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Abstract—For classical fault analysis, a transient
fault is required to be injected during runtime, e.g.,
only at a specific round. Instead, Persistent Fault Anal-
ysis (PFA) introduces a powerful class of fault attacks
that allows for a fault to be present throughout the
whole execution. One limitation of original PFA as
introduced by Zhang et al. at CHES’18 is that the
faulty values need to be known to the adversary. While
this was addressed at a follow-up work at CHES’20,
the solution is only applicable to a single faulty value.
Instead, we use the potency of Statistical Fault Anal-
ysis (SFA) in the persistent fault setting, presenting
Statistical Persistent Fault Analysis (SPFA) as a more
general approach of PFA. As a result, any or even a
multitude of unknown faults that cause an exploitable
bias in the targeted round can be used to recover the
cipher’s secret key. Indeed, the undesired faults in the
other rounds that occur due the persistent nature of the
attack converge to a uniform distribution as required by
SFA. We verify the effectiveness of our attack against
LED and AES.

I. Introduction
In 1997, Boneh et al. were the first to present that

errors during the computation of RSA with CRT can be
exploited to reveal a prime factor of the public modulus N
[BDL97]. Their findings triggered further research on how
to break cryptographic schemes by injecting a fault during
its execution. The most prominent fault analysis tech-
nique is Differential Fault Analysis (DFA) which exploits
the difference between correct and faulty results [BS97].
With DFA, it is possible to attack general Substitution-
Permutation Network (SPN) structures used in block
ciphers such as AES [PQ03]. Along with the differential
approach, statistical approaches to exploit faults have
been presented [DEK+16]. If the adversary does not have
precise knowledge of the fault model, Statistical Fault
Analysis featuring the Squared Euclidean Imbalance (SEI)
can be used [Riv09]. In contrast to DFA, Statistical Fault
Analysis (SFA) allows for faulty-ciphertexts-only attacks
[FJLT13].

Although various further analysis techniques against
different cryptosystems have been proposed, almost all of
them have in common that they need for the injected fault
to be transient. Transient faults only exist for a limited
period of time after which the original value is restored.
Opposed to this, a permanent fault can be regarded as

a destructive manipulation of the device, which cannot
be reverted. For persistent faults as third type, the faulty
value is stored until it is overwritten or the device is reset.
For example, when a value within the memory storing an
SBox is faulted, this means that the faulty value might
be accessed at multiple rounds. A successful attack in
this scenario was presented by Zhang et al. in [ZLZ+18]
as Persistent Fault Analysis (PFA). Unfortunately, the
exact position (or value) of the fault had to be known
or brute-forced. This limitation was improved recently by
extracting the actual faulty value beforehand [ZZJ+20].
However, this improvement can cope only with single-value
faults.

We generalize those attacks on persistent faults and
present an attack that can handle a multitude of unknown
faulty values, e.g., in the SBox memory. To this end, we
extend the well-known concept of SFA by introducing
persistent faults as used in PFA, resulting in Statistical
Persistent Fault Analysis (SPFA). Inherited from classical
SFA, we only require that the persistent fault creates some
form of bias of internal states (which is usually the case,
cf. [GYTS14], [DEK+16]). For SFA, this bias as deviation
from an uniform distribution is only visible for the correct
key hypothesis. Our basic assumption in the persistent
setting is that faults occurring in the other rounds will only
have a limited effect on the targeted round. This is due to
the still existing diffusion properties of the cryptographic
primitive that will eventually spread the undesired faults
to become closer to a uniform distribution. Indeed, we
show that our attack succeeds even if the fault is present
throughout the whole encryption and allow for single and
especially numerous affected bytes, e.g., within one S-
Box. To practically evaluate the potency of our attack,
we perform SPFA on two block ciphers, LED and AES.

II. Background and Related Work

The permanency of a physical fault is often consid-
ered as one central parameter for fault attacks [GT04],
[VKS11]. A physical fault injection might result in a fault
that is either:

• transient, for example only for the duration of the
physical effect,

• persistent, e.g., when stored in memory or registers
until the value is overwritten or the device is reset,
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• permanent, sometimes also termed as destruc-
tive [KSV13].

Despite some early work on permanent faults targeting
asymmetric schemes [YMH03], persistent or permanent
fault analysis received little attention for a long time.

