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Abstract— Gaze movements play a crucial role in human-
computer interaction (HCI) applications. Recently, gaze track-
ing systems with a wide variety of applications have attracted
much interest by the industry as well as the scientific commu-
nity. The state-of-the-art gaze trackers are mostly non-intrusive
and report high estimation accuracies. However, they require
complex setups such as camera and geometric calibration in ad-
dition to subject-specific calibration. In this paper, we introduce
a multi-camera gaze estimation system which requires less effort
for the users in terms of the system setup and calibration. The
system is based on an adaptive fusion of multiple independent
camera systems in which the gaze estimation relies on simple
cross-ratio (CR) geometry. Experimental results conducted on
real data show that the proposed system achieves a significant
accuracy improvement, by around 25%, over the traditional
CR-based single camera systems through the novel adaptive
multi-camera fusion scheme. The real-time system achieves
<0.9◦ accuracy error with very few calibration data (5 points)
under natural head movements, which is competitive with more
complex systems. Hence, the proposed system enables fast and
user-friendly gaze tracking with minimum user effort without
sacrificing too much accuracy.

I. INTRODUCTION

As eye movements are natural and fast, they are suitable
to interact with a computer vision system as a modality for
user interfaces. Therefore, robust estimation and tracking of
gaze, that is to accurately determine user’s point of regard
(PoR) on the screen, is of great interest for the development
of HCI applications.

Remote video-based gaze tracking is preferred for inter-
active applications as they are non-intrusive. Video-based
gaze estimation methods can be mainly categorized into
two groups [13]: model-based methods [1], [2], [3] and
interpolation-based methods [4]. Model-based methods esti-
mate the line of sight by modeling the eye in 3-dimensional
(3D) space. They require complex system setups such as
camera calibration and geometric system calibration, how-
ever, they provide large head motion tolerance. On the other
hand, interpolation-based methods estimate the PoR by map-
ping the image features to the gaze points. However, they are
only suited to particular applications due to their limitations
regarding accuracy and head movements. As alternative to
these methods, CR-based methods [10], [9], [8], [5], [6],
[12] share advantages of both interpolation and model-based
methods. They allow free head motion without requiring any
camera or geometric system calibration. The main drawback
of CR-based methods is that they may be limited in accuracy
and robustness due to the simplifications assumed. There are
two major sources of estimation bias in CR-based methods
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[7]. Firstly, the model assumes that the pupil center and
corneal reflections, i.e. glints, are coplanar. This assumption
is not valid as the cornea has a spherical surface. Secondly,
the model computes the PoR by considering the eye ball’s
optical axis rather than the visual axis, i.e. the real line of
sight. The resulting estimation bias can be compensated for
through subject-specific calibration in order to achieve high
accuracy and head movement robustness.

In the original CR method [10], there was no estimation
bias correction. Later, many extensions have been pro-
posed to compensate for the estimation bias. For instance,
homography-based bias correction as in [8], [11] has been
widely accepted. In case of generic HCI scenarios in which
users gaze at their monitor, most of the time no abrupt
change is observed in head pose or head location. For such
scenarios homography-based bias correction work well when
there is sufficient number of calibration points. Moreover,
in a recently published work [12], we have shown that
regularized least-squares regression (LSR) can be utilized
for robustly modeling the bias, and that LSR-based bias
correction achieves higher accuracy than homography-based
methods when there are fewer calibration points. Additional
approaches have also been proposed ([5], [6]) to bring
robustness against extreme head movements.

The multi-camera setup systems are mostly designed for
the purpose of obtaining stereo vision since it allows for 3D
eye modeling for model-based gaze estimation systems as
in [1], [2], [3]. For instance, Beymer et al. [1] propose a
four-camera system that can estimate the 3D gaze direction
based on a complicated 3D eye ball model with several
parameters. They use a wide field of view (FOV) stereo for
face detection and a narrow FOV stereo for eye tracking.
On the other hand, there are only a few interpolation-based
and CR-based methods using multi-camera setup. In [4],
two cameras are used to form a stereo vision system where
the gaze is estimated through a nonlinear mapping through
support vector regression. A pan-tilt unit oriented setups, e.g.
[9], form another usage of multi-camera systems. In such
systems, a narrow FOV camera, which is used to capture
high-resolution eye data, is mechanically oriented by a wide
FOV head camera using the pan-tilt unit.

