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Abstract— Nonverbal communication plays an important role
in many aspects of our lives, such as in job interviews, where
vis-à-vis conversations take place. This paper proposes a method
to automatically detect body communicative cues by using video
sequences of the upper body of individuals in a conversational
context. To our knowledge, our work brings novelty by explicitly
addressing the recognition of visual activity in a seated, con-
versational setting from monocular video, compared to most
existing work in video-based motion capture, which targets
full-body with lower limb activities. We first detect the person
hands in the sequence by searching for the higher speed parts
along the whole video. Then, aided by training a set of typical
conversational movements, we infer the approximate 3D upper
body pose, that we transfer to a low-dimensionality space in
order to perform action recognition. We test our system in the
context of job interviews, with several new databases that we
make publicly available.

I. INTRODUCTION

Nonverbal communication plays a significant role in how
we perceive each other in a social context [14], [24]. Some
key aspects of life, such as job interviews, take place in vis-à-
vis conversations, in which the way we are socially perceived
has a significant weight in our success [5]. This subject has
therefore been intensively analyzed in social psychology and
cognitive science [14].

However, there has always been the need for an interpreter.
That is, a person that emits a judgement on the perceived
traits of the analyzed subject, or that codes specific behaviors.
In order to address this problem, we propose a new method
to analyze, in an automatic way, upper body nonverbal cues
of people in a conversational context. By using frontal videos
of a person discussing around a table as input, we developed
a set of new computer vision algorithms in order to first
extract, and then obtain a series of measurements that allow
to analyze upper body movements and actions of a person
with conversational meaning (see Figure 1).

A significant amount of research [30] has been done
in order to obtain body movements, information generally
known as markerless motion capture. Moreover, this topic
has been identified to be a hard problem to solve when using
a single camera system. This paper proposes a novel upper-
body motion capture system based on multiple image cues,
such as face, hand and motion detectors, and using training
data from 2.5D labeled conversational video sequences. As
a result of our work, we are able to determine the 3D upper
body pose of a person and its corresponding hand speed and
a number of conversational actions, which is the first building
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Fig. 1. Our proposed framework outputs hand position, speed, approximate
upper body 3D pose, and estimated ongoing activity, using single camera
conversational video sequences as input.

block for more advanced interaction analysis techniques.
Figure 2 shows a general diagram of the framework.

A. Related work

1) Computational modeling of interaction: As discussed
in [11], a significant amount of literature on analysis of
nonverbal social interactions has been published over the
years. Interactions among small groups and dyads have
been studied. Much work has investigated basic features
(e.g. visual motion or basic hand gestures) that can be
robustly extracted from video, but that correspond to rough
representations of actual activity [26]. The subject has also
been approached by the wearable computing field, where
people wear sensors to be able to capture body motion
and posture in conversations [7]. But while motion can be
accurate, there is a need to place and wear intrusive devices.
There is also a substantial amount of work in hand gesture
recognition [21], [22], which in general has had different
emphases (i.e., human-computer interaction or sign language
recognition) than the one we address here.

Action recognition with computer vision can be applied
to automatically obtain body communication cues. The most
traditional approach in these systems is to first get the body
pose and then analyze it [10]. Most recent works are able to
do this without getting the body pose (i.e. without performing
motion capture) through diverse techniques [25]. However, it
has been shown in practice [2] that, even though it is possible
to perform activity recognition without knowing the body
pose, it is still beneficial to know it. In this work we are
looking for specific nonverbal cues such as adaptors, which
are movements like head scratching, that provide information
about attitude, anxiety level and self-confidence [18]; and
beat gestures, which are flicks of hands used to emphasize



important parts of the speech with respect to the larger
discourse [19]. Body posture is also found to be an important
indicator to the emotional state of a person [20].