In contrast, there are numerous examples of physi-
cal faulting methods that indeed actually result in a
non-transient behavior: For example, [VKS11] points to
physical faults that might permanently destroy parts
of the circuit, e.g., burnout or latch-up faults. Further,
Rowhammer-style attacks create persistent bit flips in
DRAM [KDK+14]. The same holds for other storage
elements, e.g., when focusing a laser beam on SRAM
cells, a faulty value might be stored until the cell is
overwritten [SA02]. The initial work by Skorobogatov
et al. triggered an arms race at which technology node
one could still inject single bit faults into SRAM us-
ing lasers. The established limit seems to be at 45nm
feature size [SBHS15] where multiple cells become af-
fected. Indeed, more recent work targets much larger flip-
flops instead of SRAM at 28nm [DBC+18]. Swierczynski
et al. observed control flow alterations when tempering
with the bitstream configuration of FPGAs [SBMP18],
which can be seen as a persistent fault attack as well.
Thus, especially for the latter methods, we might observe
multiple persistent faults per fault injection.

The topic of persistent fault analysis was picked up
in 2018 by Zhang et al., introducing the notion of PFA
[ZLZ+18]. In 2019, Gruber et al. presented how to at-
tack the CAESAR finalists COLM, Deoxys and OCB
using PFA, and confirmed their results using simulation
[GPT19]. Using the same strategies presented by Zhang
et al., the authors experimentally prove the applicabil-
ity of PFA and give numbers on the amount of faulty
ciphertexts needed. Caforio et al. use PFA to recover
secret Sbox tables using the example of PRESENT and
AES [CB19] while Pan et al. investigate the security of
masking schemes against PFA, practically showing that
one persistent fault is enough to break masking at any
masking order d [PZRB19]. The initial work by Zhang
et al. was later improved in [ZZJ+20], reducing the number
of required faulty ciphertexts and allowing for unknown
single-byte faults. However, note that a smaller number of
required faulty ciphertexts is of minor importance in the
persistent fault setting, as they ideally do not correspond
to multiple physical fault injections.

III. Persistent Fault Analysis
As our work mainly relates to Persistent Fault Analysis

(PFA) as introduced by Zhang et al. in [ZLZ+18] and
[ZZJ+20], we introduce their notion and results in more de-
tail. A persistent fault persists until the device is restarted,
hence, likely for the duration of several executions. Due
to this behavior, PFA is not restricted to a single, very
precise fault injection in some last rounds of the computa-
tion, but typically faults persist and will occur in several

rounds. Hence, opposed to classical fault analysis, faults
do not need to be injected during runtime. Considering the
implementation of a block cipher, a typical target for such
a fault is memory holding for example a look-up table.

PFA is a faulty-ciphertext-only analysis, hence, it is
not required to repeat the encryption of a plaintext in
both a faulty and fault-free setting such as in typical dif-
ferential analyses. Instead, it relies on statistical analysis
to recover the key. Still, opposed to permanent faults or
device defects which would allow for a similar analysis, the
original behavior can be restored, i.e., the potential victim
is oblivious to the attack once the device is restarted.

Given the first precise definition of PFA in [ZLZ+18],
Zhang et al. present the following fault model for persis-
tent faults on block ciphers:

• Faults are injected prior to the encryption, altering a
stored constant e.g., in a look-up table

• The injected faults are persistent, hence, all following
encryptions are subject to the faulty constant. To
restore the original constant, the device needs to be
restarted.

• Multiple corrupted ciphertexts can be collected.
Using this fault model, the authors show how PFA can

be used to attack the last round of a standard SPN block
cipher when inducing a persistent fault into the Sbox. For
a successful recovery of the last round key, the adversary
calculates the statistical distribution of each element of
the ciphertext over a large amount of ciphertexts. Then,
knowing which value v of the Sbox has been altered, he
can deduce the correct key element kj by kj = v ⊕ tmin,
where tmin is the value that has occured least in the
ciphertexts. The authors present two further strategies to
exploit persistent faults by either only knowing which Sbox
element is faulty or both location and the value of the
fault, and all three are then practically verified against
an AES implementation with a single persistent fault in
its Sbox. Additionally, the authors show how to adopt
their single-fault analysis to work in a multi-fault, i.e.,
several faults per Sbox, setting. Depending on the amount
of faults, the authors show that the residual key entropy
clearly increases, and suggest that for key entropies beyond
brute-force search PFA needs to be extended to the last
but one round.

