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Abstract
A real time facial puppetry system is presented. Compared with existing systems, the proposed
method requires no special hardware, runs in real time (23 frames-per-second), and requires only a
single image of the avatar and user. The user’s facial expression is captured through a real-time
3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression
model with synthetically generated examples that better capture person specific characteristics.
Performance of the system is evaluated on avatars of real people as well as masks and cartoon
characters.

I. INTRODUCTION
Non-verbal cues play a crucial role in communicating emotion, regulating turn-taking, and
achieving and sustaining rapport in conversation. As such, face-to-face conversation often is
preferable to text-based exchanges. Until recently, real-time conversation over distance was
limited to text or voice transmission. With increased access to fast, reliable broadband, it has
become possible to achieve audio-visual face-to-face communication through video-
conferencing.

Video-conferencing has become an efficient means to achieve effective collaboration over
long distances. However, several factors have limited the adoption of this technology. A
critical one is lack of anonymity. Unlike text- or voice systems, video immediately reveals
person-identity. Yet, in many applications it is desirable to preserve anonymity. To
encourage a wider adoption of the technology to realise its advantages, video-conferencing
needs to incorporate a range of privacy settings that enable anonymity when desired. A
common solution is to blur the face, but this option compromises the very advantages of
video-conference technology. Blurring eliminates facial expression that communicates
emotion and helps coordinate interpersonal behaviour.

An attractive alternative is to use avatars or virtual characters to relay non-verbal cues
between conversation partners over a video link. In this way, emotive content and social
signals in a conversation may be retained without compromising identity. As reviewed
below, person-specific active appearance models (AAM) have been proposed to achieve this
effect. A system developed by Theobald and colleagues [16] enabled real-time transfer of
facial expression to an avatar in a video conference. Avatars were accepted as actual video
by näive observers. Person-specific systems, however, require extensive labor and
computational costs to train person-specific AAMs. For a system to be widely adopted, it
must entail minimal overhead relative to standard video conference. We propose a real-time
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system that requires minimal effort to initialise, achieves convincing near photorealistic
avatars, and runs in real time over a video link.

Specifically, the system requires only a single image, in frontal pose with neutral expression.
In the case of animating a non-human character, the user must additionally provide a set of
predefined landmark points on that image. Despite the minimal use of avatar- and user-
specific information, the system achieves convincing avatar animations.

II. RELATED WORK
Avatar animation is often referred to as facial puppetry, where the avatar/puppet acts is
controlled by the user/puppeteer’s facial expressions. A facial puppetry system consists of
two main components: face tracking and expression transfer. Face tracking captures the
user’s facial deformations. Expression transfer then animates an avatar so that its expression
best matches that captured from the user.

Non-rigid face tracking is one of the most widely researched topic in computer vision. The
reason for this is the difficulty in handling inter-personal variabilities stemming from both
shape and appearance as well as extrinsic sources including such things as lighting and the
camera noise. The difficulty is compounded by the typical expectation of real time
performance. Most non-rigid face tracking systems use a linear model to characterise
variability of the human face. Examples include active shape models [3], active appearance
models [11], 3D morphable models [2] and constrained local models [4]. Alignment is
effected via generative or discriminative approaches. In generative approaches [2][3][11],
the parameters of a linear model that minimise the distance between the model and image
appearance is searched for using some kind of deterministic optimisation strategy.
Discriminative approaches [12][13], predict the optimal model parameters from the
appearance of the face in the image.

Facial expression transfer has also received significant interest in the research community in
recent years. It consists of learning a mapping between facial model parameters describing
the user and the avatar. The most common approach to tackle this problem is by projecting
the deformation field (i.e. the difference between features of a neutral and expressive face)
of the user onto the subspace describing the expression variability of the avatar [16][17].
However, this approach requires a pre-learned basis of variation for both the user and avatar,
which in turn requires a set of images or a video sequence that represents the span of facial
expressions for that person. Such data may not be readily available or may be difficult to
collect. As such, a number of works propose methods for generating images of different
facial expressions from a single image [1][6], from which the person specific basis can be
learned. Alternatively, one can use an automatic expression recognition system to detect the
user’s broad expression category and render the avatar with that expression [9]. Although
such an approach requires a set of images for the avatar, no user-specific model needs to be
learned. However, since transfer is performed at the coarse level of broad expressions only,
this approach is not suited to applications where realistic avatar animation is desired.

