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Abstract— Speech is the most used communication method
between humans and it involves the perception of auditory and
visual channels. Automatic speech recognition focuses on inter-
preting the audio signals, although the video can provide infor-
mation that is complementary to the audio. Exploiting the visual
information, however, has proven challenging. On one hand,
researchers have reported that the mapping between phonemes
and visemes (visual units) is one-to-many because there are
phonemes which are visually similar and indistinguishable
between them. On the other hand, it is known that some people
are very good lip-readers (e.g: deaf people). We study the limit
of visual only speech recognition in controlled conditions. With
this goal, we designed a new database in which the speakers
are aware of being read and aim to facilitate lip-reading. In
the literature, there are discrepancies on whether hearing-
impaired people are better lip-readers than normal-hearing
people. Then, we analyze if there are differences between
the lip-reading abilities of 9 hearing-impaired and 15 normal-
hearing people. Finally, human abilities are compared with the
performance of a visual automatic speech recognition system.
In our tests, hearing-impaired participants outperformed the
normal-hearing participants but without reaching statistical
significance. Human observers were able to decode 44% of
the spoken message. In contrast, the visual only automatic
system achieved 20% of word recognition rate. However, if
we repeat the comparison in terms of phonemes both obtained
very similar recognition rates, just above 50%. This suggests
that the gap between human lip-reading and automatic speech-
reading might be more related to the use of context than to the
ability to interpret mouth appearance.

I. INTRODUCTION

Speech is the most used communication method between
humans, and it is considered a multi-sensory process that
involves perception of both acoustic and visual cues since
McGurk demonstrated the influence of vision in speech
perception. Many authors have subsequently demonstrated
that the incorporation of visual information into speech
recognition systems improves their robustness [1], [2].

Visual information usually involves position and move-
ment of the visible articulators (the lips, the teeth and the
tongue), speaker localization, articulation place and other
signals not directly related to the speech (facial expression,
head pose and body gestures) [3], [4], [5]. Even though the
audio is in general much more informative than the video
signal, speech perception relies on the visual information
to help decoding spoken words as auditory conditions are
degraded [3], [6], [7], [8]. Furthermore, for people with
hearing impairments, the visual channel is the only source of
information to understand spoken words if there is no sign
language interpreter [2], [9], [10]. Therefore, visual speech
recognition is implicated in our speech perception process

and is not only influenced by lip position and movement
but it also depends on the speaker’s face, as it has been
shown that it can also transmit relevant information about the
spoken message [4], [5]. Much of the research in Automatic
Speech Recognition (ASR) systems has focused on audio
speech recognition, or on the combination of both modalities
using Audio-Visual Automatic Speech Recognition (AV-
ASR) systems to improve the recognition rates, but Visual
Automatic Speech Recognition (VASR) systems have been
less frequently analyzed alone [11], [12], [13], [14], [15],
[16], [17]. The performance of audio only ASR systems is
very high if there is not much noise to degrade the signal.
However, in noisy environments AV-ASR systems improves
the recognition performance when compared to their audio-
only equivalents [2], [11]. In contrast, in visual only ASR
systems the recognition rates are rather low [18]. This can
be partially explained by the higher difficulty associated to
decoding speech through the visual channel, when compared
to the audio channel.

One of the key limitations of VASR systems resides
on the ambiguities that arise when trying to map visual
information into the basic phonetic unit (phonemes), i.e. not
all the phonemes that are heard can be distinguished by
observing the lips. There are two types of ambiguities: i)
there are phonemes that are easily confused because they
look visually similar between them (e.g: /p/, /b/ and /m/). For
example, the phones /p/ and /b/ are visually indistinguishable
because voicing occurs at the glottis, which is not visible;
ii) there are phonemes whose visual appearance can change
(or even disappear) depending on the context. This is the
case of the velars, consonants articulated with the back
part of the tongue against the soft palate (e.g: /k/ or /g/),
because they change their position in the palate depending
on the previous or following phoneme. Specifically, velar
consonants tolerate palatalization (the phoneme changes to
palatal) when the previous or following phoneme is a vowel
or a palatal [19]. Other drawbacks associated to lipreading
have also been reported in the literature, such as the distance
between the speakers, illumination conditions or visibility
of the mouth [3], [20], [21]. However, the latter can be
easily controlled, while the ambiguities explained above are
limitations intrinsic to lip-reading and constitute an open
problem.

