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Abstract— Despite the success in the last two decades, the
state-of-the-art face detectors still have problems in dealing with
images in the wild for the large appearance variations. Instead
of taking appearance variations as black boxes and leaving them
to statistical learning algorithms, we propose a structural face
model to explicitly represent them. Our hierarchical part based
structural face model enables part subtype option to describe
appearance variations of the local part, and part deformation to
capture the deformable variations between different poses and
expressions. In the process of detection, the input candidate is
first fitted by the structural model to infer the part location and
part subtype, and the confidence score is then computed based
on the fitted configuration to reduce the influence of structure
variation. Besides the face model, we utilize the co-occurrence of
face and body to further boost the face detection performance.
We present a method for training phrase based body detectors,
and propose a structural context model to jointly use the results
of face detector and various body detectors. Experiments on the
challenging FDDB show that our method has state-of-the-art
performance, compared with other commercial and academic
systems.

I. INTRODUCTION

Face detection plays an important role in face based
image analysis and is one of the most important problems
in computer vision. The performance of various face based
applications, from traditional face recognition to modern face
clustering, tagging and retrieval, are relying on accurate face
detection. Although the frontal face detection in controlled
scene is reasonably solved, face detection in the wild is still
a challenging problem, due to large appearance variations
caused by pose, illumination, occlusion and expression.

There has been a lot of work on face detection. Successful
face detectors often benefit from statistical learning tech-
niques (e.g. Neutral Network [22], Bayesian [24], Boosting
[26]). Although be different in feature representation, learn-
ing algorithm and classifier structure, they follow a basic
framework, which feeds a “fixed” feature representation to a
pre-trained classifier. Here the “fixed” means that no matter
what the actual face configuration is, the fixed feature is
extracted at fixed position. However, it would have problems
in practice. For example, the relative positions of two eyes
may vary for different individuals, which gives the ambigu-
ousness. Moreover, even for faces from the same individual
there often have various poses and expressions. The “fixed”
detectors do not explicitly model these variations and leave
them as black boxes.
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Different from these “fixed” face detectors, we propose a
structural face model to describe face configuration variations
flexibly and explicitly. We define a hierarchical part based
structure, which captures low frequency information at the
coarse resolution level by a global filter and high frequency
information at fine resolution level by a set of part filters.
To give meticulous description of the appearance variations
(e.g., closed eye and open eye), our model allows the parts
to have different subtypes. Moreover, parts in our model
can be deformed to capture the face variations caused by
expression and pose. Our detection procedure includes a
fitting step, where the candidate region is first fitted to the
structure to find the suitable part location and part subtype,
and then the detection score is calculated based on the
fitted configuration. In this way, the proposed model can
handle configuration variations explicitly. Benefit from the
tree structure, the model can be inferred efficiently. For
discriminative parameters estimation, we cast the problem
into a structural SVM learning framework and present the
practical learning method.

It’s observed that there has strong co-occurrence between
the face and body for humans, especially for images in the
real world. One question is can the body information be
helpful for face detection? We name this information as body
context and use it by training suitable body detectors and
learning the relationship between face detector and body
detectors. Considering the difficulty in body detection at
arbitrary body configuration, we propose a phrase based rep-
resentation, where every phrase is a deformable part model
to describe a special configuration of body, such as “left
orientated face on shoulder”, “frontal face with upper body”
and so on. Each activated phrase can give an estimation of
face location. In order to merge repetitive activations for the
same face by face detector and various body detectors, we
further propose a learning based structural context model
to encode the nearby activations and determine whether the
activation should be suppressed or not.

A. Related Work

There are numerous papers on face detection or more
general object detection. We mainly review the most related
due to the space limitation. Among these early detectors
(e.g. [20][22][24][26]), Viola-Jones(V-J) detector [26] is the
most dominant one in the last decade for its efficiency, and
there have been a lot of incremental improvements on it (e.g.
[27][18][10]).