In [ZZJ+20], the authors practically perform PFA using
laser-based faults to attack an Sbox stored in the SRAM of
a ATmega163L microcontroller. Since knowing properties
of the Sbox fault such as location and value is not feasible
in this practical setting, they improve PFA threefold: By
using the Maximum Likelihood Estimation (MLE), the
amount of ciphertexts needed to find the value for tmin
can be reduced. Additionally, they present how to perform
PFA knowing neither the value of the fault nor its location,
for single faults. For multiple faults — presented in the
case of a double fault — MLE can be used to reduce the
amount of ciphertexts, but location and value of the fault
again need to be known.



IV. Statistical Persistent Fault Analysis
So far, PFA has been presented as a successful strategy

to attack SPN based block ciphers such as AES. Although
for single faults it was recently shown that PFA is able to
extract the secret key even in pratical settings i.e., under a
random fault, for multiple faults more details of the fault
such as its value or location need to be known.

A. Combining PFA and SFA
Our work expands classical PFA to show that even

for multiple faults neither the position of the fault nor
the value of the faults needs to be known, allowing for
faults beyond the control of the adversary. To enable
this, we combine SFA with PFA to SPFA, gaining a fault
model that offers the best of both worlds. In particular,
with respect to SFA, we refer to the works of Fuhr
et al. [FJLT13] and Dobraunig et al. [DEK+16]. Both
works attack AES in the penultimate round, and use the
statistical measure Squared Euclidean Imbalance (SEI) to
identify the distance between the uniform distribution,
which is expected in the error-free scenario, and the
hypothetical distributions due to the injected fault. For
the correct key hypothesis however, the SEI should peak
as the faulty intermediate will cause some bias in the
distribution. Instead, wrong key guesses will not stand out
because they would result in an approximately uniform
distribution. Note that attacking the last round of a
typical SPN is not beneficial for the attack, since the
permutation layer only permutes number of occurrences
for each (faulty) value, but all key hypotheses are equally
likely. Only if the error is distributed non-linearly i.e.,
via a substitution layer, the correct key hypothesis stands
out. Hence, for a typical block cipher that is based on a
SPN, attacking the last but one round achieves the desired
behavior.

B. Fault Model
Our relaxed fault model is as follows:
• The adversary can insert faults prior to the encryption

by making changes to stored constants in e.g., a look-
up table

• The impact of the fault can range from single-byte
errors to a larger structure e.g., several rows of a look-
up table

• The injected faults are persistent, hence, all following
encryptions are subject to the faulty constant. Origi-
nal behavior can be restored via restart of the device.

• The exact position or value of the faults does not need
to be known, the faults need to cause a non-uniform
distribution.

• The adversary can collect multiple faulty ciphertexts.
Note that our attack does not require collecting fault-free
ciphertexts or multiple fault injections and corresponding
faulty encryptions to extract the entire key. Thus, the
attack works in the permanent fault attack scenario as
well. In the following, we will explain how to conduct the
attack step-by-step.

C. Description of the Attack
In accordance with the fault model, an adversary needs

the following steps in order to perform the attack. In
classical block ciphers, the Sbox look-up table offers a
meaningful target for PFA, hence, the following descrip-
tion targets the Sbox layer.

Preparation: First, the adversary needs to inject per-
sistent faults into the Sbox look-up table prior to the
encryption. This faulty Sbox S̃ will be used throughout
the encryption process and the faults will persist until
the device under attack is restarted. For our experiments,
we consider a serial implementation of the Sbox i.e., the
same Sbox is used for all 16 bytes of the state. However,
SPFA works similarly for parallelized implementations,
e.g., featuring an individual Sbox for each byte of the state,
since the attack operates on byte-level.

Collection: Next, N faulty ciphertexts c̃ are collected.
Note that due to the statistical nature of PFA, neither
plaintexts nor correct ciphertexts are needed for the anal-
ysis.