Despite some attempts since many years, we believe that
the effectiveness of multi-camera setups has not adequately
been investigated. Regarding gaze tracking, there are only a
few multi-camera based works which jointly utilize several
independent camera systems. Utsumi et al. [15] propose such
a system to obtain a wide observation area. They use two
cameras which are placed on the left and right sides of a



gaze-reactive signboard. However, their application scenario
does not require precise gaze estimation as it is observed
from the reported mean accuracy error which is >11◦. Their
focus is to allow for a wide range of head motions and
rotations. Furthermore, [16] presents a three-camera setup
in which they use multiple cameras to robustly estimate
the head pose and to increase working volume. Similar
to [15], their system does not focus on the precise gaze
estimation. They detect the eyes from different cameras, and
then they jointly estimate the head pose from multi-camera
eye data. Lastly, they perform head pose-based gazed region
estimation in an indoor setting.

In this paper, a multi-camera gaze estimation system is
presented which requires minimum effort in terms of the
system setup and calibration. The system is based on adaptive
fusion of multiple independent camera systems. The main
contribution of this paper is two-fold:

1) We introduce a multi-camera setup for the purpose of
precise gaze tracking. Since the single camera systems
are independent, and the estimation of the gaze relies
on simple CR geometry in each camera system, the
setup requires neither camera calibration nor geometric
system calibration unlike most of the previous work
in the literature. In addition, the system does not
need high-resolution eye data to reach high estimation
accuracy. Instead we capture video frames of the whole
face with visible but lower resolution of the eye pair.
This enables each independent camera system to output
PoRs for both eyes.

2) We propose a novel adaptive multi-camera fusion
scheme in order to achieve improved estimation ac-
curacy and coverage. The proposed scheme is inde-
pendent of the chosen gaze estimation algorithm. It
performs distance-based camera weighting to assign
weights to PoRs obtained from independent camera
systems, and outputs an overall PoR for each frame.
We demonstrate that the proposed system achieves sig-
nificant performance improvement over single camera
systems, and the system’s performance is comparable
to other more complex systems under natural head
movements.

Furthermore, this study targets a generic HCI environment.
We collected ground truth data separately for subject-specific
calibration for the bias correction and testing. We capture
the user data in a natural manner (no use of a chin rest)
in which the users were not particularly asked to move or
keep their heads still with respect to the monitor. In addition,
we use a new evaluation scheme where the test points are
not chosen among the calibration points but are generated
randomly covering the whole monitor. This does not only
prevent overfitting on the points, but also creates a more
natural and realistic test condition.

The rest of the paper is organized as follows: Section
II explains a detailed description of the proposed system.
Experimental results and discussions are given in Section
III. Finally, Section IV concludes the paper.

II. PROPOSED SYSTEM

As the main contributions of this paper, we present a
multi-camera setup and propose a novel adaptive fusion of
multiple single camera systems to achieve increased working
volume as well as improved estimation accuracy (Fig. 1).
Each single camera gaze estimation system consists of gaze
features detection and precise gaze estimation processes (Fig.
2). The details of the system are explained in the following
sections.

Fig. 1. Multi-camera system overview.

A. Hardware Setup

Our system consists of three PointGrey Flea3 monochrome
cameras for the video capturing, seven groups of near-
infrared (NIR) LEDs for the illumination and a controller
unit for the synchronization. The cameras have a resolution
of 1280×1024, and a 12 mm manual focus lens is used. They
are installed on a frame around the monitor as shown in Fig.
3. One of the cameras is located below the monitor while the
other two are placed symmetrically on the left and right sides
of the monitor. In order to create the glints, 4 groups of NIR
LEDs with 850 nm wavelength are placed on the corners
of the monitor. Band-pass filters around 850 nm are used to
get rid of the ambient light. A group of LEDs is placed as a
ring around the lens of each camera to create the bright pupil
effect. A micro-controller is programmed to synchronize the
cameras and LEDs in order to obtain interlaced dark and
bright pupil images at 30 frames per second. In addition, we
synchronize the LEDs with cameras’ shutters to minimize
the emitting duration regarding the user eye safety. In the
current setup, the user sits approximately 70 cm away from
a 24-inch monitor with a resolution of 1920×1200.