On the other hand, it is known that some people are
very good lip-readers. In general, visual information is
the only source of reception and comprehension of oral
speech for people with hearing impairments, which leads



to the common misconception that they must be good lip-
readers. Indeed, while many authors have found evidence
that people with hearing impairments outperform normal-
hearing people in comprehending visual speech [22], [23],
[24], [25], [26], there are also several studies where no dif-
ferences were found in speech-reading performance between
normal-hearing and hearing-impaired people [27], [28]. Such
conflicting conclusions might be partially explained by the
influence of other factors beyond hearing impairment. For
example, it is well know that human lip-readers use the
context of the conversation to decode the spoken information
[3], [5], [20], thus it has been argued that people who
are good lip-readers might be more intelligent, with more
knowledge of the language, and with a more comprehensible
oral speech for others [21], [27], [29], [30].

While the above complexities may provide some expla-
nation to the rather low recognition rates of VASR systems,
there seems to be a significant gap between these and human
lip-reading abilities. More importantly, it is not clear what
would be the upper bound of visual-speech recognition,
especially for systems not using context information (it
has been argued that humans can read only around 30%
of the information from the lips, and the rest is filled-in
from the context [21], [31]). Thus, it is not clear if the
poor recognition rates obtained in VASR systems are due
to the inappropriate or incomplete design or because there is
an intrinsic limitation in visual information that causes the
impossibility of perfect decoding of the spoken message.

Contributions: In this work we explore the feasibility of
visual speech reading with the aim to estimate the recognition
rates achievable by human observers under favorable condi-
tions and compare them with those achieved by an automatic
system. To this end, we focus on the design and acquisition of
an appropriate database in which recorded speakers actively
aim to facilitate lip-reading but conversation context is mini-
mized. Specifically, we present a new database recorded with
the explicit goal of being visually informative of the spoken
message. Thus, data acquisition is especially designed with
the aim that a human observer (or a system) can decode the
message without the help of the audio signal. Concretely, lip-
reading is applied to people that is aware of being read and
has been instructed to make every effort so that they can be
understood based exclusively on visual information. Then,
the database deals with sentences that are uttered slowly,
with repetitions, well pronounced and viewed under optimal
conditions ensuring good illumination and mouth visibility
(without occlusions and distractions).

In this database we divided the participants in two groups:
9 hearing-impaired subjects and 15 normal-hearing subjects.
In our tests, hearing-impaired participants outperformed the
normal-hearing participants but without reaching statistical
significance. Human observers outperform markedly the
VASR system in terms of word recognition rates, but in terms
of phonemes, the automatic system achieves very similar
accuracy to human observers.

II. AUDIO-VISUAL SPEECH DATABASES

Visual only speech recognition spans over more than thirty
years, but even today is still an open problem in science. One
of the limitations for the analysis of VASR systems is the ac-
cessible data corpora. Despite the abundance of audio speech
databases, there exist a limited number of databases for
audio-visual or visual only ASR research. That is explained
in the literature because the field is relatively young, and also,
because the audio-visual databases add some challenges such
as database collection, storage and distribution, not found as
a problem in audio corpora. Acquisition of visual data at
high resolution, frame rate and image quality, with optimal
conditions and synchronized with the audio signal requires
expensive equipment. In addition, visual storage is at least
one or two orders of magnitude to the audio signal, making
his distribution more difficult [13], [32].

Most databases used in audio-visual ASR systems suffer
from one or more weaknesses. For example, they contain
low number of subjects ([33], [34]), small duration ([33],
[34], [35], [36]), and are addressed to specific and simple
recognition tasks. For instance, most corpora are centered
in simple tasks such as isolated or connected letters ([33],
[34], [35]), digits ([35], [36], [37], [38], [39]), short sen-
tences ([36], [40], [41], [42], [43], [44]) and only recently
continuous speech ([38], [45], [46], [47]). These restrictions
make more difficult the generalization of methods and the
construction of robust models because of the few samples of
training. Additional difficulties are that some databases are
not freely available.

As explained in Section I the aim of this project is to apply
continuous lip-reading to people that is conscious of being
read and is trying to be understood based exclusively on
visual information. Thus, from the most common databases,
only VIDTIMIT [40], AVICAR [35], Grid [41], MOBIO
[42], OuluVS [43], OuluVS2 [44], AV@CAR [45], AV-
TIMIT [46], LILiR [47] contain short sentences or continu-
ous speech and could be useful to us. However, we rejected
the use of them because the participants speak in normal
conditions without previous knowledge of being lip-read. In
addition, most of the databases have low technical aspects
and limited number of subjects with restricted vocabularies
centred in repetitions of short utterances. Subsequently, we
decided to develop a new database designed specifically for
recognizing continuous speech in controlled conditions.