Our structural face model follows a different framework
with V-J detector, and it is motivated by recent object
detection and pose estimation systems, including [6][9][28].
Deformable part model (DPM) [6] is the basis of our
model since our face model inherits the hierarchical part
based structure, spatial part deformation from it. Besides
introducing the deformable part model to face detection field,
we have three improvements over [6]. Firstly, we add subtype
to each part, which gives more flexibility. Secondly, the parts
are defined according to the landmark annotations instead
of learning from ambiguous weakly labeled data. Finally,
in model learning phase, we use fully supervised structural
learning algorithm instead of the Latent-SVM used in [6] to
encode more supervision.

The most related work is [30], which used local parts
around landmarks to represent face, and present a tree
structure deformable model for joint face detection, landmark
location and pose estimation with promising performance.
However, it still has problems in the model. It did not
consider the part variation problem and ignored the global
structure information. The defined structure model in [30]
was not robust to occlusion since the location of parent node
may affect its children node. In particular, the model in [30]
can be seen as a special case of our face model by removing
the hierarchical structure and part subtype option.

Face detection using body information has been discussed
in some early works [16][19], but how to use these informa-
tion in unconstraint setting is still unclear. Recently Pascal
VOC person layout competition aims to predict the location
of head, hands and feet given the location of the body [5].
However, in real applications, the body location is always
unknown. Our phrase based body representation is motivated
by the Poselet [1], and we add part information in the Poselet
to get a phrase level representation, in order to extract more
useful context information for face detection.

The rest of the paper is organized as follows: Section 2
and Section 3 present the structural face model and structural
body context model, respectively. The experiments on two
challenging face databases are shown in Section 4, and finally
in Section 5, we conclude the paper.

II. STRUCTURAL FACE MODEL

In this part, we first present the structural part based face
model for flexible face representation, and then discuss the
corresponding inference and discriminative learning algo-
rithms.

A. Model Definition

To represent faces in arbitrary configuration without infor-
mation loss, the ideal way is to model all the pixels and high
order relationship between them. However, it is impossible
since that the joint distribution is too complex to be learned
by current machine learning techniques. Instead, we define
a structure on it, to simplify the complex joint distribution.
In order to give more flexibility in representing faces with
complex variations, we use part based representation, where
the parts are defined around facial landmarks. Given an initial

Fig. 1. Example of training samples and annotations for frontal and profile
views, respectively.

face model M, we sequentially enrich it, to get the final
hierarchical part based structure with part subtype option and
part deformation.

1) Hierarchical Part Based Structure: Useful information
for face detection exists in different resolution levels. The
global information is salient at low resolution level and
more detailed face texture information can be found at
high resolution level. Here we use two resolution levels:
a global root template for representing the faces at low
resolution level and a set of parts to represent faces at the
high resolution level, which is two times larger than the low
resolution level. Similar to [30], the parts are defined around
the landmarks, (e.g., eye corner, mouth center, as shown in
Fig. 1). To build the relationship between the two levels, we
also define a spatial constraint between location of root and
part models. In this way, we get the hierarchical part based
structure, and factorize the face modelM into the following
three components:

M−→ {Mr,Mp,Ms} (1)

where Mr, Mp, Ms are the global root face model at low
resolution level, part models set at high resolution level and
spatial constraint model, respectively. Since Mp consists of
a series of parts, Mp can be further factorized into:

Mp −→ {Mp1 ,Mp2 · · · ,MpN } (2)

where Mpi is the ith part model and N is the number of
part.

2) Part Subtype: Although the part is local enough and
tends to have less appearance variations compared with
the full face, a single model is not enough to model the
appearance variations of the part for the possible appearance
variation, especially when only linear classifier is used.
For example, the nose type can range from ”fleshy” to
”celestial”. In order to capture these large variations, we
enable the subtype option in our model. We set the number
of possible subtypes in each part to be K. Denoting the jth
subtype model of the ith part asMpi,j , we get the following
factorization:

Mpi −→ {Mpi,1 |Mpi,2 | · · · |Mpi,K} (3)

In this factorization, one and only one subtype can be
activated at one time. Note that by introducing the subtype,
our model can represent KN different face configurations
by KN part models, since every part can have K different
choices. It equals to sharing KN parts in KN different
models. The part subtype mechanism gives more flexibility
than global classifier subtype option widely used in pose-
invariant face detectors.



