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Abstract— In this paper, we present a method for human
full-body pose estimation from Time-of-Flight (ToF) camera
images. Our approach consists of robustly detecting anatomical
landmarks in the 3D data and fitting a skeleton body model
using constrained inverse kinematics. Instead of relying on
appearance-based features for interest point detection that can
vary strongly with illumination and pose changes, we build
upon a graph-based representation of the ToF depth data that
allows us to measure geodesic distances between body parts.
As these distances do not change with body movement, we are
able to localize anatomical landmarks independent of pose. For
differentiation of body parts that occlude each other, we employ
motion information, obtained from the optical flow between
subsequent ToF intensity images. We provide a qualitative and
quantitative evaluation of our pose tracking method on ToF
sequences containing movements of varying complexity.

I. INTRODUCTION

Human gestures are a natural means of communication
and allow conveying complex information. Using gestures
for interaction with computer-assisted systems can be of
great benefit, particularly in scenarios where traditional input
devices are impractical, such as the medical operating room
[1]. In order to track human full-body pose in real-time,
camera-based motion capture systems can be used that typi-
cally require a person to wear cumbersome markers or suits.
Lately, research has focussed on markerless human pose
estimation [2], [3]. However, even if multiple cameras are
used, this task is challenging due to the complexity of human
movements and their highly variable visual appearance in
images [4], [5].

Time-of-Flight (ToF) cameras have recently created the
possibility of acquiring dense, three-dimensional scans of
a scene in real-time [6], without the need for expensive
and complex multi-camera systems. Despite their relatively
low resolution, ToF cameras are suitable for human pose
estimation for several reasons. ToF cameras simultaneously
generate a range image, which is almost independent of
lighting conditions and visual appearance, and a grayscale in-
tensity image, similar to conventional cameras. The provided
depth information can be directly used to localize a person
in front of background and to resolve pose ambiguities.
Nonetheless, ToF data suffers from noise and estimating
human full-body pose remains a difficult problem [7].

In this paper, we propose a method that allows tracking the
full-body movements of a person from ToF images, suitable
for gesture-based interaction. While learning approaches for

human pose estimation ([2], [3], [8]) rely on training data
and are thus restricted to a particular set of movements,
our method can track general, previously unseen motions.
The method is based on robustly identifying anatomical
landmarks in the ToF data that then serve as targets for fitting
a skeleton using inverse kinematics. We propose to represent
the background-subtracted ToF depth data by means of a
graph that facilitates detection of body parts. In addition,
we use the optical flow between subsequent ToF intensity
images for depth disambiguation when body parts occlude
each other.

Representing the 3D points on the surface of a person as
a graph allows us to measure geodesic distances between
different points on the body. While the Euclidean distance
between two body points is measured through 3D space
and thus can vary significantly with body movement, the
geodesic distance is defined along adjacent graph nodes, i.e.
along the surface of the body. Consequently, the geodesic
distance between two points on the body, e.g. the centroid
and an extremity, can be assumed constant, independent of
body posture [9], [10] (Figure 1). We can therefore extract
anatomical landmarks by searching for points at mutual
geodesic distances that correspond to the actual measure-
ments of a person. Using only ToF depth and intensity data
also decreases our depencence on visual appearance. Thus,
we avoid typical problems that arise when using intensity-
based feature descriptors for interest point detection, e.g. lack
of texture and illumination or perspective changes.

A crucial issue is to prevent the graph constructed from
the 3D points from degenerating. This can happen, for
instance, when body parts occlude each other. In this case,
separating the occluding body part from the part behind it
becomes difficult, leading to undesired graph edges. These
edges between points on different body parts result in er-
roneous geodesic distances, and consequently, to undetected
anatomical landmarks. We address this issue by taking into
account the motion occurring between subsequent frames. In
particular, we identify and remove the undesired graph edges
based on optical flow fields that are computed from the ToF
intensity images.