III. VISUAL LIP-READING FEASIBILITY DATABASE

The Visual Lip-Reading Feasibility (VLRF) database is
designed with the aim to contribute to research in visual only
speech recognition. A key difference of the VLRF database
with respect to existing corpora is that it has been designed
from a novel point of view: instead of trying to lip-read from
people who are speaking naturally (normal speed, normal
intonation,...), we propose to lip-read from people who strive
to be understood.

Therefore, the design objective was to create a public
database visually informative of the spoken message in which



it is possible to directly compare human and automatic lip-
reading performance. For this purpose, in each recording
session there were two participants: one speaker and one
lip-reader. The speaker was recorded by a camera while
pronouncing a series of sentences that were provided to
him/her; the lip-reader was located in a separate room,
acoustically isolated from the room where the speaker was
located. To make the human decoding as close as possible
to the automatic decoding, the input to the lip-reader was
exclusively the video stream recorded by the camera, which
was displayed in real time by means of a 23” TV screen.

After each uttered sentence, the lip-reader gave feedback
to the speaker (this was possible because it was possible
to enable audio feedback from the lip-reading room to the
recording room, but not conversely). Each sentence could be
repeated up to 3 times, unless the lip-reader decoded it cor-
rectly in fewer repetitions. Both the speaker utterances and
the lip-reader answers (in each repetition) were annotated.

Participants were informed about the objective of the
project and the database. They were also instructed to make
their best effort to be easily understood, but using their own
criteria (e.g: speak naturally or slowly, emphasize separation
between words, exaggerate vocalization,...).

Each recording session was divided in 4 levels of increas-
ing difficulty: 3 levels with 6 sentences and 1 level with 7
sentences. We decided to divide the session in different levels
to make it easier for participants to get accustomed to the lip-
reading task (and perhaps also to the speaker). Specifically,
in the first level the sentences are short with only few words,
and as the level increases the difficulty increases in terms of
number of words. The sentences are unrelated among them
and only the context within the sentence is present. Thus, in
the first sentences participants had to read fewer words but
with very little context and in the last sentences the context
was considerably more important and would certainly help
decoding the sentence. To motivate participants and to ensure
their concentration during all the session, at the end of each
level both participants changed their roles.

Finally, because our objective was to determine the visual
speech recognition rates that could be achievable, we also
recruited volunteers which were hearing-impaired and accus-
tomed to use lip-reading in their daily routine. Then, we will
also compare the capability of lip-reading of normal-hearing
and hearing-impaired people.

A. Participants

We recruited 24 adult volunteers (3 male and 21 female).
Thirteen are University students, one is Teacher of Sign
Language at UPF and the other 10 participants are members
of the Catalan Federation of Associations of Parents and Deaf
(ACCAPS) [48]. The 24 participants were divided in two
groups: normal-hearing people and hearing-impaired people.

– Normal-hearing participants. Fifteen of the volunteers
are normal-hearing participants (14 females and 1 male),
who were selected from a similar educational range (e.g:
same degree) because, as explained in Section I, lip-reading
abilities have been related to intelligence and language

Fig. 1. Scheme of the recording setup and snapshots of the VLRF database.

knowledge. Two of the participants were more than 50 years
old and have a different education level while the other 13
subjects of this group shared educational level and age range.

– Hearing-impaired participants. There were nine hearing-
impaired participants, all above 30 years old (7 female and 2
male). Eight of them have post-lingual deafness (the person
loses hearing after acquiring spoken language) and one has
pre-lingual deafness (the person loses hearing before the
acquisition of spoken language). There were 4 participants
with cochlear implants or hearing aids.

B. Utterances

Each participant was asked to read 25 different sentences,
from a total pool of 500 sentences, proceeding similarly
to [41]. The sentences were unrelated between them to
avoid that lip-readers could benefit from conversation con-
text. Sentences had different levels of difficulty, in terms
of their number of words. There were 4 different levels,
from 3-4 words, 5-6 words, 7-8 words and 8-12 words. We
decided to divide the sentences in different levels for two
reasons. Firstly, to allow lip-readers to get some training
with the short sentences of the first level (i.e. to get ac-
quainted and gain confidence with the setup, the task and
the speaker). Secondly, to compare the effect of the context
in the performance of human lip-readers. The utterances with
fewer words have very little context, while longer sentences
contained considerable context that should help the lip-reader
when decoding the message.