III. SYSTEM OVERVIEW
An overview of the system proposed in this work is presented in Figure 1. It consists of two
phases: offline and online. In the offline phase, models of the user and avatar are learned as
well as the relationship between them. First a generic basis of variation that captures
changes in shape and texture due to expression is learned from a training set of annotated
images (§V-A). This same database is also used to learn a mapping between neutral facial
shapes and a set of discrete expressions (§V-B). This map is used to generate synthetic
expressive facial shapes for both the avatar and the user. A mapping is then learned between
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the user’s shapes and corresponding ones of the avatar, where the generic basis learned
previously regularises the solution (§V-C).

In the online phase, the user’s face in the video stream is tracked using a nonrigid face
alignment algorithm (§IV). The tracking algorithm provides the user’s shape and texture that
are then mapped onto the avatar using the mapping function learned in the offline phase.
Finally, the avatar’s face is rendered onto an image of any desired background using the
mapped shape and texture.

It should be noted that whilst the generation of the user’s discrete facial expression (step
three in Figure 1) are placed in the offline phase, the user’s neutral facial shape is captured
using the same tracking algorithm used in the online phase. Given this shape, learning the
mapping between the chosen avatar and the user takes less than a second, and new user
registration can be performed seamlessly online.

IV. NON-RIGID FACE TRACKING
The real time non-rigid face tracking algorithm used in this work is based heavily on that in
[15]. The approach is an instance of the constrained local model (CLM) [4] with the
subspace constrained mean-shifts (SCMS) algorithm as an optimisation strategy. In the
following we describe our additions to that work, which allows robust and real time nonrigid
tracking suitable for avatar animation.

A. 3D CLM
Changes in head pose, such as nodding and shaking, are salient non-verbal cues in
communication. In order to capture such variations we extend the work in [15] by using a
deformable 3D linear shape model. Since the SCMS algorithm used for optimisation is
invariant to the particular parameterisation of the shape model, the original fitting algorithm
needs only be modified with respect to the computation of the shape Jacobian. The
generative shape model we use takes the following form:

(1)

where  is the 3D coordinate of the mean ith point, Γ is a 3D linear shape basis, and {s, R,
t} are the weak perspective projection parameters: scale, rotation and translation.

B. Fast Re-initialization
As with most face alignment algorithms, SCMS is initialisation dependent. Empirically we
observed that when head movement between frames is large, the CLM is prone to loosing
track. However, due to its locally exhaustive search procedure, we also observed that rapid
changes in rotation can be handled effectively by SCMS since its landmarks typically move
only within the range of the effective search regions. As such, we found it sufficient to re-
initialise the model in each frame to account for head translation only. For this, we simply
performed normalised cross correlation over the entire image for the location most similar in
appearance to that of the face in the previous frame. Optimisation then proceeds from that
location. The algorithm does not suffer from drift since the region describing the face in
each image is inferred through the CLM optimisation procedure.

C. Failure Detection
To facilitate uninterrupted interactions, the system should be able to recover from cases
where it fails to track the face. However, in order to recover from failure, the system must
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know when it has failed. Although this aspect is rarely discussed in the literature, it is a
crucial component of a real-world system since there are no efficient algorithms that
guarantee global convergence in each frame.

In this work we propose a very simple yet effective failure detection mechanism.
Specifically, we use a linear support vector machine (SVM) trained to distinguish aligned
from misaligned configurations. For SVM features we use normalised raw pixels since
linear dimensionality reductions typically fail to preserve variations in appearance due to
misalignment, and we found nonlinear approaches too computationally expensive for real
time evaluation.