Analysis: Then, the adversary chooses for which target
byte t in which round r he wants to observe the bias. Using
an error-free implementation, the faulty ciphertexts are
used to predict the value of said byte, under all possible
key hypotheses, at position of the exploitable fault. In
other words, the decryption is computed backwards to-
wards the fault. To measure for which key hypothesis k̂
the distribution of the target byte t becomes non-uniform,
the SEI value SEI(k̂) is then computed as:

SEI(k̂) =
2s−1∑
δ=0

(
#{i | S̃(k̂,c̃i)

r [t] = δ}
N

− 1
2s

)2
.

Here, s is the bitlength of the target byte, hence, the 2s
gives the amount of different values δ the target byte have.
Since this hypothetical intermediate value δ is computed
using a fault-free implementation, for a wrong key candi-
date, each value of δ is supposed to occur equally often
using a sufficiently large amount of faulty ciphertexts.
However, for the correct key candidate, the distribution of
the target byte becomes non-uniformly i.e., some values of
δ are more likely to occur.

Note that the SEI requires that S̃
(k̂,c̃i)
r [t] does not

linearly depend on the inputs. Also, the influence of faults
that occur in rounds before (and, to some extent, after) the
targeted round is negligible. This is due to the avalanche
effect in typical block ciphers, spreading a respective error
so that the distribution converges to a uniform distribu-
tion.

Key Recovery: The SEI value is used as a ranking
to identify the correct key, where the highest SEI value
indicates the best key candidate. Depending on the target,
in order to obtain the encryption key, additional steps such
as reverting the key schedule might be needed.

D. Comparison with classical PFA
Comparing our model with classical PFA, we want to

highlight the advantages and disadvantages of SPFA.



Advantages: The adversary does not need to know
the position of the fault even for multiple faults i.e.,
unpredictable faults are allowed. Although the authors
of [ZLZ+18] consider it an advantage that PFA does not
need any biased faults, with SPFA the bias enables the
adversary to exploit faults beyond his control, such as
manipulating a bitstream to induce faults in the Sbox,
as practically shown by Szwierczynski et al. in [SBMP18].
As a direct consequence, multiple faults are possible and,
to a certain extent, more faults even reduce the amount of
faulty ciphertexts needed (cf. Section V-D). Also, opposed
to Zhang et al., no further brute-force search is required as
our method finds the corresponding key candidates instead
of a key entropy.

Disadvantages: For single faults in the Sbox, the SPFA
requires a larger amount of faulty ciphertexts. Likewise,
since the analysis requires computing the SEI for all
key guesses and all ciphertexts, the computation time is
somewhat increased, especially when only a single byte is
faulty.

Countermeasures: When first introducing PFA, Zhang
et al. examined its potency against countermeasures such
as redundancy. Redundancy would require the same faulty
Sbox in all instances. Due to the persistent nature of the
fault, the same result will be computed if temporal redun-
dancy is used. Spatial redundancy will of course detect
the (persistent) fault if only one instance is faulted. Also,
SPFA features the same fundamental assumption as PFA
with respect to attacker and fault model, hence, we assume
a similar attack as presented by Pan et al. in [PZRB19] to
be possible using SPFA. Analyzing the possibilities when
allowing multiple faults is an interesting idea for further
research.

E. Ineffectiveness Ratio of SPFA
Due to the persistent nature of the faults in SPFA, we

allow for a variety of faults to occur during the computa-
tions. Consequently, not all of these faults are exploitable
by the underlying SFA: SFA requires a faulty computation
to occur at the target byte, typically in the penultimate
round, but no further faults in the last round, to allow for
the fault-free decryption to said target byte. Considering
the amount of persistent faults in the SBox, for SPFA to
perform best we require that a) the target byte causes a
faulty output after the SBox of the penultimate round and
b) no additional fault that disturbs the decryption of the
target byte occurs afterwards.

To quantify this, we define the ineffectiveness ratio as
the amount of input values that cause fault-free outputs
divided by all possible inputs. A small amount of faults
results in a large ineffectiveness ratio, hence, a larger
amount of ciphertexts is needed to achieve the desired
bias in the penultimate round. At the same time, however,
the probability for an error to occur in the last round is
relatively small. Then again, a large amount of faults leads
to a small ineffectiveness ratio, an erroneous computation

at the target byte in the last but one round is very likely.
However, the same holds for an error in the last round,
hence, only a few ciphertexts will fulfill the requirements
a) and b).