Overall, there were 10200 words in total (1374 unique).
The average duration per sentence was 7 seconds and the
whole duration of the database was 180 minutes (540,162
frames). The sentences contained a balanced phonological
distribution of the Spanish language, based on the phono-
logical distribution of the balanced utterances used in the
AV@CAR database [45].

C. Technical aspects

The database was recorded in two contiguous soundproof
rooms (Fig. 1). The distribution of the recording equipment
into the rooms is shown in Fig. 1. A Panasonic HPX 171
camera was located with a tripod PRO6-HDV in front of
the chair of the speaker, to ensure an approximately frontal
face shot, with a supplementary directional microphone
mounted on the camera to ensure a directional coverage in



the direction of the speaker. The camera recorded a close
up shot (Fig.1) at 50 fps with a resolution of 1280× 720
pixels and audio at 48 kHz mono with 16-bit resolution.
Two Lumatek ultralight 1000W Model 53-11 were used to-
gether with reflecting panels to obtain a uniform illumination
and minimize shadows or other artifacts on the speaker’s
face. When performing the lip-reading task, the lip-reader
was located in the control room. The position of the lip-
reader was just in front of a 23” LG Flatron M2362D PZ
TV. This screen was connected to the camera so that it
reproduced in real time what the camera was recording.
Only the visual channel of the camera was fed into the
control room, although both audio and video channels are
recorded for post processing of the database. The rooms were
acoustically isolated between them except for the feedback
channel composed by a microphone in the control room and
a loudspeaker in the recording room. This channel was used
after each utterance to let the speaker know what message
was decoded by the lip-reader.

D. Data labeling

The ground-truth of the VLRF database consists in la-
belling each frame with the phoneme being pronounced at
that time instant.

We used the EasyAlign plug-in from Praat [49], which
allows to locate the phoneme in each time instant based
on the audio stream. Specifically, the program locates the
phonemes semi-automatically and there is usually the need
for manual intervention to adapt the boundaries of each
phoneme to more precise positions. The phonemes used
are based on the phonetic alphabet SAMPA [50]. For the
Spanish language, the SAMPA vocabulary is composed of
the following 31 phonemes: /p/, /b/, /t/, /d/, /k/, /g/, /tS/, /jj/,
/f/, /B/, /T/, /D/, /s/, /z/, /x/, /G/, /m/, /n/, /N/, /J/, /l/, /L/, /r/,
/4/, /j/, /w/, /a/, /e/, /i/, /o/, /u/.

IV. RESULTS

In this section we show the word- and phoneme-
recognition rates obtained in our experiments. We start by
analyzing the human lip-reading abilities and comparing
the performance of hearing-impaired and normal-hearing
participants. Then, we analyse the influence of training and
context in human performance. Finally, we compare the
performance of our automatic system to the results obtained
by human observers.

The use of two separate measures (word and phoneme
rates) is necessary to analyze different aspects of our results.
On one hand, phonemes are the minimum distinguishable
units of speech and directly constitute the output of our
automatic system. However, the ultimate goal of lip-reading
is to understand the spoken language, hence the need to focus
(at least) on words. It is important to notice that acceptable
phoneme recognition rates do not necessarily imply good
word recognition rates, as will be shown later.

The word recognition rate was computed as the fraction
of words correctly understood in a given sentence. The
phoneme recognition rate was computed as the fraction of

Fig. 2. Top: Analysis of word recognition rate for each user (normal-
hearing (H) and hearing-impaired people (H-Imp)) at each repetition;
Bottom: Word accuracy for normal-hearing (H) and hearing-impaired people
(H-Imp) at each repetition.

video frames in which the correct phoneme was assigned.
Consequently, 25 accuracy measures were computed for each
participant and each repetition. Recognition rates for the
automatic system were computed in the same manner, except
that there were no multiple repetitions.

A. Experimental setup

Our VASR system starts by detecting the face and per-
forming an automatic location of the facial geometry (land-
mark location) using the Supervised Descend Method (SDM)
[51]. Once the face is located, the estimated landmarks are
used to fix a bounding box around the region (ROI) that is
then normalized to a fixed size. Later on, local appearance
features are extracted from the ROI based on early fusion
of DCT and SIFT descriptors in both spatial and temporal
domains. As explained in Section I there are phonemes that
share the same visual appearance and should belong to the
same class (visemes). Thus, we constructed a phoneme to
viseme mapping that groups 32 phonemes into 20 visemes
based on an iterative process that computes the confusion
matrix and merges at each step the phonemes that show the
highest ambiguity until the desired length is achieved. Then,
the classification of the extracted features into phonemes
is done in two steps. Firstly, multiple LDA classifiers are
trained to convert the extracted features into visemes and
secondly, at the final step, one-state-per-class HMMs are
used to model the dynamic relations of the estimated visemes
and produce the final phoneme sequences. This system
was shown to produce near state-of-the-art performance for
continuous visual speech-reading tasks (more details in [52]).