2) Motion capture: Motion capture has been a long-
standing subject in vision and graphics, as it allows for a
number of interesting applications, mainly in the fields of
virtual-character animation and gaming [31]. Traditionally,
there was a need for wearing cumbersome sensors in the
body, compromising the practical aspects of the concept. In
recent times however, markerless motion capture solutions
heavily removed the need for them, by being able to obtain
the body pose with sensors in the environment (i.e. cameras
of different kind), with relatively high precision. This is why
this method in particular has generated a lot of literature in
recent years [30]. There are several approaches, which can
be grouped into single-camera (monocular) systems, multi-
camera systems, and range camera systems.

Given that the human body movement is intrinsically non-
linear and high-dimensional [31], having several point of
view of the body helps to remove ambiguities. Although a
lot of alternatives exist, the traditional approach when having
multiple cameras, is to first obtain multi-view silhouettes of
the body and then iteratively adapt a model to these silhou-
ettes [34]. However, settings with more than one camera are
not always available.

Recently, the popular Kinect device [29] has spread mark-
erless motion capture systems based on range cameras (i.e.
so-called 2.5D images), which provide a depth measure
for every pixel, removing many of the problems of regular
camera systems. Kinect features a body part detector im-
plemented by training a random forest with a huge number
of synthetically-generated poses, and since recently, is also
able to track upper-body only. Related to this, a few works
have arisen [17], [9]. However, [17] needs to get a reference
pose to initialize, and in [9], a camera calibration is needed.
The main downside, however, is that this kind of sensors
are not yet as extended as to be always an available option,
especially in already recorded footage, which is the case for
most work in social psychology and communication.

This point highlights the relevance of the monocular
approach. A lot of vast and diverse work has been made
here too [23], [6], [27] [8]. To address the problem in the
conversational video sequences, we propose a robust cue
such as dense TV-L1 optical flow [4], that together with
a face detector, is used to first place the hands, and then
with the help of a set of trained 3D movements, obtain an
approximate measure of the human body.

Finally, as extense as the literature of markerless motion
capture and multimodal interaction is, to our knowledge,
a joint approach that explores the use and implications of
having automatic body communication extraction in a social
conversational context is still missing, although some works
have been done in that direction, like [16], which analyzes
gender, age, or animic state with gait cycles. The proposed
work here presented is designed to be a first solution to fill
this void.

B. Paper contributions and organization

Taking into account the related works previously reviewed,
the main contributions of this work are:

1) A new method for extracting hand position from
conversational video sequences, by exploiting the fact that
optical flow is a strong indicator of where the hands are in
conversation.

2) A new method for visual tracking, if the whole sequence
is available from the start (typically the case in psychology,
management and cognitive science experiments).

3) A new method for extracting 3D torso pose from 2D
images in a seated person setting for action recognition.

4) An objective evaluation of the above tasks using a job
interview dataset. This generated three public datasets. Two
are used to evaluate hand position and activity recognition
accuracy. One contains a set of 3D poses labeled with the
help of a range camera.

The rest of the paper is organized as follows: in section II
we present the proposed method for hand mapping, hand
tracking and estimated torso pose retrieval algorithms; in
section III we test them by using several self-made databases,
and discuss our framework limitations, and finally in section
IV we expose our conclusions.

II. PROPOSED METHOD

We propose to build a set of modules for analyzing
nonverbal cues, from a video of the upper body of a person.
In order to accomplish that, we developed hand and face
detectors that together with offline training data, allows to get
the approximate 3D upper body pose. From this information
we extract the conversationally relevant cues. See Figure 2.

A. Hand likelihood maps

Given a video frame I, where I(p, t) is a pixel color
at position p = (u,v)> and time index t, the goal is to
obtain a measure of where the hands are in that image.
In order to accomplish the goal, the features used should
be as color/appearance invariant as possible, to increase the
robustness, while also exploiting the constraints of the face-
to-face interactive setting.

We hypothesized that, given a frontal, static camera point-
ing to the upper body of a person, hands are normally the
parts of the image that show more movement. Two strong
indicators are: a) they are usually the closest part to the
camera, and b) they are the further body part from the body’s
axis of rotation, so they show the highest spatial speed for a
given joint angular speed.