3) Part Deformation: There are two sources of deforma-
tions in face images. The faces from different individuals
have different face organs layout, (e.g. the width between
two eyes). Faces from the same individual can also have
deformation, due to the pose and expression variations. To
capture the variation, we add a deformation model on every
part. Note that although the deformation model of every
part is very simple, the combination of deformations in all
the parts could simulate complex nonlinear face variations.
Given the definition ofMr andMp, a model is constructed
to constrain the deformation of part by modeling the spatial
relationship between the relative location in the two reso-
lution levels. Adding pairwise or higher order interactions
between different parts can capture more structural informa-
tion, however, it will result in a loopy graph without efficient
inference algorithm. To keep the model to be tree structured,
we only define the spatial relationship between parts and
root, and ignore pairwise relationship between different parts.
Suppose we have N parts and every part has K subtypes,
the factorization of Ms is:

Ms −→ {Ms1 ,Ms2 , · · · ,MsN } (4)
Msi −→ {Msi,1 |Msi,2 | · · · |Msi,K} (5)

whereMsi is the spatial model of the i-th part, based on the
relative location of Mpi and Mr, Msi,j is the j-th subtype
of Msi .

B. Configuration Score

Given a configuration H , we need a measurement function
to calculate the score of its match to the learned face model
M. H = {h0, h1, h2, · · · , hN} consists of the configurations
of root h0 and parts hi. Here hi = {li, ti}, where li is a
location, which consists of upper-left corner (xi, yi), height
hi and width wi; ti is the subtype label. Following the
structure of the defined model, the match score is defined
as:

S(I,H,M) = (6)
Sr(I, l0,Mr) + Sp(I,H,Mp) + Ss(I,H,Ms)

where Sr(I, l0,Mr), Sp(I,H,Mp), Ss(I,H,Ms) are the
match scores of the root level, part level, and spatial con-
sistency, respectively. The Sp(I,H,Mp) and Ss(I,H,Ms)
are further parsed into the appearance score and spatial score
of each part:

Sp(I,H,Mp) =

N∑
i=1

Sp(I, li,Mpi,ti
) (7)

Ss(I,H,Ms) =

N∑
i=1

Ss(I, l0, li,Msi,ti
) (8)

For efficient detection and learning, we assume all the
sub-scores are of the linear form:

Sr(I, l0,Mr) = wTr Φa(I, l0) (9)
Sp(I, li,Mpi,ti

) = wTpi,ti
Φa(I, li) (10)

Ss(I, l0, li,Msi,ti
) = wTsi,ti

Φs(I, l0, li,ti , li, ) (11)

where wTr , wTpi,ti and wTsi,ti are the model parameters. li,ti
is the anchor point of Msi,ti

relatively to l0. We use the
appearance feature and spatial feature discussed in [6]. The
appearance feature Φa(I, li) are the modified 31 dimension
HOG feature on location li of image I , and the cell size
in HOG is set to be 4. The spatial feature is defined
as a (dx, dy, dx2, dy2), where dx and dy are the relative
deformation of li to its anchor li,ti . Here dx = xi−x0−xi,ti
and dy = yi − y0 − yi,ti .

Since all components in the model are of the linear
form, the total score of configuration H in image I can be
simplified as:

S(I,H,M) = wTΦ(I,H) (12)

where w is obtained by concatenation all the parameters
including wTr , wTpi,ti and wTsi,ti , and Φ(I,H) is the concate-
nation of all the features with the same order (for subtypes
which are not activated, the corresponding values in Φ(I,H)
is 0).

C. Detection and Learning
1) Detection: In the detection, we use the standard scan-

ning window strategy to scan images in possible locations
and scales to determine whether the special location corre-
sponding to a face or not. For the scanning window located
at L in image I , We fix the root model at L, and allow
the deformation of every part. We first fit the candidate to
the structure model M to get the best part configuration,
and then calculate the score of the window according to the
inferred configuration by Eq. [6-11].