Our method takes full advantage of the available informa-
tion by simultaneously using ToF depth images (for segmen-
tation and generation of 3D points), ToF intensity images
(for optical flow) and the graph-based representation (for
geodesic distances). Compared to other ToF-based human



Fig. 1. Illustration of the robustness of geodesic distances against pose
changes. Top: Background-subtracted ToF depth images for various poses.
Bottom: Geodesic distances from the body center to all other surface points.
Colors range from blue (zero distance) to red (maximal distance). Note that
the distance to hands and feet remains almost constant across all poses.

body tracking approaches, ours does not require fitting body-
part templates to the noisy range data. Moreover, the robust
anatomical landmark detection technique allows our method
to quickly recover from tracking failures. Our experiments
show that we are able to efficiently track the full-body pose
in several sequences containing various human movements.

II. RELATED WORK

Techniques for human pose estimation from visual ob-
servations can be broadly categorized into learning-based
approaches that facilitate the problem by means of training
data (e.g. [2], [3], [11]) and approaches estimating human
pose parameters from observed features without prior knowl-
edge. A disadvantage of the former is that pose estimation
is typically restricted to a set of activities known to the
algorithm beforehand. For instance, Jaeggli et al. [3] use
monocular images and extract human silhouettes as an input
to a pose estimator trained on walking and running. In [11],
body poses for a pre-determined activity are predicted from
voxel data obtained from a 3D reconstruction system.

Methods that do not use prior knowledge for pose estima-
tion (e.g. [4], [12], [5], [13]) are typically more dependent on
reliable feature extraction, as the appearance of the human
body is heavily affected by illumination and pose changes,
and by noise in the observation data. Moreover, efficient
state inference techniques are required to deal with the high
dimensionality of full-body pose space. Kehl and van Gool
[4] cope with these issues by using a multi-camera setup and
generating 3D volumetric reconstructions for human pose
estimation. In [13], body poses are estimated by assisting
a multi-camera system with inertial sensors attached to the
human body.

To overcome the limitations of visual observations, several
authors have recently used ToF cameras for analysis of
human motions. In [1], a system is described that recognizes
simple hand gestures for navigation in medical imaging
applications. The method of Jensen et al. [14] allows tracking
the movement of legs in side-views for medical gait analysis.
Holte et al. [15] propose a method that integrates ToF
range and intensity images for human gesture recognition.

Their approach is not used for pose tracking, but is able to
classify upper-body gestures, such as raising an arm. The
authors avoid identifying anatomical landmarks by using
a global pose descriptor. Zhu et al. [12] present a full-
body pose estimation system that relies on fitting templates
for each body part to the ToF data. In [16], the authors
combine a template fitting technique based on dense point
correspondences with an interest point detector for increased
robustness. While the approach can track full-body motion,
it relies on an independent, heuristic treatment for each
body part. In [8], a ToF-based method is described that
simultaneously estimates full-body pose and classifies the
performed activity. As opposed to our method, the system
can only process movements known a priori.

Similar to our approach, Plagemann et al. [9] use a graph
representation of the 3D data for detection of anatomical
landmarks. Their technique extracts interest points with max-
imal geodesic distance from the body centroid and classifies
them as hands, head and feet using a classifier trained on
depth image patches. The method does not explicitly address
the problem of self-occlusions between body parts and
reportedly struggles in such situations. Without modifying
the interest point detection technique, the authors add in [7]
a pose estimation method embedded in a Bayesian tracking
framework. Our proposed method uses optical flow measured
in ToF intensity images to cope with body self-occlusions.

Optical flow has been used in [17] for motion estimation
and segmentation of a person in a monocular pedestrian
tracking application. Okada et al. [18] describe a person
tracking method that combines disparity computation in a
stereo setup with optical flow. Similar to our approach for
disambiguation in the case of self-occlusions, an interest
region map is propagated through the tracking sequence
using the computed flow vectors. While this method allows
tracking the bounding boxes of the head and upper body, our
technique estimates the joint angles of a full skeleton body
model in every frame. To the best of our knowledge, using
optical flow for segmentation of occluding body parts in ToF-
based human body tracking is a novel approach, enabling us
to track arbitrary full-body movements.

III. HUMAN FULL-BODY TRACKING METHOD

We are given a sequence {Tt}Nt=1 of N ToF measurements,
where each Tt = (Dt, It) consists of a depth image Dt and
an intensity image It, both of size nx × ny . In every frame,
we initially locate L anatomical landmarks Pt = {pt

i}Li=1 on
a person’s body, where pt

i ∈ R3, and determine the discrete
landmark labels α(pt

i) (e.g. head, left knee). Our final goal
is to estimate the full-body pose qt ∈ Rd of the person,
parameterized by the d joint angles of a skeleton model.