B. Gaze Features Detection

We employ a robust non-rigid face tracker based on
supervised decent method (SDM) [17] in order to localize the
facial features. We extract the eye regions without performing
any registration or scaling to ensure any particular resolution.
Then, we determine whether there is an eye blink by the
positioning of the landmarks around the eyes. If there is
no eye blink, we perform gaze features detection, namely,



Fig. 2. Single camera system overview.

Fig. 3. Hardware setup.

glints and pupil center detection. For the glints detection,
we make use of basic image processing methods while we
exploit a robust pupil detection method based on the bright
pupil effect for the pupil center detection. Fig. 4 illustrates
the feature detection processes and outputs of the system.
Further details of the eye blink detection and gaze features
detection processes can be found in our previous work [12].

Fig. 4. Input and preprocessed images for feature detection: (a) pupil
reflection and bright-eye effect, (b) corneal reflection and dark-eye effect,
(c) difference image, (d) thresholded dark pupil image, (e,f) output images,
detected pupil and glints.

C. Cross-Ratio Gaze Estimation with Subject-Specific Bias
Correction

We employ the original CR method [10] for the estimation
of the PoR. Fig. 5 shows a schematic diagram of the CR
method, which is based on the only invariant of projective
space, i.e. cross-ratio. In CR method, a virtual tangent plane

on the cornea surface, where four glints (v1, v2, v3, v4) lie on,
is assumed to exist. Hence, the polygon formed by the glints
is the projection of the monitor. Another projection takes
place from the corneal plane to the image plane, obtaining the
glints (g1, g2, g3, g4) and the projection of the pupil center,
p. As the virtual tangent plane on the cornea has the same
planar projective transformation of the monitor and image
planes, the pupil center on image plane corresponds to the
PoR on the monitor, that can be computed by equality of the
cross-ratios.

Fig. 5. The four light sources are projected onto a reflection plane. The
corneal reflections are then projected onto the image plane.

CR-based gaze estimation algorithms have some assump-
tions that limit their performance. There are two major
sources of error: i) non-coplanarity of the pupil and glints
planes, and ii) the angular offset between visual and optical
axes of the eye. Since the cornea curvature and the angular
offset are subject-specific, a calibration needs to be per-
formed to compensate for the estimation bias. The calibration
is performed once, prior to the use of the system. The users
are asked to look at N calibration points on the monitor
for K frames long. Subject-specific bias correction, F , can
be learnt by minimizing the distances between the estimated
gaze positions and the corresponding calibration points on
the monitor as

min

N∑
i

K∑
j

‖Pi,j −F(Zi,j)‖, (1)

where Pi,j and Zi,j are the target calibration points and
estimated PoRs on the monitor, respectively.



In this paper, we use two different methods for modeling
the estimation bias. The first method is called normalized
Homography mapping (N-HOM). It estimates the bias cor-
rection by learning Homography transformations followed
by mapping the glints into a unit square [8]. The second
method models the error vectors using linear regression,
namely regularized least-squares regression (LSR). LSR-
based method has been shown to have better modeling and
generalization capabilities than the homography-based meth-
ods due to reduced model parameters and relaxed constraints
[12].

D. Adaptive Multi-Camera Fusion Scheme

Our hardware setup allows free head movement as well as
capturing the data for both eyes although the resulting eye
resolution is low, i.e. 90 × 60 pixels. Despite low resolution
data, the system enables to get two PoRs for the same frame
for each camera system. In order to output an overall PoR per
frame, we propose an adaptive multi-camera fusion scheme
which improves the overall estimation accuracy compared to
the performance achieved by using single camera single eye
data as in most of the traditional methods. The adaptive fu-
sion scheme is independent of the gaze estimation algorithm,
therefore, the current CR-based method can be replaced with
any other method (e.g. interpolation-based, 3D model-based).
It ideally performs a weighted averaging of individual PoRs
obtained from individual camera systems as follows:

z∗ =
∑
c

∑
i

zec ∗ wec (2)

∑
c

∑
i

wec = 1, e ∈ {L,R}, c ∈ {0, 1, 2},

where z∗ is the overall PoR and, wRc and wLc are the weights
for the right and left eye’s PoRs for cth camera respectively.
In case one of the PoRs can not be calculated for a given
frame, then the weight of the missing PoR is set to zero. We
do not report an overall PoR in case both PoRs of all the
cameras are unavailable for a given frame.