The fitting is conducted by finding the configuration H∗

with the highest match score according to the learned model
M on all possible configurations:

H∗ = arg max
H

(Sr(I, l0,Mr) +

N∑
i=1

(Sp(I, li,Mpi,ti
) (13)

+Ss(I, l0, li,Msi,ti
)))

Since the match score of every part is independent once the
root filter is fixed, we can maximize the following problem
instead:

h∗i = arg max
hi={li,ti}

(Sp(I, li,Mpi,ti
) + Ss(I, l0, li,Msi,ti

)) (14)

There are two components in hi, the part subtype label
ti and the part location li. In the optimization, we first fix
part subtype label ti and find the best li. By traversing all
subtypes, we can find the h∗i which maximizes the match
score. The complexity of maximizing one single sliding
window is high, but benefiting from the generalized distance
transform proposed in [7], simultaneous optimization on all
the sliding windows in the same pyramid level can be very
efficient. The algorithm is of linear complexity with the size
of image. For the detail of the algorithm, please refer to [7]
for the lack of space here.

The confidence of the sliding window L is computed by
S(I,H∗,M) in Eq. 6. By adding the fitting step in advance,
we can infer the latent face configuration and reduce the
influence of configuration variation in face detection.



2) Learning: We use full supervised learning instead of
Latent-SVM [6] to discriminatively learn the model param-
eters. The positive training samples are defined as {Ia, Ha},
where Ha is the annotated face configuration of image Ia,
including part subtype labels and part locations. The negative
samples is defined as {Ib}. We ensure that these is no face
in Ib, so that any configuration Hb on Ib is negative. We
use the concatenation representation in Eq. 12. The optimal
w should ensure that the score of positive samples above 1,
and the score of negative samples below −1. Thus we get
the following structural SVM problem:

arg min
w,ξi≥0

1

2
‖w‖2 + C

∑
ξn (15)

s.t. ∀{Ia, Ha} wTΦ(Ia, Ha) ≥ 1− ξn
∀{Ib},∀Hb wTΦ(Ib, Hb) ≤ −1 + ξn (16)

where ξ is the penalty for violation. The problem is difficult
for the number of negative configuration Hb is combinatorial
explosion. We use the dual coordinate descent solver from
[28], which iteratively (1) solves w in dual; (2) mines
violated constraints according to current learned w, and adds
them to the constraint pool, until converged.

In practical learning, we first learn the appearance param-
eters of root model and all the part models independently,
and then use them as the initialization for structural SVM
training. We set the number of subtypes K to be 4 according
to cross validation. Since there is no annotation of subtype,
we use a K-means to cluster annotated landmarks to K
subtypes according to the relative location in face. To capture
the large pose variation, we train three models, including
faces yaw angles in (−90◦,−30◦), (−30◦, 30◦), (30◦, 90◦),
respectively. For frontal faces, we use 21 landmarks and for
profile faces, we use 14 landmarks.

III. STRUCTURAL BODY CONTEXT MODEL

It seems that no matter how powerful an appearance based
face detector is, it would not always perform well for all
scenes, for the possible large appearance variation in novel
faces. Besides the face itself, the most possible information
that can contribute to face detection is the human body. As
an intuitive example, a heavy occlusion on face can make the
state-of-the-art face detectors to fail, but we human beings
can easily locate it with the help of un-occluded body.

A. Body Detection Model

Body detection itself is a more challenging problem since
it often has large appearance variations, the best people
detectors on Pascal VOC benchmark can only achieve about
50% AP (Average Precision) [5], which is far from satisfacto-
ry. Learning a better people detector would always be helpful
in improving face detection, but it is beyond the scope of the
paper. Here we focus on training suitable body model that
can provide useful context information for face detection.

Mixture deformable part model (DPM) [6] and some of
its improvements [9][29] can get state-of-the-art performance
on people detection task, however, we find that the original

DPM is not suitable for helping face detection for the ambi-
guity in latent variable inference. The part used in DPM has
no clear corresponding to semantic part. Another promising
people detector is Poselet [1], which divides complex people
body configuration into simple local configurations and every
Poselet just describes a single one. However, the Poselet
defined in [1] is not part based, the only available global
template is not accurate enough in estimate the face location.