Hence, there exists an optimal amount of error in
the SBox such that SPFA can exploit a maximum of
the ciphertexts collected. The results of an experimental
approach to find such said optimum are discussed in
Section V-D.

F. Comparison with classical SFA
Keeping in mind the discussion above, we would like

to point out the strengths and limitations with respect to
classical SFA. Classical SFA typically relies on a transient
fault model, i.e., the adversary needs to induce the fault
during run-time, e.g., in the penultimate round. Hence,
an adversary is faced with problems such as timing as
well as accessibility in order to launch the attack. While
inducing the faults is more of a challenge, if successful,
SFA needs only a small number of faulty executions due
to the determined injection of said faults.

Opposed to this, due to its persistent nature, SPFA
allows for a more relaxed fault model, i.e., the adversary
can induce faults offline. However, the adversary might not
be able to influence the faults such that the desired faulty
computations will take place at his target location, cf. Sec-
tion IV-E. Hence, a larger number of faulty computations
will be needed, which might be a limiting factor depending
on the target.

V. Practical Evaluation
We implemented two case studies in C++ in order to

simulate our attack. Since computing the SEI requires it-
erating over all key hypotheses and ciphertexts, its compu-
tation can be easily multi-threaded to reduce computation
time. In our setting, we used an IntelCore i7-6700 with 8
threads, but more threads could easily be used as well.

A. General Set-Up
The basic implementation of the attack is as follows,

based on Sect. IV-C: In our implementation, the Sbox is
stored as a static table, and we manipulate (parts of) it to
induce the persistent fault in every round (Preparation).
Note that for our experiments, we use a serial implemen-
tation with one SBox for all bytes. Then, we collect faulty
ciphertexts and store them along with the encryption key
(Collection). Afterwards, we calculate the SEI value for
each key hypothesis, the key hypothesis with the highest
SEI value is our best key candidate (Analysis). Due to the
structure of the attack, the analysis phase can recover only
a part of the key, e.g., 4 bytes in the case of AES, hence, it
needs to be repeated to get all key candidates. Note that
we do not need additional physical faults for the remaining
candidates. Finally, we use the key candidates to recover
the original (last round) key and then derive the original
encryption key (Key Recovery).



B. Case Study: LED
As a first case study for our analysis, we picked the LED

block cipher [GPPR11].
1) Brief Overview of LED: LED is an AES-like

lightweight 64-bit block cipher first introduced at CHES
2011. It comes with two standard key length of 64 resp.
128 bit and a block size of 64 bit. In our attack, we will
focus on the 64-bit variant consisting of 32 rounds.

(a) Workflow of the LED encryption.

(b) Round function.

Fig. 1: Block diagram of LEDs round and encryption
function as depicted in [GPPR11].

The round function operates on a 4×4-nibble state
matrix similar to the AES state and features an Add-
Constants, a SubCells, a ShiftRows and a MixColumns
operation, cf. Fig. 1: AddConstants (AC) combines the
round constants with each nibble of the state via exclusive-
or. SubCells (SC) replaces each nibble of the state by
its corresponding Sbox entry, here, LED makes use of
the 4-bit Sbox of PRESENT. ShiftRows (SR) rotates
each row of the state a fixed amount of positions to the
left. MixColumns (MC) multiplies each column of the
state with a matrix M and stores the result back in the
same column. Every four rounds, the AddRoundkey (AK)
operation combines the key nibble-wise with the current
state by exclusive-or. To encrypt the 64-bit plaintext, it is
loaded into the state matrix and likewise, after the final
AddRoundKey, the ciphertext is extracted from the state
matrix.

2) Description of the Attack: To induce the persistent
fault for our experiments, we randomly exchanged one
of the 16 entries of the Sbox, i.e., one entry is missing
while another one is doubled. This Sbox is then stored
and accessed in every round of the LED cipher, hence,
every call to the Sbox could potentially result in a faulty
return value. In order to allow the error to create a bias
in the distribution, we exploit an Sbox fault in round 31,
cf. Section IV. Figure 2 depicts how said error gets spread
during the following operations, until at the end of round
32 the entire state is faulty. Note that we only show a single
fault, additional faults might happen simultaneously.