With this in mind, we built a 2D hand likelihood map,
where high values mean that the expectancy of a hand
being in that region is high. The hand likelihood map
follows the assumption that: in an image, the hands are
the skin-colored parts that are not the face and which show
more amount of movement. In order to enforce that rule,
we need to compute the optical flow of the sequence to
extract movement information, skin segmentation, and face
detection. Also, given the natural appearance of the fingers,
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Fig. 2. Proposed framework to first extract and then analyze the body posture in conversational sequences.

which have lots of edges, we also used image edge detection
as a feature. We detail the steps in Figure 3.

1) Video movement retrieval: In order to retrieve a mea-
sure of the characteristics of the movement in the image,
we use a state of the art framework [4], that provides
smooth optical flow (see Figure 3) by performing convex
optimizations while allowing for outliers. It outputs the
optical flow modulus IOF , that can be seen as a scalar image
IOF(p, t).

2) Face detection and edge extraction: In order to detect
the face of the conversating person in the video, we used a
yet unpublished probabilistic version of the Viola & Jones
face detector [32]. It uses likelihood information from the
output of every adaboost cascade classifier, so that the output
is probabilistic rather than binary. We built a face mask, set
to 0 inside the face region of interest and 1 otherwise, so
that later the face pixels are not taken into account when
computing IF . We use a simple Canny edge detector [3] with
a low threshold, to obtain an edge map which we then smooth
in order to better search for maxima in the hand likelihood
map. We get the final edge map IE .

3) Skin segmentation: Inspired by [28], we profited from
the face detection to infer the skin color of a given person,
as the skin color of the face and hands are usually similar.
A number of NRF sequence frames are randomly picked.
It is established by [12] that skin color hues usually fall
within the (0,0.2) range of the hue channel in an HSV image.
We therefore built skin color statistics (µSH ,σSH ) using the
image pixels of the NRF detected face regions that fell within
that range. A binary segmentation is then performed, in
which a pixel is labeled as skin if it falls within a distance
σSH of the skin hue mean µSH . We tried the algorithm
with people of different skin tones (Figure 3). Simple per-
pixel morphological operations are then performed with the
segmented image, in order to obtain the final IS binarized
result image.

4) Hand likelihood map formation: The hand likelihood
map is obtained as the intersection IH = IOF · IS · IF · IE of all
these cues, as their simultaneous verification constitutes the
set of rules that we established in II-A it should follow. See
Figure 3 and the supplementary video material.

B. Hand tracking

Exploiting the fact that the whole video is available since
the beginning of the processing phase (something that is
typical of offline settings), we aim to detect the hands by
performing an analysis of the obtained hand likelihood map
sequence in order to model the premise of the hands being
the quickest part of the human upper body along a sequence.
A tracking scheme is implemented in two steps, as follows.

1) Hand likelihood map clustering and tracklet extraction:
For each hand likelihood map frame IH , we first perform a
search for local maxima, first by using a smoothing filter in
order to better show local tendencies, obtaining IHS. We then
threshold IHS, and cluster local the obtained maxima using
an adaptative k-means classifier with support for a variable,
unspecified number of classes, which also provides identity
consistency of the several local clusters along time. At this
point we have a set of local maxima of the whole sequence
of hand likelihood maps.

We extract the paths of those several local maxima de-
tected in IHS. These set of Nt hand likelihood map trajecto-
ries, that we call tracklets, are non continuous in the sense
that detected local maxima will disappear and then re-appear
in the image because of occlusions, being out of frame,
and/or malfunction of the hand likelihood maps. The output
of this is a group of tracklets, each of which is defined as
follows:

{Ti}Nt
i=1 = {t0,i, t f ,i,λi,p0,i,p f ,i}Nt

i=1 (1)

where Nt is the number of tracklets in the sequence;
t0,i, t f ,i are the time instants when the tracklet i starts and
ends; λi is the accumulated likelihood along the tracklet i
duration. Longer tracklets therefore usually have bigger λi.
As tracklets do not have a maximum length value, λi is not
upper-bound; p0,i is the pixel position where the tracklet i
started, and p f ,i is the pixel position where the tracklet i
ended.