In order to specialise the failure detector to the particular fitting algorithm used in tracking,
the SVM was trained with negative data that corresponds to local minima of the CLM
objective in each training image. For this, we randomly initialised the CLM around the
optimal configuration in each training image and the SCMS algorithm was run until
convergence. If its distance at convergence from ground truth is above a user defined
threshold, then the appearance at that configuration is used as negative data.

D. Acquiring 3D Shapes
In §V, we will describe a method for facial expression transfer that assumes 3D shapes for
both the puppet and puppeteer in their neutral expression are available. The process of
acquiring these shapes is described below.

For human avatars, the 3D face alignment algorithm described above can be used. However,
when the avatar is nonhuman, the face alignment algorithm cannot be used since the
appearance may not correspond to that of a typical face and the shape may not be spanned
by the basis of shape variation. In this case, we require the user to annotate the avatar image
with a set of 2D landmark locations corresponding to the 3D landmarks in the face model.
The problem then reduces to lifting these 2D landmarks to 3D.

In order to perform lifting, we require that the non-human avatar is human-like, in the sense
that the 3D geometry of its facial landmarks are similar to that of humans. This is not a very
strong requirement in practice since the vast majority of virtual characters share many
characteristics of the human face. We proceed then by assuming that the depths of each
landmark point can be approximated by fitting the face shape model to the annotated
landmarks and assigning the depths of those landmarks to that of the fitted face. Since the
aim of this work is to provide a convincing avatar rather than an accurate 3D reconstruction,
we find that this simplification works well in practice. Specifically, we solve:

(2)

where ρ is a robust penaliser, {xi, yi} are the 2D-coordinates of the ith user supplied
landmark, zi is its corresponding depth, and  is the 3D linear shape model in Equation (1).
Following [14], we use the Geman-McClure function for the robust penaliser and derive σ
from the median error. Equation (2) is minimised by the iteratively re-weighted least squares
procedure. The pose normalised 3D shape of the avatar is finally obtained by inverting the
image formation process, assuming a weak perspective projection:

(3)
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where  is the avatar’s ith pose normalised 3D landmark, and {s, R, tx, ty} are the rigid
transformation parameters extracted from θ. Some example reconstructions using this
approach are shown in Figure 2.

V. FACIAL SHAPE TRANSFER
Given a pair of images, one of the puppet and the other of the puppeteer, along with the 3D
shape of the face in each, which we denote  and , the problem reduces to finding a
mapping between them for various facial expressions, knowing only the 3D structure of
their neutral expressions.

A. Generic Basis
In the absence of sufficient training data to build a fully descriptive model of shape
variability, one can use a generic basis of variations. For example, in [1] the authors used the
MPEG-4 facial animation parameters [10], which represent a complete set of basic facial
actions, enabling the animation of most facial expressions. Using such a basis, the
generative model of an avatar’s shape takes the form:

(4)

where Φ is the generic expression basis and p are the deformation parameters.

Although Φ exhibits sufficient capacity to generate most facial expressions, it does not
preserve identity. During puppetry, this may lead to shapes that depart from the avatar’s
space of variability. In works such as [16][17], this problem is alleviated by projecting the
shape deformations onto the avatar’s person specific subspace Ψ1:

(5)

Although such a projection ensures that a generated shape perserves the avatar’s identity,
there are two shortcomings of this approach. First, as identified earlier, learning Ψ requires a
large set of annotated data. For example, around 200 images and whole video sequences
were used in [17] and [16], respectively, to learn their person-specific subspaces. In practice,
collecting and annotating such large amounts of data online can be cumbersome, difficult or
impossible. Secondly, such a formulation assumes that corresponding expressions between
individuals can be described entirely by the reconstruction of these deformations. This can
lead to under-articulation when the underlying models of deformation between the two faces
differ significantly as a result of inherent differences in facial structure.