Our 4-nibble key hypothesis is XORed to one row of
the ciphertext and then we compute backwards towards
the Sbox in round 31, i.e., the red marked state entry in
Fig. 2. Opposed to AES, LED features a MC operation

in its last round. Hence, to be able to revert the MC
operation in round 31 while taking into account the MC
operation in round 32, we need to analyse the state row-
wise. Computing the SEI, we gather a ranking which
key hypothesis is our best key guess and store this key
candidate. These steps are repeated until we have a key
guess for each row resp. nibble of the ciphertexts. After
collecting key candidates for each row of the state, we need
to revert the final MC operation to recover the correct key.
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Fig. 2: How a hitting a fault spreads in the last rounds for
LED.

3) Results: In order to gather a respectable statistic
about its success, we conducted the attack on LED in an
iterative manner for 50 random key values, using random
plaintexts for each encryption. Taking a look at the three
phases of the attack, collection, analysis and key recovery,
the analysis phase computing the SEI requires most of the
time. For each run, we collected 1000 faulty ciphertexts.
On our target machine, identifying the best key candidate,
i.e., computing the SEI for all key hypotheses, takes less
than 90 seconds per row. Hence, completing the analysis
phase for a single test case takes approximately 5 minutes,
whereas collection and key recovery take mere millisec-
onds. Considering the success rate of our analysis, for 50
test cases i.e., random keys and plaintexts, we were able
to correctly recover all 50 secret keys.

C. Case Study: AES
LED’s smaller state resp. key sizes drastically reduces

the computation time for the SEI values, while its similar-
ity to AES still allows for gathering first insights on the
applicability on AES. Hence, after analyzing the potential
of SPFA on the LED cipher, we adapt the analysis to run
on AES. In comparison to LED, AES has a block size
of 128, hence, its state matrix is organized in 4×4-bytes
matrix. With a key size of 128 bit, an AES encryption
takes 10 rounds, hence fewer rounds than LED, and the
MC operation is missing in the final round. Instead of
LED’s AddConstants step, a different subkey is added
at the end of every round of AES. Similarly to LED,
we exchange part of the AES Sbox with random entries,
starting with only one of the 256 entries. Note that the
amount of faults does not influence the course of the
analysis, hence, the following description is generic. In
Section V-D, we present a more detailed overview on how
the different fault scenarios influence the analysis.



Following Fuhr et al. [FJLT13], we attack the penulti-
mate round of AES, cf. Section IV. The attack can recover
a quarter, i.e., four byte, of the key, hence, to retrieve the
whole key, it needs to be repeated four times. Naturally,
each run utilizes a new column of the faulty ciphertexts
to regain the corresponding part of the key.

Figure 3 depicts how a fault in round 9 further influences
the state. Compared to LED, it is clearly visible that the
missing MC operation in the final round causes the error
to influence fewer bytes in the final state.
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Fig. 3: How a fault spreads over the last two rounds of
AES.

In a first step, we use the 4-byte key hypothesis k10 and
one column of the faulty ciphertext c̃i with i = 0, 1, 2, 3 as
input to invert the final AK layer in round 10, then, we
calculate backwards to the SB operation in round 9. Note
that Fuhr et al. showed that using the SEI distinguisher,
instead of inverting all operations, it suffices to merely
invert the last round and the MC operation of round 9,
omitting the AK layer in round 9 completely. Hence, the
hypothetical state S̃9 after the Sbox fault in round 9 can
be computed by S̃9 = MC−1 ◦ SB−1 ◦ SR−1(k10 ⊕ c̃i),
cf. [FJLT13]. For our target byte in S̃9, i.e., the red state
in SB of round 9 in Fig. 3, the SEI is then computed for
every key hypothesis. Again, the key hypothesis with the
highest SEI value is our best key guess.

Naturally, we expect a higher computation time due to
key and state size compared to LED. For each column of
the AES state, the complexity is 232 · SEI(k̂). Depending
on the amount of ciphertexts needed, a naive implemen-
tation will take several hours. Hence, to enable a larger
study on the effect of fault position, amount of faults, and
number of ciphertexts needed, we fix 2 byte of the key. The
corresponding results can be found in the next section.
Using the insights of said study, we confirmed our results
by conducting a full-key search, needing only a negligible
overhead of ciphertexts.