2) Finding hands’ most likely paths: In order to obtain
the best 2D paths for a hand in the image, we implement
a decision tree algorithm, in which the tracklets are the
branches, and a decision of what tracklet to follow next
is made in every node, based on several factors explained
below. In Figure 4 a 1D example of how four tracklets look



Fig. 3. Steps for building the hand likelikihood maps. All images in the same row corresponds to the same time instant (see the supplementary video for a
display in motion). Columns, from left to right: input video frame, optical flow normalized modulus, probabilistic Viola & Jones output, skin segmentation
and face ROI, edge map, and hand likelihood map (the intersection of the other cues). Best viewed in color.

along time is shown. The goal is to find the path in which the
accumulated likelihood is maximum. For this, we establish
three basic rules:

- Once the hand is assigned to a tracklet, it is not possible
to jump to another tracklet until the current one has reached
its end.

- Once a tracklet has finished, it is possible for the hand to
stay in that tracklet final pose until the end of the sequence,
or jump to any other tracklet that has started afterwards.

- When jumping from one tracklet to another, jump dis-
tances (in pixel positions) are taken into account to penalize
far jumps. The accumulated likelihood of a hand taking two
tracklets, Ti then T j (that is, following path from the initial
point of Ti p0,i to the final point of T j p f , j through points
p f ,i and p0, j ), separated by a distance di, j = ‖pi, f −p j,0‖,
is:

Λi, j = λi + eρ(−di, j)λ j (2)

Where ρ is a distance penalization factor (manually set
in experiments). We process the existing paths, and then get
the one which contains the highest accumulated likelihood.
The sequences in consideration in our work are long (up
to 20 minutes), and the number of tracklets could be in
the hundreds. Given that the number of paths increase
exponentially with the number of nodes, we back-compute
the accumulated likelihoods, retaining only the maximum
path at each node.

Taking both hands into account: The goal is to have the
two highest likelihood hand trajectories, given that there are
two hands to track. Therefore we search for the two best
paths along the tracklet tree. In order to do this, we define a
priority hand, that is, the one that will evaluate the tracklet
tree first, thus getting the best path.

After this has been computed, we set to 0 the accumulated
likelihood of the tracklets used by the optimal path, and
then evaluate the modified tree for the other hand. This
algorithm finally outputs the position of the visible moving
hands H1(t) = (pH1) and H2(t) = (pH2) in the image at time
t.

C. Torso pose extraction
In order to infer the torso 3D pose, we propose to use the

2D hand and face position, together with training data, which
allows to map the 2D observations in the image into a 3D
estimated pose. To do this, we first collect and label several
typical and conversationally relevant upper body poses, with
the help of a range camera. Then we create a series of
synthetic observations with the collected poses to compare
them to the real ones. The process is explained as follows.

1) 3D torso model: We use a synthetic 3D polygonal
torso model, driven by an underlying N j-joint skeleton (see
Figure 5), whose pose is parameterized by the 3D euclidean
rotation angles Φ = {α j,β j,γ j}

N j
j=1 of every body segment,

relative to the root node (the base of the neck joint), which is
referenced to the world global coordinates by its 3D position
and orientation Ψ = {αR,βR,γR,xR,yR,zR}.

We have not experienced any problems regarding Gimbal
locks, therefore we did not deem necessary the usage of
alternative angle representations such as quaternions ([15]).

Fig. 5. Torso Model. Left: 3D mesh. Centre and right: underlying skeleton
model. The base of the neck is the root node.

2) Training process: The training process is what gives
the ability to infer the 3D articulated model of a torso from
2D observations. It is only done once, as a pre-processing
step, it should therefore not be mistaken for user assisted
methods. Two subjects (two male, two female) are recorded
with a range camera in a similar setting to the target scenario
(i.e. sitted by a table, see Figure 7 left), while performing a
set of NTa actions, resulting in a total of NT training frames.
See Table I below for the list of actions included in the
training data set.