B. Semantic Expression Transfer
Given a large number of examples of both the puppet and puppeteer, along with semantic
correspondences between them, expression transfer can be treated as a supervised learning

problem. Specifically, given pairs , where xi is the ith example of the puppet and
yi an example of the puppeteer with the same expression, the problem can be formulated as
finding a mapping that minimises the prediction error over deformations:

(6)

1It should be noted that in [16], the subspace Φ relates to the person specific basis for the puppeteer rather than a generic basis.
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where M denotes a linear mapping between the deformations of the puppet and puppeteer.
Expression transfer then takes the form:

(7)

However, as noted previously, in this work we assume that only a single example of both the
puppet and puppeteer are available. Therefore, we follow recent work on expression
synthesis [6] to generate synthetic examples which are used to learn this mapping.
Specifically, given a database of multiple people, each captured displaying the same set of
expressions, one can learn a set of mapping functions between the neutral face and each
expression in the database:

(8)

where  is the neutral expression for the ith subject in the database,  is the same subject
with expression e, and  is the mapping function for expression e. Once the mapping
functions have been learned, examples for both the puppet and puppeteer can be synthesised
and used in Equation (6) to find the mapping between their deformation fields. Some
examples of this mapping are shown in Figure 3, where kernel ridge regression with a
Gaussian kernel was used to parameterise .

The main problem with this approach to learning the relationship between the puppet and
puppeteer’s deformation fields is its data requirements. Existing expression databases, such
as Multi-PIE [7] and KDEF [5], exhibit only a small set of facial expressions (typically
corresponding to the seven basic emotions: neutral, joy, angry, sad, surprised, fear and
disgust). Such small sets are insufficient for learning the mapping between the deformation
fields since Equation (6) will be underdetermined. Although this situation may improve in
the future, in the following section we present an approach that can leverage existing
databases to learn more meaningful mappings.

C. Combined Generic-Specific Models
Although the synthesised samples described in the preceding section may not be sufficient to
learn a complete mapping between the puppet and puppeteer, it is possible to leverage such
data to learn a more meaningful mapping than that afforded by a generic deformation basis
alone. Consider the following cost function for learning the mapping:

(9)

where R is the desired mapping function, I is the identity matrix, ε is the set of expressions
in the database, α ∈ [0, 1], and:

(10)

(11)
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are the projections onto the generic deformation basis of the synthesised shapes for puppet
and puppeteer respectively. With the solution of Equation (9), expression transfer then takes
the form:

(12)

The first term in Equation (9) assumes deformations between the puppet and puppeteer have
the same semantic meaning. Specifically, as α → 0, the mapping approaches the identity
mapping, which simply applies the deformation of the puppeteer directly onto the avatar in a
similar fashion as [1].

The second term in Equation (9) encodes semantic correspondence between the puppet and
puppeteer as defined by the database ε. As α → 1, the problem approaches that in Equation
(6), but with the addition of a generic subspace projection, which can be rewritten in matrix
form2:

(13)

where the columns of P and Q are pe and qe respectively for e ∈ ε. Given the small set of
expressions in existing databases (typically seven expressions) and the high dimensionality
of the generic basis Φ (i.e. the MPEG-4 has 68 facial animation parameters), Equation (13)
is typically underdetermined. However, this system of equations can be solved using
truncated SVD as regularisation [8], which gives the solution:

(14)

where, for PPT = USVT, we have:

(15)

Since rank(R) ≤ |ε| in this case, from Equation (12) it is clear that the effective span of the
puppet’s deformation is at most |ε|. With such a mapping, the puppet will be able to mimic
only those expressions spanned by the training database ε.

By setting α to be a value between zero and one, one effectively learns a mapping that is
both respectful of semantic correspondences as defined through the training set as well as
exhibiting the capacity to mimic out-of-set expressions, albeit assuming direct mappings for
these directions. The optimal choice for α will depend on the number of expressions in the
training set as well as their variability. As a general rule, one should decrease α as the
number of training expressions increases, placing more emphasis on semantic
correspondences as data becomes available. Figure 4 illustrates the advantages of using a
combined model as opposed to generic or semantic model’s alone.

VI. Facial Texture Transfer
Unlike more sophisticated parameterisations that model the face shape using a dense point
set [2], in our approach changes in facial texture cannot be modelled by a generative lighting

2  denotes the Frobenius-norm of matrix A.

