣E(1+1) − E(3+4)

∣∣ , (3)

where E(1+1), E(1+4), and E(3+4) are the total percentage
errors in the respective models.

The initial experiment setup was not specific on how
exactly task affinities are realised in the scheduler, so we
implemented two variants of the system and produced two
models respectively. Figures 6 shows the model of a system
with task-exclusive queues, where the scheduling weights are
applied after the queueing, which means that the scheduler
needs to check every core for availability. Figure 7 models
tasks with fixed affinities, i.e. the task is paired with a core
once it is spawned and then waits in the queue for this core
to become available (idle).

Unfortunately, the first implementation proved to be of a
poor quality because of error contamination due to a high inter-
dependence of its elements. Figure 9a shows its dependency
graph, obtained by the mapping rules from Figure 8. Let’s
assume C0 elements produce extra |∆e| due to black-boxing,
and C1 must be protected from error contamination. From the
graph, it is evident that there is a path connecting Co to every
other element in the model propagating the error. Figure 9b,
showing the second implementation, is able to contain the
error locally: it pollutes only the adjacent nodes, but keeps
C1 unaffected.

Table II
SIMULATION RESULTS COMPARED TO MEASURED VALUES

scen model pwr, W pwr var error sim, s
EQ 1+1 1.7662 0.0470 6.53% 2.535

1+4 1.7287 0.0424 4.27% 2.546
3+4 1.7215 0.0423 3.84% 2.764

meas. 1.6579 0.0572
CA 1+1 2.0205 0.0619 7.99% 2.545

1+4 1.9470 0.0468 4.06% 2.610
3+4 1.9421 0.0468 3.79% 2.764

meas. 1.8711 0.0385
TCA 1+1 2.0038 0.0608 10.41% 2.547

1+4 1.9274 0.0439 6.21% 2.613
3+4 1.9245 0.0440 6.05% 2.771

meas. 1.8148 0.0279

We were unable to find a way to resolve the contamination
by model transformation without changing the system’s beha-
viour, as the problem has roots in the functional properties of
a modelled system. This means that the algorithm modelled
by Figure 6 has no viable selective abstraction and system
redesign is needed (Figure 2). The main contribution of this
work is to detect and identify error contamination in models by
the structural analysis, as described above, before the model
is simulated. The rest of the paper uses the template shown in
Figure 7.

A. State-Space Analysis

Our investigation showed that state-space analysis has a
number of limitations compared to simulations. The presented
models have unbounded state spaces, and, unless we put a
hard constraint on the total number of tasks in the system, the
state-space analysis is not possible. From the task spawn rates
we know that on average the number of tasks spawned during
a 15s experiment is 75. The lack of scalability in state-space
analysis makes even this number infeasibly large. The highest
number that doesn’t fail to compute is 50 for the (1+1) model,
taking 5,729s of computation time on a 2-core Intel i7 5500U
machine. For more detailed models, the feasible number of
tasks goes down to 12 for (1+4) and 9 for (3+4), which is not
enough for trustworthy results.

Consequently, with the added restriction to exponentially
distributed rates, the state-space analysis methods appear
rather impractical for the presented application. We recom-
mend using simulations instead, reserving state-space analysis
only for model verification purposes.

B. Simulation Results

Table II present the power values obtained from simula-
tions in Möbius tool and compares them against the actual
power measurements. The simulation time is given for 1500
simulation batches, which are required for calculating 0.01
relative interval with 95% confidence. The variances have
been calculated separately over 20,000 simulation batches.
Experimental results are averaged over 50 random trace runs
for each scenario, and the variance is also calculated.

The achieved 4–6% accuracy meets the typical requirement
for system-wide power modelling and shows a good potential

0.35 0.36 0.37 0.38 0.39 0.4

0

5

10

15

20

25

30

Usability, t-1

Quality, e-1

"3+4"
"1+4"

"1+1"

baseline
trade-off

Figure 10. Simulation results in the Quality/Usability trade-off diagram

in using stochastic methods. The results justify (3), thus
confirming the expectations of selective abstraction metric: the
error added by moving from (3+4) to (1+4) model in compar-
ison to going from (3+4) straight to (1+1) is proportional to the
power output of A7 domain in relation to the total power. The
difference between simulation times, however, is not large and
appears to grow linearly with the model size in the presented
sample.

Figure 10 plots the simulation results in a Quality/Usability
trade-off space with the inverse of error e−1 representing Qual-
ity, and the inverse of simulation time t−1 being the metric
for Usability. The results demonstrate that the method allows
trading little accuracy for the steady increase in usability, and
demonstrates the scalability of SAN models for simulation
studies.