As can be seen, the above actions are all typical of a
conversational setting. We first group these actions into a set
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Fig. 4. Left: Hand tracking tracklet decision tree example with 4 tracklets (T1 - T4) and 4 nodes, along a 1D state space. Color encodes tracklet likelihood
in a given time instant (warmer means higher). Nodes are represented with squares. Right: Likelihood values Λ for each possible path. Best viewed in
color.

Label Description
refPose Reference pose, hands separated, on table.
cA Arms crossed.
gR, gL,
gRL

Perform conversational gestures with one hand,
then with the other hand, then with both.

gTR, gTL,
gTRL

Same as previous, but resting the non-used elbow
on the table.

hH Hands touching the back of the head.
hHip Hands touching the hips.
sTR, sTL,
sTRL

Placing one hand, then the other, then both in
different parts of the table.

thkr One hand one the chin, another one supporting the
elbow of the hand that touches the chin.

tCR, tCL,
tCRL

Touching the chin with one hand, then the other,
then both, with the non-used hand resting on the
table.

TABLE I
LABELED ACTIONS IN THE TRAINING PROCESS.

of 6 conversationally relevant categories, the four shown in
Table II and two additional classes for ’handsOnHead’ and
’joinHands’. Upon inspection of the data, we realized that
these categories, while natural, occurred only in a negligible
fraction of our data (approximately 0.5 % of total), and
therefore are not considered for experiments. This grouping
of subactions into four categories is done both to avoid
increasing the variance of the error, and because this work
being a first approach to the problem, which will be extended
afterwards.

Category Actions in category
hiddenHands No hands detected
gestures cA, gR, gL, gRL, gTR, gTL, gTRL, hHip,

hH
handsOnTable sTR, sTL, sTRL, refPose
selfTouch thkr, tCR, tCL, tCRL

TABLE II
CATEGORIES OF ACTIONS

The range camera provides a set of (uRC,vRC,zRC) ob-
servations, where (uRC,vRC) are the usual 2D image coor-
dinates, and zRC is the depth value. Manually annotating
the position of every joint in the (uRC,vRC) space of the
depth recordings allows to obtain the 3D location {JT,k}NT

k=1 =

{xT jk,yT jk,zT jk}
NT ,N j
k=1, j=1 of every joint, along the different

training sequences, where N j denotes the number of joints. If
an occlusion occurs, we estimate the position of the occluded
joint either as the same one of the last frame, or as an
estimated guess. Given that our torso model is parameterized
by angles, and at this point we have a set of 3D points JT , we
use an optimization fitting scheme, by using non-linear least-
squares to get the angles {ΦT,k}NT

k=1 from the 3D points JT .
Given that more than one combination of angles could result
in the same 3D joint positions, we establish an angle limit
for every joint, and then build an energy function based on
these constraints, so that the energy is minimum the further
away the joint is from the limit (see Figure 6).

Minimum angle Maximum angle
0

0.5

1

Angle

E
n

e
rg

y

Fig. 6. Left skeleton: low energy arm pose. Right skeleton: high energy
arm pose (given that α2 and β2 are closer to the maximum angle than α1
and β1). Right graph: energy function.

Even if rough, this setting gives good results in obtaining
the desired parameterization (see Figure 7, and 3D mesh in
Figure 5, which shows natural limbs and head orientation,
thanks to the built joint angle energy function).

Fig. 7. Left: manually annotated 3D skeleton overlaid into the range camera
3D measurements (see supplementary video). Right: optimized torso pose
relative to the manually annotated points (in magenta). Best viewed in color.

We then input the joint angle information of these actions



using the Principal Component Analysis (PCA) framework
[13], into a low-dimensional latent space:

{ΦT,k}NT
k=1 7→ΠT,k = {π1,k,π2,k, ...,πN,k}NT

k=1 (3)

We are aware that there exist more modern alternatives to
PCA such as [33]. However, as their study is outside the aim
of this work, we rely on the simple and efficient two-way
mapping that PCA provides.