Saragih et al. Page 7

Proc Int Conf Autom Face Gesture Recognit. Author manuscript; available in PMC 2014 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



model. This is because the sparse set of tracked points can not capture detailed changes in
shape that give rise to changes in texture (i.e. the labial furrow in disgust etc.). As such, we
must complement changes in the avatar’s shape with that of texture.

The problem of facial texture transfer has many similarities to that of facial shape transfer
discussed in the preceding section. However, the problem is complicated by the curse of
dimensionality, where inference must now be performed over the space of pixels (typically
> 10000) rather than over a sparse set of fiduciary facial landmarks (typically ≈ 100). In the
following we describe an efficient approach that is capable of efficiently generating
plausible changes in facial texture stemming from expressions.

A. Generic Texture Basis
Following the work in [16], we model facial texture in a shape normalised reference frame,
where instances of the puppet are generated by inverse-warping the texture onto the image
using a piecewise-affine-warp [11]:

(16)

where I denotes the synthesised image, T denotes texture in the shape normalised reference
frame, (x, y) denotes image coordinates in the reference frame and  denotes the piecewise
affine warp which is parameterised by the avatar’s shape x as defined in Equation (12).

In a similar fashion to the generic shape basis discussed in §V-A, we use a generic basis of
texture variation to model changes in appearance due to expression. In particular, we assume
that changes in texture are linearly correlated with that of shape, and synthesise texture as
follows:

(17)

where  is the neutral texture, Ai are the bases of texture variation and p are the shape
deformation parameters (see Equation (4)). The texture basis is learned from a training set
by solving the following least squares cost3:

(18)

where pi denotes the shape parameters describing the expression in the ith image, ti is the

vectorised texture for that image and  is the vectorised texture for the same subject but in a
neutral expression. In essence, Equation (18) learns a (non-orthogonal) basis that best
models changes in texture as described through changes in shape. Since no further
estimation is required apart from evaluating Equation (17) using the current shape
parameters, this model yields rapid texture synthesis suitable for real-time applications.
Figure 5 illustrates the utility of using this basis for rendering a more convincing avatar than
that without texture augmentation.

B. Gaze Transfer
So far, the avatar is capable of mimicking the user’s facial expression, but not her eye
movements. Since changes in gaze direction can embody emotional states, such as

3The vec(X) operator vectorises the matrix X by stacking its columns.
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depression and nervousness, an avatar equipped with gaze mimicking can appear much more
realistic than one with a fixed gaze.

Learning a statistical appearance model of the eyes with only a few point correspondences is
challenging. This is because the appearance model must account for translational effects of
the pupil relative to the eyelids. It is well known that linear appearance models work poorly
in such cases, with synthesis often resulting in significant ghosting artefacts that are not
visually appealing.

Instead, in this work we explicitly synthesise the pupil within a region enclosed by the
eyelids. The pupil is approximated by a circle whose appearance is obtained from the single
training image. In addition to annotating the avatar’s facial landmarks, this requires the user
to also annotate the centre of the avatar’s pupils and its radius. Parts of the pupil that are
obscured by the eyelids in that image are replaced by assuming circular symmetry of the
pupil’s appearance. An example of the extracted pupil appearance is shown in Figure 6.

Gaze transfer is achieved by placing the avatar’s pupils at the same relative location as that
of the user’s. First the location of each of the user’s pupils, xp, are estimated as the centre of
mass within the eye region, Ω, as determined by the tracking algorithm described in §IV:

(19)

where  denotes the grayscale image and  denotes the Gaussian distribution with mean μ
and variance σ2. A similarity transform relating the inner and outer eye corners of the user
and avatar is then applied to the pupil location, placing it in the avatar’s image. Finally, the
avatar’s iris and sclera colours are scaled according to the eyelid opening to mimick the
effects of shading due to eyelashes. An illustration of this process is show in Figure 6.