In this initial work, we perform two simple weighting
approaches such as adaptive and non-adaptive weighting.
Firstly, we perform a non-adaptive weighting based on
simple averaging, that is, assigning equal weights to any
available PoR, and we achieve improved overall estimation
accuracy. Secondly, we apply distance-based adaptive camera
re-weighting. The idea of this method is to assign smaller
weights to the cameras in which the relative head pose in
the captured frame is higher. The reason is that when the
user gazes at the upper left corner of the monitor, the left
side camera has assumably the most frontal head pose, and
therefore, it ideally outputs a more reliable estimation. In
more detail, the method first roughly estimate an initial PoR,
z′, on the monitor with simple averaging. Then we calculate
the distance of this rough estimation from each camera.
According to the simple assumption above, the relative head
pose angles increase directly proportional to the distances.

Therefore, we assign weights inversely proportional to the
distances from the cameras as follows:

λec =
1

‖z− `c‖
(3)

wec =
λec∑

i

∑
j λ

j
i

, (4)

where z is the estimated PoR, and `c is the location of the cth

camera. We then iteratively update the overall PoR, z∗, using
the assigned weights until convergence, which often takes 2
iterations. Algorithm 1 summarizes the proposed adaptive
multi-camera fusion scheme.

Algorithm 1 Adaptive Multi-Camera Fusion
Input: zec, `c
if zec 6= null then . For any available zec

λec ← 1 . Initialize weights equally
else

λec ← 0
end if
wec ←

λe
c∑

i

∑
j λ

j
i

. Normalize weights using (4)

z′ ←
∑
c

∑
i z

e
c ∗ wec . Get initial PoR using (2)

z∗ ← z′

repeat
z∗old ← z∗

λec ← 1
‖z∗−`c‖ . Reweight using (3)

wec ←
λe
c∑

i

∑
j λ

j
i

. Normalize weights using (4)

z∗ ←
∑
c

∑
i z

e
c ∗ wec . Update the PoR using (2)

until ‖z∗ − z∗old‖ < τ

return z∗ . Return the overall PoR

Besides the weighting methods described above, the
scheme allows for more sophisticated weighting methods.
For instance, the weights of the PoRs can be assigned by
the feature detection module considering the reliability of the
detected features and the eye dominance of the user, or the
head pose angles obtained by the face tracker can be used to
determine the weights, or an offline learning of weights can
be performed on the calibration data. The advantage of this
scheme is its independence of such additional information
and that it provides a significant increase in accuracy despite
its simplicity.

III. EXPERIMENTS AND RESULTS

A. Evaluation Data and Protocol

We have performed a user study to evaluate the perfor-
mance of the proposed system. Ten users, nine of whom
had no previous experience with any gaze tracking system,
participated in our experiments. We collect the ground truth
data for a generic and natural HCI environment. The users
were asked to look at the target stimulus points naturally the
way they feel comfortable. We did not require the use of
a chin rest to keep the user’s head still and to keep user’s



TABLE I
AVERAGE GAZE ESTIMATION ACCURACY (IN DEGREE) WITH LSR-BASED [12] AND N-HOM [8] BIAS CORRECTION METHODS.

Camera Eye
Data

No Calibration (LSR) Calibration (N-HOM) Coverage
Calibration 5 Points 25 Points 5 Points 25 Points (%)

Bottom
Left 7.09± 1.6 1.38± 0.29 1.29± 0.26 1.61± 0.44 1.26± 0.26 91.5

Right 9.03± 2.3 1.44± 0.35 1.29± 0.26 1.74± 0.71 1.28± 0.35 94.4
Combined 5.88± 2.2 1.15± 0.33 1.03± 0.23 1.47± 0.6 1.07± 0.27 96.8

Right Side
Left 9.44± 2.3 1.59± 0.51 1.49± 0.51 1.94± 0.82 1.44± 0.50 72.4

Right 5.45± 2.2 1.52± 0.23 1.41± 0.31 2.00± 0.69 1.35± 0.29 84.1
Combined 5.35± 1.6 1.31± 0.24 1.19± 0.25 1.75± 0.66 1.12± 0.24 87.9