After the movement is compressed by PCA, we manually
mark the most characteristic instant of every action in the
PCA low-dimensional latent space (we call them key points,
{KTi}NTa

i=1). This is because along a movement sequence, there
are intermediate instants in which the main characteristics of
the final posture are not captured (see Figure 8).

hH

tCRLmF
mhInF

tR

tL

gATR

cA

hHip
mhInT

gATL

tCRgR

gL

sTRLsTL

sTR

tCL

ref

Fig. 8. Left and center: two poses of the cross arms action, with their
representation in the PCA space. Only the center one is characteristic of the
action (the key point). Right: Whole set of trained motions in the latent space
(see Table I), with the labeled key points of every action (black crosses).

3) Training data integration: After the process just de-
scribed, we construct, for every training frame, synthetic
observations for the hand and face positions, projecting them
from our torso model onto 2D images by using an estimation
of the camera extrinsic parameters. Afterwards we compare
the real inputs with our set of synthetic data, by using
discrepancies between hand position and foreground/edges
to choose the best match.

The angle data of the noisy set of training poses are then
smoothed with a Kalman filter, to obtain the final output pose
sequence Ωt = {Φt ,Ψt}

N f rames
t=1 .

D. Feature extraction and conversational cue inference

At this point we have obtained the hands’ position in the
image {H1(t),H2(t)}

N f rames
t=1 and the approximate 3D torso

pose {Ωt}
N f rames
t=1 . In order to obtain conversationally relevant

information, we extract the following features:
- Average hand speed: Given that we have the positions

of the two hands along each sequence (Section II-B), we
compute their speed to get the average speed H ′1,2 along a
sequence.

- Action recognition histograms: In order to infer the
action that is being performed at a given instant of the
sequence, we first get the pose point in the latent space
by computing the mapping Φt 7→ Ωt (Section II-C.2, Eq.
3), and then compute the Euclidean distances in the latent
space to every key point KT , which we use to compute the
winner category (4 in our case). This outputs a label with

the estimated performed action for every sequence, that we
use to build an action histogram, which we also use as a
feature, because it provides a measure of how a person has
moved along the sequence. Figure 9 illustrates the extracted
features for two people with significantly different amount
of hand motion and body postures.
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Fig. 9. Extracted features of two different persons. See supplementary
video.

III. IMPLEMENTATION AND RESULTS

A. Implementation and data

We found a lack of appropriate public databases for testing
activity recognition and hand tracking in a compatible seated,
conversational, long sequence setting. Therefore we built a
set of experiments that we make public in [1], in order to test
the performance of the hand tracking and action recognition
algorithms (Figure 12).

We use data obtained from real job interviews, taking
place in a conversation room using two uncalibrated but
synchronized HD cameras (we resize the images to 640x480
as it is enough for our purposes) with a sampling rate of 26
frames per second, fixed on a table and pointing to the upper
body of the participants (see supplementary material). This
data consists of 8 full jobs interviews with 105 minutes of
conversation sequences, in which 8 different subjects appear.

Fig. 10. Video recording setup.

In order to reduce the number of frames to process, and
given that we use optical flow to detect the hands, we filter
the segments of the video in which there is not enough image
difference, by using a manually set threshold on the frame
difference signal. That is, we do not process the frames which



do not show enough change, although we take them into
account when computing the average hand speed.

For the hand tracker, we manually labeled the position of
the hands in a challenging 1450-frame sequence, where a
person wears a skin-colored scarf and has no sleeves. It is
therefore very useful to determine how well the proposed
hand map behaves with the help of optical flow and edge
information, in comparison to a regular skin segmentation.
The error is measured in two ways: (1) on the image plane,
in pixels, and (2) as a detection rate, that measures how often
the number of detected hands (0, 1, or 2) is correct.

For testing the action recognition algorithm, we manually
labeled the actions performed by the 8 different subjects,
according to the categories in Table II. To simplify the
process, we labeled one every 15 frames (or approximately
6 tenths of a second) in the portions of the video which
showed movement above the manually set threshold. This
resulted into 2590 manually labeled frames, see Table III
for the split per category. As performance measure, we use
frame classification accuracy.

hiddenHands gestures handsOnTable selfTouch
2.23% 24.56% 67.53% 5.67%

TABLE III
CATEGORY FREQUENCY IN THE USED DATABASE.