It should be noted that the ad-hoc approach described above will not, in general, obtain the
precise gaze direction. Although more principled approaches to this problem exist, we stress
that the aim of gaze synthesis in our application is not to infer gaze direction precisely, but
rather to capture coarse eye movements that convey non-verbal cues. In §VII, we shown that
this approach adequately captures such cues with little processing overhead.

C. Oral Cavity Transfer
Modelling texture variation in a shape normalised frame allows one to build a model by
considering a fixed number of pixels. However, since the shape of the mouth can change
dramatically between expressions, a single reference shape can not adequately capture
changes in texture in the oral cavity, resulting in poor synthesis. Furthermore, variations in
teeth, gum and tongue make learning generative models for the oral cavity extremely
challenging.

As such, rather than modelling the appearance of the oral cavity, in this work we simply
copy the user’s oral cavity onto the avatar, using the piecewise affine warp defined within
the mouth region. This way, the whole gamut of appearances can be accounted for with little
computational cost. Furthermore, such a mapping acts to obscure small misalignments of the
tracker around the mouth region. Results in §VII show that this simple strategy is effective
in practice.
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VII. Results
The evaluation of facial puppetry systems is inherently qualitative and is best seen through
video. Nonetheless, in this section we present various snapshots of animation that act to
highlight the various contributions of this paper4.

A. Implementation Details
The facial puppetry system was implemented in C++ on a 2.66GHz MacbookPro with 4GB
of memory. The average computation time for the various components of the system were:
58ms for new user registration, 23ms for tracking, and 19ms for expression transfer. The
effective frame-rate of the complete system is 23fps, which is suitable for videoconferencing
applications.

1) Tracking—The 3D CLM described in §IV was trained using 3000 images from the
Multi-PIE database [7]. The 3D shape model was obtained by applying nonrigid structure
from motion [18] on a 66-point manual annotation of these images, which retained 30 basis
of nonrigid variation. All other components of the CLM were set according to descriptions
in [15].

2) Shape Transfer—The generic basis used in facial shape transfer described in §V-A
was trained using the Multi-PIE database. Using the 3D reconstructions obtained from
structure from motion, the face was divided into three separate components: eyes, eyebrows
and mouth/nose/jaw. For each of these components, a generic expression basis was learned
by applying SVD to difference vectors between expressive and neutral shapes. The full basis
was then constructed by appending the basis for each of the components:

(20)

By learning a basis for each component independently of all others, the resulting expression
basis can generate more expressions than those present in the training set [2]. The resulting
generic expression basis consisted of 30 modes of expression variation.

The synthetically generated expressive shapes described in §V-B were obtained using kernel
ridge regression with a Gaussian kernel. The regressors were trained on images from the
Multi-PIE [7] and KDEF [5] databases, where the total number of examples were 27, 229,
27, 478, 27, and 204 for anger, disgust, fear, joy, sadness and surprise expressions,
respectively. The kernel width and regularisation constant were found through cross
validation.

Finally, the weighting coefficient α in Equation (9) was set to 0.001, which was found to
give good qualitative results through visual inspection.

3) Texture Transfer—The generic texture basis described in §VI-A was defined in a
reference frame described by the convex hull of the mean face shape with a total of
approximately 20,000 pixels. Since changes in texture due to expression mainly effect the
luminance of the face, and because differences in camera colour models can cause
undesirable changes in facial colour, this basis was learned from grayscale images only.

4A collation of the videos used in all experiments in this section can be viewed at: http://www.youtube.com/watch?v=u6zTMQglQsQ
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When applying changes to the neutral face texture as is Equation (17), the changes were
applied to each RGB channel equally.

B. Tracking Results
Figure 7 illustrates the utility of the additions to the method in [15] we outlined in §IV. In
the second column of Figure 7, the subject executes rapid head movement, resulting in the
failure of the algorithm in [15]. With the fast re-initialisation strategy described in §IV-B,
the algorithm continues to track effectively. The fourth column in Figure 7 illustrates the
case where there is gross occlusion of the face, resulting in tracking failure. However, the
failure-detector described in IV-C successfully detects such cases and continues to track
effectively once the occlusion is removed by re-initialising using a face detector.