To provide a better body context, we train a phrase model
for body representation. The phrase can be “left-orientated
face on the shoulder”, “frontal half face with torso” and so
on. Although detecting body under arbitrary configuration is
a hard task, detecting body with more constrained configu-
ration is simpler and is expected to have better precision. In
order to generate phrase and corresponding training samples
we use the technique described in [1] to find image patches
similar to a seed patch according to annotated landmarks. We
use patches with similar configuration to train a part based
body detector. In training each phrase model, we modified
the DPM code [8] to an fully supervised version since all
latent information in DPM is available given the landmark
annotation.

Each phrase model is a DPM model, and scanning an
image using all DPMs is time consuming. In the paper, we
use the branch and bound implementation as described in
[15], which achieves logarithmic complexity in the image
size. In our experiment, we use 43 phrase models, and get
nearly 10 times speed up than original DPM inference code
[6] with the same performance. We refer to [15] for the detail
of the inference algorithm.

B. Structural Body Context Model

1) Predicting Face Location: Benefit from the rich part
information in the phrase based body detectors, we can use
simple models to predict the location of face. In this paper,
we use a simple linear regression model. For each phrase
model we have one root and n parts, and we construct a
2n+3 dimensional vector with the width of the root filter
and the location of upper-left corner of each filter in image
v = (w0, x0, y0, x1, y1, · · · , xn, yn). We feed the vector v
into a linear regression model to estimate upper-left corner
(fxl

, fyu) and lower-right corner (fxl
, fyr ) of face. In order

to remove the effect of parts with little correlation, we use
lasso instead of the ridge regression.

2) Structural Context Model: Since face detector and
phrase based body detectors may activate the same face, we
need a merge mechanism to remove the repetitive activations.
Widely used merge method like non-maxima suppression
(NMS) can not be directly used here, because the scores
in different models do not have equal confidence. [4] gives
a learning based merge method that outperforms NMS,
where pairwise relationship are learned. However, it yields a
loopy graph and only approximate inference algorithms are
available.

Motivated by [4][23], we present a learning based context
model to merge detection results of face detection and body
detection. Given an image I , we use the face detector and
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Fig. 2. ROC comparison of different algorithms on FDDB and Pascal Face.

phrase based body detectors to scan the image, and get the
initial D face candidates B = {b1, b2, · · · , bD}, where bi =
{li, si, ci} includes the location li, detection score si and the
corresponding model ID ci. The merge procedure is to assign
a binary label set T = {t1, t2, · · · , tD} to B, where ti = 1
means the bi should be kept otherwise should be suppressed.

In order to use information of nearby activations, we en-
code the nearby overlapped activations into feature represen-
tation of bi, denoted as xi. xi is a 3M+2 dimensional vector,
where M is number of models. The first two dimensions of
xi are the score si and a bias term 1. The other dimensions
of xi are defined as follows. For every bj , j 6= i, if there is
an overlap between bj with bi, we set the value in 3cj ,3cj+1
and 3cj+2 dimensions to be the overlap ratio, the scale ratio
between them, and the confidence score respectively. Other
unset dimensions are set to be 0. There may exist more than
one overlapped activations with the same model ID, in this
condition, we just keep the one with the largest overlap ratio.

We assume a linear model parameterized by wci on the
feature xi to determine whether bi should be kept or not. The
label ti of bi is set to be 1 if wTcixi > 0 otherwise 0. The pro-
cedure equals arg maxti=0,1 w

T
ciΦ(bi, ti), where Φ(bi, ti) =

xi if ti = 1, and Φ(bi, ti) = −xi if ti = 0. For simplicity, we
assign labels to bi independently, then label set T is inferred
by arg maxT w

T
c Φ(B, T ) =

∑
arg maxti w

T
ciΦ(bi, ti). We

concatenate wci to a long vector wc. The optimal w should
ensure that the score of true hypothesis H corresponding to
a higher score wTc Φ(B,H) than any other hypothesis T with
a margin L(T,H) on the image. wc can be discriminatively
learned from labeled training image set {In, Bn, Hn} by the
following Structural SVM problem:

arg min
wc,ξx≥0

1

2
‖wc‖2 + C

∑
n

ξn (17)

s.t. ∀H,n wTc Φ(Bn, Hn)− wTc Φ(Bn, Tn)

≥ L(Tn, Hn)− ξn (18)

where Tn is arbitrary hypothesis of Bn in In, L(Tn, Hn) is
the Hamming loss to measure the difference between two
detection hypotheses.