Left Side
Left 5.18± 2.2 1.67± 0.45 1.45± 0.34 1.77± 0.43 1.38± 0.24 80.4

Right 11.8± 2.7 1.70± 0.44 1.56± 0.36 1.84± 0.62 1.55± 0.39 73.6
Combined 7.44± 2.1 1.52± 0.27 1.21± 0.25 1.88± 0.88 1.28± 0.28 87.6

Multi-Camera Overall 3.97± 1.6 0.86± 0.18 0.79± 0.16 1.02± 0.32 0.83± 0.17 97.3

one of the eyes within the field of view of the camera in
order to capture high resolution eye data. Head pose variation
statistics obtained from the bottom camera recordings using
the pose estimation method described in [18] are illustrated
in Table II.

TABLE II
HEAD POSE VARIATION STATISTICS (IN DEGREE) ON THE COLLECTED

EXPERIMENTAL DATA OF THE BOTTOM CAMERA.

Yaw Angle Pitch Angle
Cal Test Cal Test

Min -19.11 -11.18 -18.51 -19.5
Max 23.06 16.52 7.95 3.88
Mean 2.37 2.09 -6.92 -7.23
Std 4.28 3.22 2.78 1.79

We capture calibration and test data in two separate
sessions for each camera simultaneously. For the capture of
the calibration data, we ask users to gaze at 25 uniformly
distributed target points on the monitor. The target stimulus
points were displayed in a left to right and top to bottom
sequence in a 5×5 grid. For the capture of the test data,
we aim to prevent overfitting on the points, and to create
a natural and realistic test condition. For this purpose, we
introduce a new evaluation scheme where the test points
are independent from calibration points. We ask users to
gaze at 18 target stimulus points in a 3×3 grid covering the
whole monitor. The positions of the target stimulus points
in a region were randomly determined. We ensure that two
stimulus points are shown in each region in order to cover
the whole monitor. The display order of the regions and the
points is also randomly determined.

We display each target point for 100 frames (3.33 sec-
onds), and capture the data of both eyes during this period.
To keep the attention of the user on the target stimulus
points, we varied the size of the circular target from an
initial radius of 30 pixels to a final radius of 20 pixels. For
testing, we discard the first 20 frames of each target point
and keep the latter 80 frames for the evaluation in order to
avoid saccadic gaze movement at the beginning of each point
display. We report our eye tracker’s performance as gaze
estimation accuracy error, which is defined as the average
displacement between the real stimuli point and the estimated
PoR. We report the estimation performance in degrees of

visual angle since it is invariant to the distance between the
user and the monitor.

B. Results

For our evaluation, separately for each camera, we first run
the face tracker on the captured data to extract eye regions.
Due to the limited resolution of the eye region, the size of
the extracted eye region is around 90×60 pixels and the size
of the polygon formed by the glints is around 12×7 pixels.
On the detected features we apply CR-based gaze estimation
to calculate the initial PoR. In the calibration process, which
is performed separately for each eye and camera, we model
the subject-specific error vectors according to (1). In the test
process, we apply the learnt models to correct the initial
PoRs estimated on the test data.

The results achieved by the proposed system on the test
data are shown in Table I. We report the mean and the
standard deviation of the average estimation accuracy error
in degrees of visual angle over all subjects with respect
to different calibration methods and number of calibration
points. We list the results obtained from single camera setups
with separate eye data as well as the overall data from
multiple cameras with the proposed adaptive fusion scheme.
The rightmost column, Coverage, shows the percentage of
frames in which we are able to output a PoR for the given
eye data.

The results demonstrate that the estimation error reduces
with increasing number of calibration points used. In addi-
tion, it validates the effectiveness of the multi-camera fusion
scheme. Firstly, it improves the estimation accuracy by about
38% and 25% over the best performing single eye setup
(bottom camera left eye) and the best performing single
camera setup (bottom camera combined eyes) respectively.
Secondly, it increases the coverage, the working volume, of
the system compared to single camera systems. As shown in
Table I, the system outputs a PoR for 97.3% of all frames
while eye blink is detected for 2.41% of all the frames.
Hence, the system could not output a PoR only 0.29% of
all the frames due to missing features. On the other hand,
the coverage drops when single camera setup is used (i.e.,
the bottom camera) because the data obtained from a single
camera system may not be sufficient to reliably calculate a
PoR for some of the test points, especially those positioned



close to the right or left borders of the monitor. For those
points, it is highly likely that the additional left and right
side cameras provide more accurate PoRs.