C. Gaze and Oral Cavity Transfer Results
The puppeteering examples in Figure 8 and 9 were extracted from video captured using the
inbuilt webcam on a MacBookPro. Figure 8 illustrates the efficacy of the method for gaze
transfer proposed in §VI-B. Despite significant differences in eye size and shape, the
proposed method successfully transfers the user’s eye movements to the avatar. The method
also allows the original pupil colour of the avatar to be used or changed in accordance with
the user’s preference. For example, the V for Vendetta mask (third row in Figure 8) uses
black pupils since the avatar image contains no pupils (see Figure 3).

The efficacy of the oral-cavity transfer method proposed in §VI-C is illustrated in Figure 9.
Despite significant differences in mouth size and shape, the proposed method generates
convincing renderings of complex oral cavity appearances, including the presence of teeth
and tongue. The method also has the effect of obscuring tracking inaccuracies, as
exemplified in the last column of Figure 9.

D. Animating Youtube Clips
To illustrate the generalisation properties of the proposed system, we processed a number of
youtube clips exhibiting people of varying ethnicity talking in front of a camera. Some
example renderings are shown in Figure 10. These videos exhibit compression artefacts,
sudden camera movements, discontinuous clips and unconstrained head motion. Despite
these sources of variability, the proposed approach generates convincing animations without
the need for user intervention.

VIII. CONCLUSION
In this paper, a facial puppetry system was proposed that runs in real time (23 fps), works on
typical hardware and requires only that the user initialise the system by presenting a neutral
face to the camera. The system achieves robust and real time non-rigid face tracking by
appending a fast re-initialisation strategy and a failure detection scheme to a 3D-multiview
variant of an existing tracking algorithm. Convincing facial expression transfer is achieved
by leveraging generic deformation basis and synthetically generated expressive faces that
are generated online. Gaze mimicking is achieved through pupil detection and oral cavity
transfer is performed directly. Further improvements of the proposed system can be
expected by improving the precision of the tracking algorithm and the use of training data
with more variations in expression.
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Fig. 1.
Overview of the proposed system. Offline processing consists of four steps. 1: Learn generic
shape deformation and appearance bases that account for changes due to expression. 2/3:
Given an annotated image of an avatar/user, generate a set of prototypical expressions. 4:
Learn a mapping between corresponding expressions of the user and avatar. The online
process involves nonrigidly tracking the user’s facial features, performing expression
transfer to the avatar and rendering the result.
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Fig. 2.
3D reconstruction from 2D landmarks.
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Fig. 3.
Semantic expression transfer examples.
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Fig. 4.
Comparison between shape transfer methods, where semantic correspondence was not
learned for the scream expression. Although the generic method better captures
deformations that are not accounted for in the training set, person specific characteristics of
the avatar are lost during animation (i.e. the expression appears exaggerated due to
significant differences in facial shape at neutral). The semantic method fails to capture eye
closing in scream, and appears to display a surprised expression instead. The combined
method both preserves the avatars specificity and enables the transfer of expression
components not modelled by semantic correspondence.
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Fig. 5.
a: Generic shape deformation basis and their corresponding texture basis. b: Effects of
rendering with and without the use of a texture basis. Notice that changes in texture due to
expression, such as the appearance of the labial furrow in smile and disgust, add
substantially to the perceived expression.
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Fig. 6.
An illustration of pupil extraction and gaze transfer.
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Fig. 7.
Tracking example. Top row: Tracking using [15], Middle row: Tracking using fast re-
initialisation (§IV-B). Bottom row: Tracking using fast re-initialisation and failure detection
(§IV-C).
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Fig. 8.
Examples of gaze transfer for human and non-human avatars. The user’s inferred pupil
location is marked with a green circle.
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Fig. 9.
Examples of oral-cavity transfer for human and non-human avatars.

Saragih et al. Page 21

Proc Int Conf Autom Face Gesture Recognit. Author manuscript; available in PMC 2014 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Examples of animating youtube clips.
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