Our method consists of an interest point detection and a
model fitting part (see Figure 2). In the former, we construct
a graph representation of the 3D points (section III-A)
that is invariant to articulation changes and, thus, allows
us to identify anatomical landmarks independent of posture
(section III-B). The optical flow between the previous and
the current frame, measured using the intensity images It−1
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Fig. 2. Schematic of the ToF-based human body tracking method. In each
frame t, the algorithm constructs a geodesic distance graph based on the
3D-converted ToF depth image and extracts anatomical landmarks (A). For
each undetected landmark k, the disambiguation process using optical flow
on the intensity image is executed (B). The corrected geodesic distance
graph for a body part k allows detecting the missing anatomical landmarks.

and It, is used to track body parts that occlude each other
(section III-D). We then employ a model-based skeleton
fitting approach to estimate the most likely full-body pose,
given the extracted anatomical landmarks (section III-E).

A. Graph-based Representation of Depth Data
Initially, we transform the depth image Dt into a 3D

point cloud based on the known intrinsic parameters of the
ToF camera, and segment the person by means of static
background subtraction. Let Xt = {xij} denote the resulting
set of nxny 3D points. The notation indicates that the point
xij corresponds to the depth image pixel with coordinates
(i, j). We construct a graph Gt = (Vt, Et), where Vt = Xt

are the vertices and Et ⊆ Vt × Vt are the edges. Whether
two vertices, i.e. 3D points, are connected with an edge or
not is based on their spatial distance in 3D and their vicinity
in the 2D depth image. The set of edges is defined as

Et = {(xij ,xkl) ∈ Vt × Vt | ‖xij − xkl‖2 < δ

∧ ‖(i, j)> − (k, l)>‖∞ ≤ 1},
(1)

where ‖·‖2 is the Euclidean and ‖·‖∞ is the maximum norm
and (i, j)>, (k, l)> are the 2D coordinates of the two points
xij ,xkl in the depth image. For each edge e = (x,y) ∈ Et,
we store a weight w(e) = ‖x−y‖2. We thus connect points
with a 3D Euclidean distance of less than δ that project to
neighboring pixels in 2D. Incorporating the 2D neighborhood
allows us to efficiently construct the graph in linear time, as
opposed to computing all pairwise point distances in 3D.

Using Gt, we are able to measure geodesic distances
between different body locations. The geodesic distance
dG(x,y) between two points x,y ∈ Vt is given by

dG(x,y) =
∑

e∈SP (x,y)

w(e), (2)

where SP (x,y) contains all edges along the shortest path
between x and y. Intuitively, the geodesic distance between
two locations on the body is thus the length of the shortest
path over the body surface. Given a single source point,
the shortest paths to all other points in the graph can be
computed efficiently using Dijkstra’s algorithm.

B. Detection of Anatomical Landmarks

Having constructed the graph Gt in frame t, we proceed
by locating L = 11 anatomical landmarks Pt = {pt

i}Li=1

and determining their labels α(pt
i). We distinguish between

primary landmarks P ′t (body center, head, hands, feet) and
secondary landmarks P ′′t (chest, knees, elbows).

Our central assumption is that all anatomical landmarks
remain at a nearly constant geodesic distance from the body
center of mass, independent of body pose [9]. Detection
of the primary anatomical landmarks therefore starts with
extracting the body center of mass, given by the centroid ct

of the point cloud Xt. To extract the extremities, we select
all points x with dG(x, ct) > τ . Here, τ is a person-specific
threshold that approximates the distance from the body center
to the shoulders (see section III-C). We therefore obtain
spatially isolated sets of points that we treat as belonging
to different limbs. For each of these isolated sets, we store
the point with largest geodesic distance form the body center,
yielding the set of primary anatomical landmarks P ′t.