Since that the number of hypothesis Tn is of exponential

order, the constraints in Eq. 17 can not be fit into memory
once in practice. Instead we use cutting problem algorithm
in our optimization. At every loop of the solver, we use the
current model to scan images and find the most hard wrong
hypothesis, and then use these hard wrong hypothesis as the
negative samples to update the model.

IV. EXPERIMENT

In this part, we give the training data used in training
structural face model and body context model. After that,
we compare the learned model with various commercial and
academic face detectors on challenging database.

A. Training Databases

The positive samples used in training structural face model
come from AFLW database [14], which is a large scale face
database that consists of 25,993 faces collected from Flickr,
with maximum 21 landmark annotations. Some of the faces
in this database are not fully annotated, currently we just
ignore these faces for simplicity. In our experiments, we
use 3065 faces for training frontal face model and 1552
faces for training profile face model. Our phrase models are
trained on the train and validation set of the latest Pascal
VOC 2012 detection database [5] and H3D database [3].
In Pascal detection database, there are 4087 images with
8566 people, we use the 33 landmark annotations from [2].
In H3D database, there are 2000 people annotation on 520
images. We combine these two databases to train our body
model. For the two tasks, the negative samples are from non-
people images in Pascal database [5]. In order to train the
context model between face and body, we select the 1000
images from Pascal detection test set and annotate faces on
them. Note that there is overlap between Pascal detection set
and Pascal layout set, which will be used as test set in our
experiment, so that we remove these overlapped images in
training body detectors and body context model.

B. Experiment on FDDB

The FDDB database [11] is a challenging face detection
benchmark designed for comparing unconstrained face detec-
tion. It contains 5171 faces in 2845 images taken from news



photographs. In the database, we compare our model with
the following systems: (1) Olaworks face detector1, which is
a commercial system, and it achieved the best performance
according to the FDDB result page2; (2) Li-intel face detector
[17], which is based on SURF cascade; (3) Jain’s face
detector [12], which uses the image level context to improve
boosting based algorithm; (4) OpenCV V-J face detector 3,
which is one of the most popular open source face detector;
(5) Subburaman’s face detector [25], which improves V-J
detector in sliding window phase; (6) Mikolajczyk’s face
detector [19], which used body information. ROC results
under discrete score metric and continuous score metric are
shown in Fig. 2(a) and Fig. 2(b), respectively.

We can find that our detector and the commercial Olawork-
s detector are among the leading methods on FDDB that out-
perform other detectors with large margin. Our true positive
rate are slight higher than Olaworks when the number of false
positive samples is above 258 on discrete score ROC and
43 on continuous score ROC. We also measure the Average
Precision (AP) of different systems by cumulating the areas
under the Recall-Precision curve, our detector achieves 0.837
AP, better than the 0.820 of Olaworks.

C. Experiment on Pascal Face

Besides FDDB, we also annotate a more challenging
face detection database from the Pascal person layout
database [5], which is collected from Flicker. There are 1335
faces from 851 images with arbitrary appearance variation.
The state-of-the-art systems are compared, including the
Face.com, Tree structure part model [30], V-J, and weighted
sampling based boosting [13].

We use the Recall-Precision curves and corresponding
AP (Average Precision) to measure the performance. Our
system achieves comparable performance with the state-
of-the-art commercial system Face.com, and outperforms
other academic systems including [30], even only using the
structural face model. Out structural face model outperforms
[30] with 1.8% AP, which can prove the advantages of part
subtype and hierarchical structure, since [30] can be seen as
a special case of structural face model by removing the two
information. On the experiment we can also find the value
of body context model, which contributes 2.5% AP, by the
comparison between the experimental setting (4) and (5) in
Fig. 2(c).

V. CONCLUSION

In this paper, we propose structural models for face
detection. The structural face model allows a fitting step
in detection, thus has the flexibility to capture configuration
variation for faces in the wild. Further, we present a method
to capture the co-occurrence between face and body, and
prove its advantage in face detection.

1http://eng.olaworks.com/olaworks/main/
2http://vis-www.cs.umass.edu/fddb/results.html
3http://sourceforge.net/projects/opencvlibrary/
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