B. Results and discussion

The results are shown in Figure 12 and illustrated in Figure
11 and the supplementary material. Regarding hand tracking,
Figure 12 (top) shows the error for both hands. As can be
seen, the error remains below 20 pixels in many frames,
except when error spikes appear. The mean error is 17.35
pixels. Furthermore, the detection error is 8.75%. Note that
the chosen data for testing is specially challenging, so we
would expect the method to perform better in many other
situations.

Regarding action recognition, the overall classification
accuracy is 72.5%. The performance is significantly better
than random (25%), but also than a majority-class method
that would label every frame as ’handsOnTable’ (67.5%, p=
0.0238). It is important to mention that correctly classifying
the ’handsOnTable’ action is not trivial, as factors like slow
movements, skin colored clothes, or sleeve-less shirts have
to be dealt with. As an illustration, we show two failure
examples of the hand tracking in Figure 13. Examples of
correctly recognized actions are shown in Figure 11.

The algorithm finds its main challenges in two points:
(1) Given that we make a comparison with training data in
order to obtain the torso 3D pose, the system has difficulties
coping with body poses outside the training ones. This can
be addressed in two different ways: by creating a larger
training set, where using synthetically generated poses is
an option [29], or by using the current output to initialize
an optimization scheme to better adjust the pose. The latter
option could be viable only if the processing time is low

70%

11%

18%

2%

8%

37%

28%

26%

5%

7%

87%

2%

13%

21%

14%

52%

h
id

d
e

n
H

a
n

d
s

g
e

s
tu

re
s

h
a

n
d

s
In

T
a

b
le

s
e

lf
T

o
u

c
h

hiddenHands

gestures

handsInTable

selfTouch

40

6

10

1

51

229

173

163

86

120

1509

27

19

30

20

76

h
id

d
e

n
H

a
n

d
s

g
e

s
tu

re
s

h
a

n
d

s
In

T
a

b
le

s
e

lf
T

o
u

c
h

hiddenHands

gestures

handsInTable

selfTouch

Fig. 12. Top: hand tracking error results. Middle and bottom: Confusion
matrix, normalized by columns (middle) and not normalized (bottom).
Warmer colors mean higher values. Best viewed in color.

enough, to keep the problem tractable given the large amount
of data to process. (2) As we perform the analysis on
monocular video, the observed hand position if the subject
makes hand gestures in front of his face is very similar to that
of self touch. Similary, judging exclusively the wrist joint
position, it is challenging to differentiate between actions
’gestures’ and ’handsOnTable’, if the action is taking place
near the table.

Fig. 13. Failure examples while the subject has the hands on the table.

IV. CONCLUSION

We present a system that automatically analyzes the
communicative cues of seated participants in conversational
events recorded with regular, broadly available cameras
(although range cameras are needed only for the offline



Fig. 11. Frame results. Top row: input frame, with hand likelihood map, face detection, hand tracking and recognized action overlapped. Bottom row:
output 3D torso pose. See supplementary video.

training phase). We built original hand and face detectors
which were used to get an approximate 3D upper body
pose, which will be useful for developing more complex
techniques in our future work. This pose, highly dimensional,
is compressed to reduce its dimensionality and perform
action recognition. With this information we propose to use
average hand speed and action histograms as descriptors of
body communicative cues. Specifically, we look for adaptors
and beat gestures, which previous studies have shown to
carry nonverbal communication information. Our system can
recognize basic upper-body actions with an accuracy of
72.5%, in a dataset of 105 minutes of real job interviews.

The results obtained with our proposal have shown to
be useful as a first building block to automatically analyze
psychological traits of the participants in the conversation,
and psychologists that we have discussed with find this type
of recognition and current performance quite promising. Our
future work will deepen and explore the possibilities that this
fusion of disciplines give.
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