C. Initialization and Landmark Labeling

Given the locations of the primary anatomical landmarks,
we need to determine their labels in order to detect the
secondary landmarks, i.e. the chest, elbows and knees. For
this purpose, we require a simple initialization phase where
the person takes on a T-pose. Here, we measure the person-
specific limb lengths and create an initial labeling of the
anatomical landmarks. Each landmark p0

i detected in the
initialization frame (t = 0) is assigned an appropriate label
α(p0

i ) based on the assumed T-pose. In any subsequent frame
t, we determine the labels for the primary landmarks by
matching the detected positions pt

i to the known landmarks
in the previous frame. The label for the i-th landmark is thus

α(pt
i) = α(p̄t−1), where p̄t−1 = arg min

p∈P′t−1

‖pt
i − p‖2. (3)

We can then extract the location of the secondary landmarks
P ′′t , i.e. the chest, elbows and knees, by measuring geodesic
distances from the localized primary anatomical landmarks.
That is, we select points on the body as the chest, the elbows
and the knees that are located at respective distances from
the body center, the hands and the feet.

D. Depth Disambiguation Using Optical Flow

In cases when the extremities are clearly separated from
each other, the graph-based landmark identification approach
allows us to detect all primary and secondary landmarks.
However, when body parts occlude each other, the graph
Gt will likely contain edges that connect points on different
body parts. In such a situation, two points x,y ∈ Vt on
distinct body parts can easily satisfy the two conditions of
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Fig. 3. Illustration of the depth disambiguation approach using optical flow. A: Background-subtracted ToF depth image with a hand in front of the
torso. B: Geodesic distance map computed using the graph Gt with the origin at the body center. The occluding arm is too close to the torso for being
separated. C: Body segment map for the arm obtained in the previous frame. D: Optical flow field (x-component) from previous to current frame. E:
Geodesic distance map after removal of undesired edges in Gt. The arm is now separated and has the expected geodesic distance from the body center.

(1). Consequently, the geodesic distances will be computed
inappropriately. Figure 3.B gives an example where an arm
in front of the torso is connected to the upper body and
the geodesic distance from the body center to the hand is
underestimated. Without correction, anatomical landmarks
on the arm cannot be detected.

We therefore propose a disambiguation approach that
makes use of movement occurring between frames. Assum-
ing that distinct body parts move separately, this approach
allows us to disconnect points belonging to different body
parts. We introduce a binary map indicating the location of
the entire occluding body segment in the depth image. This
map is propagated and updated from frame to frame using
optical flow, until the body parts become separable again.

1) Creation of body segment map: Let pt
m ∈ P ′t be the

location of a primary anatomical landmark at time t and let
btm denote the corresponding body part, i.e. an arm or a leg.
We define the body segment map Mm

t for btm to be a binary
image of the same size as the depth image Dt, such that

Mm
t (i, j) =

{
1 if dG(pt

m,xij) < µ,
0 otherwise. (4)

All pixel locations (i, j) in the map are assigned a value
of 1 if the geodesic distance between their corresponding
3D point xij and the landmark pt

m does not exceed µ. This
threshold is chosen based on the length of the person’s limbs
(determined during initialization), such that the entire body
segment btm is included in the segment map. Figure 3.C
shows a body segment map for the person’s left arm.

2) Map propagation using optical flow: For every pri-
mary landmark pt

m that is not detected using the approach
described in section III-B, we obtain the corresponding body
segment map Mm

t−1 from the previous frame. If the landmark
was detectable in that frame, we construct the map according
to (4), otherwise we assume that the map is available from
previous propagation steps. Let Ft = (Ft,x,Ft,y) denote
the optical flow between the ToF intensity images It−1 and
It. Ft,x(i, j) is the x-component of the estimated movement
for pixel (i, j) between the two images, and similarly for
y. Figure 3.D shows an exemplary flow field. We use the
optical flow to update the map Mm

t−1 to reflect the assumed
position of body part btm in frame t. The propagated map

Mm
t is computed such that

Mm
t (i+ Ft,x(i, j), j + Ft,y(i, j)) = Mm

t−1(i, j). (5)

A set of image processing steps are applied to the propagated
map, including morphological operations, to remove noise
and cavities caused by artefacts in the optical flow field.