As there is no previous multi-camera fusion work for the
purpose of precise gaze estimation on the monitor, we can
not directly compare our results with the others. However,
we conduct experiments with different camera setups to
illustrate the effectiveness of the proposed multi-camera
setup over single camera setups under the same conditions.
Besides, we apply two competent calibration techniques to
demonstrate that the efficacy of our system is independent
of the calibration techniques used. Fig. 6 shows the mean
and standard deviation of the estimation accuracy error with
respect to different number of calibration points.

Fig. 6. Comparison of the multi-camera system with the best performing
single camera system.

As depicted from Fig. 6, the multi-camera system achieve
significantly better performance in any calibration method-
number of calibration points configuration. In addition, we
can state that the LSR-based calibration method is superior
to the homography-based method, especially when fewer
number of calibration points are used.

1) Effectiveness of Adaptive Multi-Camera Fusion: In
this work, we investigate two simple weighting approaches,
namely, simple averaging and distance-based camera re-
weighting. Fig. 7 and Fig. 8 show the comparison of different
weighting methods in different calibration configurations.

Fig. 7. Comparison of different weighting approaches in case LSR is used
for the calibration.

Fig. 8. Comparison of different weighting approaches in case N-HOM is
used for the calibration

The results illustrated in the two figures show that a
remarkable improvement can be obtained even using a non-
adaptive weighting in comparison to the best performing
single camera system. When the proposed distance-based
adaptive camera re-weighting is applied, the estimation error
is decreased further. The results support the simple as-
sumption of the gaze-pose correlation, and demonstrate the
effectiveness of the proposed weighting scheme. In order to
notice the upper limits of the multi-camera system through
an optimal weighting system, we also display the results as
if there is an oracle knowing the best performing camera
for each frame. The oracle results imply a further perfor-
mance enhancement can be achieved using more complicated
weighting methods as mentioned in Section II-D.

As shown in Fig. 7 and 8, the estimation error reduces with
increasing number of points used for calibration. However, as
targeted in this study, a less tedious and user-friendly system
should involve as little effort as possible for the subject-
specific calibration. The simplest way to achieve this is to
minimize the number of calibration points, without sacrific-
ing too much the estimation accuracy. Our proposed system
can reach a reasonable estimation accuracy of 0.86 ± 0.18
degree using LSR-based calibration with only 5 calibration
points. Hence, the system shows comparable performance
to the 3D model-based systems [13], [14] whose reported
accuracies are <1◦ but they require more complex system
setups such as camera and geometric calibration.

Moreover, the proposed methodology brings another ad-
vantage in addition to the enhanced estimation accuracy and
coverage. The computational complexity of the proposed
system is less than the 3D model-based methods and is
suitable for real-time gaze tracking. In fact, the most com-
putationally expensive process of the proposed system is
the face detection/tracking. The PoR estimation using CR,
the subject-specific bias correction and the adaptive multi-
camera fusion processes require negligible computational
effort. For instance, it takes <8 ms on a PC with Intel
i7 3.2GHz processor. Therefore, the real-time gaze tracking
system can easily be obtained with a real-time face tracker.



IV. CONCLUSIONS

In this paper, we present a multi-camera gaze estimation
system which accurately works under natural head move-
ments. Our real-time system requires no effort in terms of the
camera and geometric calibration as it is based on multiple
independent camera systems in which the gaze estimation
in each camera system relies on simple CR geometry. In
addition, the system does not require high-resolution eye
data as opposed to most of previous work. Operating with
low-resolution data enables the system to output PoRs from
each eye simultaneously. In order to jointly estimate an
overall PoR, a novel adaptive multi-camera fusion scheme
is suggested. The effectiveness of the proposed system has
been validated with a new evaluation scheme, where the
test points are not chosen among the calibration points. The
results indicate that the system’s performance, even with
very few calibration data (5 points), is competitive with
more complex systems presented in the literature. Therefore,
the proposed system enables fast and user-friendly gaze
tracking with minimum user effort without sacrificing too
much accuracy. As the future work, we plan to develop
more sophisticated weighting approaches for the adaptive
fusion scheme, and we also plan to investigate the system’s
robustness against extreme head/body movements for non-
generic HCI applications.
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