D. Insights on AES
We conducted different fault scenarios on AES to gain

insights about how they influence the success of our attack.
First, we only exchanged one entry of the 256-byte Sbox.
Since in this scenario we expect an exploitable error to
occur only every 64 ciphertexts, the amount of faulty
ciphertexts needed is higher than for the single-byte fault
in the LED Sbox. Our initial estimation suggests that an

(a) Less than 5,000 faulty ci-
phertexts needed.

(b) More than 10,000 faulty
ciphertexts needed.

Fig. 4: Experimental mean of amount of faulty ciphertexts
needed depending on error, computed with 2 keybytes
fixed.

amount of 30000 ciphertexts allows for a sufficient amount
of faulty ciphertexts to conduct our analysis. In order to
specify this assumption, we ran 10 tests with increasing
amounts of random plaintexts resp. faulty ciphertexts for
each column. Our analysis shows that the amount of
faulty ciphertexts strongly depends on the input. For a
single byte error, the amount ranges from 7500 to 23000
ciphertexts (Fig 4).

Next, we want to investigate how “faulty” the Sbox can
be, i.e., how many faulty entries still lead to a successful
attack. Hence, we successively exchanged the rows of the
Sbox with rows with faulty entries and launched the attack
with an increasing number of randomly chosen ciphertexts.
See Section V-E for a different approach to induce faults
into the Sbox.

Starting with a single faulty row, the correct key could
be found surprisingly fast compared to the single byte
case i.e., on average 1645 ciphertexts suffice. We continued
to exchanged row after row until half of the Sbox was
corrupted. Figure 4 aggregates our results. Our experi-
ments show that the optimal amount of faults with respect
to computational complexity is around two rows i.e., 1
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of the Sbox. Further experiments have shown that the
optimum for a serial implementation resp. only faulty
SBoxes is 32 i.e., two rows, confirming our results. For
parallelized implementations that instantiate an Sbox for
each byte, the amount of faulty entries with the optimal
ineffectiveness ratio also depends on the overall number of
faulty Sboxes, cf. Section IV-E.

#faults #ciphertexts complexity
w/o MLE MLE our work Zhang our work

1 2273 1641 15650 0 250

2 ca.2000 n/a 7775 216 250

8 ca.2000 n/a 2008 250 250

16 ca.2000 n/a 1643 264 250

TABLE I: Comparison of the complexity of our experi-
mental results with the works of Zhang et. al.

Comparing our results with PFA as presented so far, we
experience a trade-off between the amount of ciphertexts



(a) Result for a single faulty
byte, on average.

(b) Result for two faulty rows,
best case.

Fig. 5: Number of ciphertexts for a successful attack,
experimental results.

needed for the attack, and the residual key entropy resp.
complexity as shown in Table I: For up to 16 faults,
i.e., one row of the Sbox table, Zhang et al. presented
results for PFA without using MLE in [ZLZ+18]. Although
our analysis is computationally expensive i.e., 250 for the
complete key, so is the required brute-force search to find
the remaining key bits. For up to eight faults, less than
50 bits need to be brute-forced using classical PFA, with
exactly eight faults, both SPFA and PFA perform equally,
and for more than eight faults SPFA performs better.

Although the amount of faulty ciphertexts is not of great
importance in the persistent setting, our experiments show
that for eight faults, the average amount of ciphertexts
needed for SPFA is equal to PFA without MLE. Using
MLE reduces the amount of ciphertexts needed for PFA.
The authors do not extent their results to more than two
faults, but similarly to the results in [ZLZ+18], we expect
this amount to remain constant in the multi-fault setting.
For 16 faults, the average amount of ciphertexts needed
in our experiments equals the amount for PFA with MLE.
For more than 16 up to 24 faults, this amount is further
reduced using SPFA, hence undercutting the expected
number needed, even when using MLE.

Summing up, for more than eight faults, SPFA outper-
forms PFA in terms of complexity and number of faulty
ciphertexts needed. Our experiments show that SPFA has
its optimal configuration around 32 faults, hence, should
be the method of choice for larger numbers of faults.