3) Removal of undesired graph edges: Using the updated
and corrected map, we can remove the undesired edges in
the graph Gt that connect points on body segment btm to the
body part in the background, e.g. the torso. We update the
set of edges as Et = Et − F , with

F = {(xij ,xkl) ∈ Et |Mm
t (i, j) 6= Mm

t (k, l)}, (6)

where xij is the 3D point corresponding to the location
(i, j) in the body segment map. In other words, all edges
are removed where one point lies within the body segment
map and the other point does not. Figure 3.E illustrates
the geodesic distances from the body center after the edges
between the occluding arm and the torso have been discon-
nected. The corrected graph allows us to identify the primary
and secondary anatomical landmarks on body segment btm by
re-computing the geodesic distances from the body center
and selecting points with a maximal distance, as described
in section III-B.

In the situation that multiple primary anatomical land-
marks cannot be detected, we repeat the process described
above for every missing landmark, each time propagating the
appropriate body segment map and disconnecting undesired
graph edges. Note that the map propagation step, although
based upon optical flow between subsequent frames, does not
fail without movement. In such cases, the optical flow field
is close to zero and the body segment map simply remains
unchanged.

E. Skeleton Fitting Using Inverse Kinematics

Once the anatomical landmarks Pt have been identified
and labelled in frame t, we estimate the full-body pose
parameters qt ∈ Rd by fitting a skeleton to the detected
points. Our skeleton model consists of 16 joints, distributed
over five kinematic chains (both arms and legs, torso), where
individual joints have one, two or three degrees of freedom.
In total, the parameter space for the skeleton model has
d = 38 dimensions.



Starting with the torso chain that is registered in the body
centroid ct, the full-body pose is determined, intuitively, by
attracting selected joints of the kinematic chains (effectors) to
the locations of the anatomical landmarks (targets). Formally,
the objective is to find the optimal joint angle configuration
qt such that the residual error

E(q, t) =
L∑

i=1

‖pt
i − fi(q)‖22 + c(q), (7)

is minimized. Here, fi : Rd → R3 is a forward kinematic
function that computes the 3D position of the i-th joint, given
a vector q of joint angles. We add a term c(q) that penalizes
joint angle configurations violating a set of constraints. The
term c(q) increases polynomially when any of the joint
angles approaches its pre-specified lower and upper limits.

To find qt, we employ an iterative Gauss-Newton opti-
mization approach that, starting with an initial value q̂0,
computes updates ∆q such that q̂i+1 = q̂i + ∆q, until
convergence. In each frame, we use the joint angles of the
previous frame as an initial value, q̂0 = qt−1. Assuming
incremental body movement between subsequent frames, this
increases convergence rates and decreases the probability of
hitting local minima.

IV. EXPERIMENTS AND RESULTS

In order to evaluate our ToF-based body tracking method,
we recorded a series of 20 testing sequences using a PMD-
Vision CamCube ToF-camera with a resolution of 204×204
pixels. Each of the sequences consists of around 400 frames,
at a frequency of 10 Hz. The recorded movements range from
simple motions, such as waving an arm, trough complex
full-body movements with occlusions between body parts.
Figure 5 gives an overview of the movements in our training
set. To provide a quantitative assessment of our method, we
simultaneously recorded ground truth data with a marker-
based motion capture system that was synchronized to the
ToF camera and registered to its coordinate frame. Motion
capture markers were placed on the back of the person to
prevent interference with the ToF measurements.

In our experiments, the ToF depth and intensity images
were pre-processed using a median filter to decrease the level
of noise. We segmented the person from the background
in each frame by subtracting a static depth image of the
lab acquired beforehand. After constructing the graph Gt in
every frame, geodesic distances to all body surface points
were precomputed and stored in a distance map, similar to
the maps in Figure 1. We used the Horn-Schunck method for
computation of the optical flow fields and low-pass filtered
each of the spatial flow field components. Our current Matlab
implementation reaches tracking rates of 2-4 frames per
second.

A. Precision of Full-body Pose Estimation

The motion capture system provides the 3D positions of
the K = 16 body joints {si}Ki=1 of the skeleton model
described in section III-E. As an error metric, we therefore
compute in every frame the average Euclidean distance

between the estimated and true locations of these body joints.
We define the distance error as

edist(t) =
1
K

K∑
i=1

‖si − ŝi‖2, (8)

where ŝi is the estimated 3D position of the i-th skeleton
joint and si is the corresponding ground truth. Note that,
even in the case of a perfectly estimated full-body pose,
edist(t) will not be zero, since the markers of the motion
capture system do not coincide with our detected anatomical
landmarks. Moreover, the motion capture system fits the
skeleton to assumed locations of joints within the body,
whereas our fitting targets are on the body surface.