V. CONCLUSIONS

This work aims to produce a method towards scalable power
models for multi-core heterogeneous systems. We concentrate
on rationalising model sizes based on power-proportional
representation and stochastic modelling. A systematic ap-
proach to selective abstraction using OGs is developed. The
method includes ways of identifying error contamination and
determining boxability. Stochastic techniques are investigated
with SAN and Möbius. Selective abstraction is shown to be
effective for model size and designer effort reduction, and
SAN models are demonstrated to have excellent scalability for
simulations. In these ways our method supports the systematic
discovery of good trade-offs between modelling quality and
model scalability.

In addition to further improvements to the SAN model of the
platform by adding memory and cache, the future work may
include the application of cross-layer cuts to other modelling
methods.

Acknowledgement The authors want to thank Rishad
Shafik and Mohammed Al-Hayanni for useful discussions.
This work is supported by EPSRC as a part of PRiME project
EP/K034448/1. A. Aalsaud is supported by a postgraduate
studentship from the Education Ministry of Iraq

REFERENCES

[1] The gem5 simulator system. http://www.m5sim.org.
[2] The Möbius modelling tool. https://www.mobius.illinois.edu.
[3] Odroid XU3. http://www.hardkernel.com/main/products.

[4] Accellera systems initiative. IEEE 1666 standard: SystemC language
reference manual. http://www.accellera.org/, 2011.

[5] Synopsys. Primetime PX. https://www.synopsys.com/apps/support
/training/primetime_fcd.html, 2015.

[6] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini. Thermal and
energy management of high-performance multicores: Distributed and
self-calibrating model-predictive controller. Parallel and Distributed
Systems, IEEE Transactions on, 24(1):170–183, Jan 2013.

[7] M. Caldari, M. Conti, P. Crippa, G. Nuzzo, S. Orcioni, and C. Turchetti.
Instruction based power consumption estimation methodology. In Intl.
Conf. on Electronics, Circuits and Systems ’02, volume 2, pages 721–
724, 2002.

[8] M. Chen, D. Yue, X. Qin, X. Fu, and P. Mishra. Variation-aware
evaluation of MPSoC task allocation and scheduling strategies using
statistical model checking. In Proc. to DATE ’15, pages 199–204, 2015.

[9] X. Chen, G. Zhang, H. Wang, R. Wu, P. Wu, and L. Zhang. MRP:
mix real cores and pseudo cores for FPGA-based chip-multiprocessor
simulation. In Proc to DATE ’15, pages 211–216, 2015.

[10] A. Ehrenfeucht and G. Rozenberg. Zoom structures and reaction systems
yield exploration systems. In IJFCS, pages 275–306, 2014.

[11] P. Greenhalgh. big.LITTLE Processing with ARM Cortex-A15 & Cortex-
A7 – Improving Energy Efficiency in High-Performance Mobile Plat-
forms. ARM, 2011. White Paper.

[12] S. Kaiser, I. Materic, and R. Saade. ESL solutions for low power design.
In Proc. of the ICCAD, pages 340–343, 2010.

[13] V. Narayanan, I.-C. Lin, and N. Dhanwada. A power estimation method-
ology for SystemC transaction level models. In Proc. to CODES+ISSS
’05, pages 142–147, 2005.

[14] A. Rafiev, F. Xia, A. Iliasov, R. Gensh, A. Aalsaud, A. Romanovsky,
and A. Yakovlev. Order graphs and cross-layer parametric significance-
driven modelling. In Proc. to ACSD, 2015.

[15] A. Rafiev, F. Xia, A. Romanovsky, and A. Yakovlev. Error-based metric
for cross-layer cut determination. Technical Report NCL-EEE-MICRO-
TR-2016-201, School of EEE, Newcastle University, 2016.

[16] W. Sanders and J. Meyer. Lectures on Formal Methods and Perform-
ance Analysis, volume LNCS2090, chapter Introduction to Generalized
Stochastic Petri Nets, pages 315–343. Springer, 2001.

[17] T. Sassolas, C. Sandionigi, A. Guerre, J. Mottin, P. Vivet, H. Boussetta,
and N. Peltier. A simulation framework for rapid prototyping and
evaluation of thermal mitigation techniques in many-core architectures.
In Proc. in ISPLED ’15, 2015.

[18] M. J. Walker, A. K. Das, G. V. Merrett, and B. Hashimi. Run-time power
estimation for mobile and embedded asymmetric multi-core cpus. In
HIPEAC Workshop on Energy Efficiency with Heterogenous Computing.
HiPEAC, Jan 2015.

[19] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis,
and B. M. Al-Hashimi. Adaptive energy minimization of embedded
heterogeneous systems using regression-based learning. In Proc. to
PATMOS ’15, 2015.

[20] F. W. Zurcher and B. Randell. Iterative multi-level modeling - a
methodology for computer system design. In in Proc. IFIP Congress
68, pages 138–142. Press, 1968.