E. Cutting Wires of Sboxes
The results presented so far mostly correspond to the

faulted Sbox-memory scenario, e.g., for microcontroller
implementations. In this scenario, the adversary has con-
trol about the number of faults to inject. Now, we discuss
the hardware or faulty bitstream case: Here, an adversary
might not be able to manipulate the Sbox that freely. In-
stead, especially in the multi-fault setting, errors could oc-
cur by destroying parts of the Sbox storage structure e.g.,
by cutting a wire or manipulating bits of a bitstream as
presented in [SBMP18]. Especially due to recent success-
ful attacks against Xilinx bitstream encryption [EMP20],

(a) Original wiring at gate 222.

(b) First input of gate 222 fixed to 0.

Fig. 6: Modifying wires of the AES Sbox

using SPFA when meddling with the bitstream to create
persistent errors becomes an interesting target. Such an
error would cause faults at random positions in the Sboxes,
and not necessarily on byte level, but instead only single
bits of certain entries might flip. To simulate such faults,
we used the free software tool “Logic Friday”1. Logic
Friday takes as input either a truth table, an equation
or a gate diagram and enables the user to modify either of
them and views the resulting other two. Hence, entering its
truth table, it is possible to manipulate the gate diagram
of the Sbox by removing wires or exchanging constant.
The result is a new truth table which can again be used
in our analysis.

1) AES: In order to induce a more natural random fault
into the AES Sbox, we mapped the Sbox truth table to
a corresponding gate diagram. Then, in the resulting gate
diagram, a random gate is picked and modified, e.g., an
input is fixed to a constant. Figure 6 depicts gate222 before
and after fixing one of its inputs to a constant 0.

The faults in the resulting Sbox spread much wider than
in our original test cases, i.e., there are faults in almost
every row but some of them are only faults on bit level.
In total, a fault is introduced in approximately a fourth
of the Sbox. As expected, a successful analysis is possible
with this Sbox configuration. Again, the amount of needed
faulty ciphertexts strongly depends on the inputs. For
each column, we ran 10 tests on different plaintexts for
our tested key. The results are similar to those of the
Sbox configuration with four faulty rows, as both results
in a fourth of the Sbox being corrupted. Hence, for our
analysis, it does not matter if the fault is spread over the
Sbox or not, only the amount of faulty values influences
how many faulty ciphertexts are needed, as shown in
Fig. 7. Also, in this setting, the faults are often only on bit
level, i.e., only a single bit is flipped, whereas in Sect. 4,
the faults are usually on byte level. Still, as the number
of faulty elements is the same, the nature of the fault per

1Logic Friday can be found at https://download.cnet.com/
Logic-Friday/3000-20415 4-75848245.html

https://download.cnet.com/Logic-Friday/3000-20415_4-75848245.html
https://download.cnet.com/Logic-Friday/3000-20415_4-75848245.html


(a) New wiring in comparison
with faulty rows.

(b) Correct key on average af-
ter approx. 2200 faulty cipher-
texts.

Fig. 7: Results of our analysis with the Sbox altered.

element does not matter for the complexity of the attack.
Figure 7 summarizes these results.

VI. Conclusions
We combinethe well-known concept of SFA by intro-

ducing persistent faults as used in PFA to allow for a
more relaxed fault model. Opposed to PFA presented so
far, even for multiple faults, the adversary needs to know
neither the value nor the position of the fault. Hence,
additional attack scenarios, such as random manipulations
of the SBox, become feasible. As exploiting multiple faults
is feasible and even beneficial for the analysis, SPFA allows
for random faults in larger settings e.g., faults on gate level
or manipulation of bitstreams. We verified our results by
simulating our attack for the block ciphers LED and AES.
For AES, we additionally identified the optimal number
of faults with respect to computational complexity. Our
experiments show that manipulating almost half of the
Sbox still allows for a successful key recovery, albeit need-
ing a larger amount of faulty ciphertext and computation
time, respectively. For future work, it might be interesting
to analyze if exploiting ineffective faults such as in intro-
duced in Statistical Ineffective Fault Analysis [DEK+18]
optimizes our attack even further: These ineffective faults
lead to seemingly fault-free ciphertexts, undetectable by
most countermeasures, while still showing an exploitable
non-uniform distribution. Also, it might be an interesting
idea to test SPFA against other Sbox designs such as e.g.
the Canright Sbox for AES.
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