Averaged over all testing sequences, our method achieved
a distance error of ēdist = 70.1 mm with a standard deviation
of 9.8 mm. Figure 4 shows plots of the distance error over
the length of two typical testing sequences. The overlaid full-
body pose prediction and ground truth for selected frames
allows for a better interpretability of the results. The left
graph in Figure 4 corresponds to one of the easy sequences
where only the arms are moved, however, including body
self-occlusions. In this case, the distance error averaged over
all joints is around 50 mm. The maximum error in each frame
rarely exceeds 100 mm. On the right side, results are shown
for a more difficult sequence including full-body movement.
Especially when legs are raised, the average error increases to
around 100 mm. The effect of the maximal value of 250 mm
for individual joints is visualized in example 7 (Figure 4),
where the position of the right knee deviates from the ground
truth. This being an example for worst-case deviations, our
method compares favorably to current state-of-art methods
for ToF-based full-body pose tracking (e.g. [7]).

B. Qualitative Assessment

Figure 5 provides example images from our testing se-
quences for a qualitative assessment of our method. As can
be seen, the estimated full-body poses match with the ToF
depth images. Poses are predicted faithfully, even in cases
where arms or legs move towards or away from the camera.
In particular, the situation where a hand is stretched forward
and occludes the arm itself is handled well. The second
row of images in Figure 5 shows cases where one or both
hands move in front of the torso. Here, our method relies
on the optical flow-based disambiguation approach described
in section III-D. Tracking does not fail, even when more
than one limb moves in front of the body. The speed of
movements is not a critical parameter to our technique, as
long as the positions of primary anatomical landmarks can
be matched sucessfully accross subsequent frames. In our
experiments, tracking problems mainly occurred when two
arms or legs crossed each other in front of the torso. In such
cases, parts of one limb were cut off by the occluding limb,
resulting in inaccurate landmark detections.

V. DISCUSSION AND CONCLUSION

We have presented a method for tracking human full-body
pose from sequences of ToF camera images. The approach



0

50

100

250

0 50 100 150 200 250 300 350

150

200

D
is

ta
nc

e 
er

ro
r (

m
m

)

Frames 0 50 100 150 200 250
0

50

100

250

150

200

D
is

ta
nc

e 
er

ro
r (

m
m

)

Frames

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8Maximal error
Average error

Maximal error
Average error

Ground truth
Estimation

Fig. 4. Illustration of quantitative pose estimation results. The two graphs show the distance error edist(t) over the length of two exemplary testing
sequences. The average error over all joints is plotted (blue), along with the maximum error in each frame (green). Left: Typical sequence where only
hands are moved, including self-occlusions. Right: Typical sequence involving full-body movement. Results for selected frames are visualized below with
overlaid estimated (blue) and ground truth poses (red).

does not require any training data and is able to track
arbitrary movements. Initialization is limited to holding a T-
pose, while the approximate limb lengths of the person are
measured. This step can be overcome by adapting automatic
body calibration methods, such as [19], to the present setting.
While the current implementation is close to providing real-
time frame rates, we believe there is sufficient potential for
improving computational efficiency, without requiring GPU
acceleration. An inherent assumption of our method is that
persons are facing the ToF camera and do not fully rotate
around their vertical axis. We argue that this assumption is
reasonable for gesture-based human-machine interaction.

Our method takes full advantage of the data provided by
ToF cameras by utilizing both, depth and intensity infor-
mation. Based on the depth data, we segment the person
in front of static background and construct a graph-based
represenation of the 3D points. This graph allows us to
robustly identify anatomical landmarks in each frame by
selecting points with a maximal geodesic distance from the
body center of mass. In cases where body parts occlude
each other, we rely on optical flow, computed on the ToF
intensity images, to disconnect occluding limbs from the
body part behind. The experimental evaluation presented in
this paper shows that our method can track various full-body
movements, including self-occlusions, and estimate 3D full-
body poses with a high accuracy.

REFERENCES

[1] S. Soutschek, J. Penne, J. Hornegger, and J. Kornhuber, “3-d gesture-
based scene navigation in medical imaging applications using time-of-
flight cameras,” Computer Vision and Pattern Recognition Workshops,
Apr 2008.

[2] R. Urtasun and T. Darrell, “Sparse probabilistic regression for activity-
independent human pose inference,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jan 2008.

[3] T. Jaeggli, E. Koller-Meier, and L. V. Gool, “Learning generative
models for multi-activity body pose estimation,” International Journal
of Computer Vision, vol. 83, no. 2, pp. 121–134, 2009.

[4] R. Kehl and L. Gool, “Markerless tracking of complex human motions
from multiple views,” Computer Vision and Image Understanding, Jan
2006.

[5] J. Bandouch, F. Engstler, and M. Beetz, “Accurate human motion
capture using an ergonomics-based anthropometric human model,”
Articulated Motion and Deformable Objects (AMDO), Jan 2008.

[6] A. Kolb, E. Barth, R. Koch, and R. Larsen, “Time-of-flight sensors in
computer graphics,” EUROGRAPHICS, pp. 119–134, 2009, notizen.

[7] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time
motion capture using a single time-of-flight camera,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2010.

[8] L. A. Schwarz, D. Mateus, V. Castaneda, and N. Navab, “Manifold
learning for tof-based human body tracking and activity recognition,”
British Machine Vision Conference (BMVC), pp. 1–11, Aug 2010.

[9] C. Plagemann, V. Ganapathi, and D. Koller, “Real-time identification
and localization of body parts from depth images,” IEEE International
Conference on Robotics and Automation (ICRA), Jan 2010.

[10] M. Mortara, G. Patane, and M. Spagnuolo, “From geometric to
semantic human body models,” Computers and Graphics, vol. 30, pp.
185–196, Mar 2006.

[11] Y. Sun, M. Bray, A. Thayananthan, B. Yuan, and P. Torr, “Regression-
based human motion capture from voxel data,” British Machine Vision
Conference (BMVC), 2006.

[12] Y. Zhu, B. Dariush, and K. Fujimura, “Controlled human pose
estimation from depth image streams,” Computer Vision and Pattern
Recognition Workshops, 2008.

[13] G. Pons-Moll, A. Baak, T. Helten, M. Müller, H.-P. Seidel, and
B. Rosenhahn, “Multisensor-fusion for 3d full-body human motion
capture,” IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 1–8, May 2010.

[14] R. Jensen, R. Paulsen, and R. Larsen, “Analyzing gait using a time-
of-flight camera,” Scandinavian Conference on Image Analysis, pp.
21–30, 2009.

[15] M. B. Holte, T. B. Moeslund, and P. Fihl, “Fusion of range and
intensity information for view invariant gesture recognition,” Computer
Vision and Pattern Recognition Workshops, May 2008.

[16] Y. Zhu and K. Fujimura, “A bayesian framework for human body pose
tracking from depth image sequences,” Sensors, May 2010.

[17] S. Denman, V. Chandran, and S. Sridharan, “An adaptive optical flow
technique for person tracking systems,” Pattern recognition letters,
vol. 28, no. 10, pp. 1232–1239, 2007.

[18] R. Okada, Y. Shirai, and J. Miura, “Tracking a person with 3-d motion
by integrating optical flow and depth,” IEEE International Conference
on Automatic Face and Gesture Recognition (FG), pp. 1–6, Sep 2000.

[19] J. F. Obrien, B. Bodenheimer, G. Brostow, and J. Hodgins, “Auto-
matic joint parameter estimation from magnetic motion capture data,”
GRAPHICS INTERFACE, Jan 2000.



Fig. 5. Qualitative assessment of the proposed full-body pose estimation method. In each of the three rows, ToF depth images are shown, overlaid with
projections of the estimated skeleton pose (yellow). Blue markers indicate the positions of detected anatomical landmarks that play the role of targets for
skeleton fitting. Below each row, perspective views of the corresponding estimated poses are displayed, emphasizing the 3D appearance of the predictions.