B. Human lip-reading

As explained in Section I, it is not clear if hearing-
impaired people are better lip-readers than normal-hearing
people. Fig. 2 (Top) shows the word recognition rates for
both groups at each repetition and Fig. 2 (Bottom) shows the
word recognition rates for each participant and repetition.
Analyzing each participant individually, it is difficult to
observe any group-differences between hearing-impaired and



TABLE I
STATISTICAL COMPARISON BETWEEN HEARING-IMPAIRED AND

NORMAL-HEARING PARTICIPANTS FOR EACH REPETITION.

Attempt Wilcoxon signed rank Unpaired two-sample
1 p = 0.116 p = 0.094
2 p = 0.094 p = 0.088
3 p = 0.041 p = 0.037

normal-hearing participants. However, we do observe large
performance variations within each of the groups, i.e. there
are very good and quite poor lip-readers regardless of their
hearing condition.

On the other hand, looking at the results globally, split only
by group (Fig. 2 (Top)), they suggest that hearing-impaired
participants outperform normal-hearing participants in the
lip-reading task for all three repetitions. However, the results
differ about 20% in terms of word recognition rate and thus
we need to study if this difference is statistically significant.

To do so, we estimated the word accuracy of each par-
ticipant as the average accuracy across the 25 sentences that
he/she had to lip-read. Then, we performed statistical tests to
determine if there were significant differences between the
9 hearing-impaired samples and the 15 normal-hearing sam-
ples. Because we only want to test if the hearing-impaired
participants were better than normal-hearing participants, we
performed single-tailed tests where the null hypothesis was
that the mean or median (depending on the test) performance
of hearing-impaired participants was not higher than the
performance of normal-hearing participants. We ran two
tests (summarized in Table I) for each of the 3 repetitions:
Wilcoxon signed rank test and Unpaired two-sample t-test.
Taking the conventional significance threshold of p < 0.05 it
could be argued that at the third repetition the performance
of hearing-impaired participants was significantly better than
that of normal-hearing participants. However, this was not
observed in the first two repetitions. Moreover, the 9 hearing-
impaired subjects did better than the 15 normal-hearing,
but taking into account that the sample size is relatively
small, current trends in statistical analysis suggest that the
obtained p-values are not small enough to claim that this
would extrapolate to the general population. On the other
hand, looking at the p-values, with the current number of
subjects we are not far from reaching significance [53].

In Fig. 2 we also show the influence of repetitions into the
final performance: as the number of repetitions increases the
recognition rate increases too. This effect can be seen split
by group and analysing each participant separately.

C. Training and context influence on lip-reading

The context is one of the human resources more used
in lip-reading to complete the spoken message. To analyse
the influence of the context, the participants were asked to
read four different types of sentences, in terms of number of
words (explained in Section III). Thus, as the level increases,
sentences are longer and the context increases too.

In Fig. 3 we can observe how the first level has the lowest
word recognition rates for all repetitions, while the last

Fig. 3. Average word recognition rate for each participant at each level.

Fig. 4. Cumulative average per sentence of all participants in each
repetition.

level has the highest rates. There are two factors that could
contribute to this effect: 1) Context: humans use the relation
between words to try decoding a meaningful message, and
2) Training: as the level increases the participants are more
acquainted to the speaker and to the lip-reading task.

The results of Fig. 3 are not enough to determine whether
the effect is due to context, training or both. Thus, in Fig. 4
we analyze the variation of performance per sentence (with a
cumulative average) instead of per level, which should make
clearer the effect of training. This is because training occurs
continuously from one sentence to another while context
only increases when we change from one level to the next
one. Thus, the effect of training can be seen as the constant
increase performance in each of the curves (up to 20%). As
the users have lip-read more sentences they tend to become
better lip-readers. On the other hand, the influence of context
is better observed by comparing the different repetitions. In
the first attempt, the sentence was completely unknown to the
participants, but, in the second and third repetitions there was
usually some context available because the message had been
already partially decoded, hence constraining the possible
words to complete the sentence.

D. Human observers and automatic system comparison

The results of the automatic system are only computed
for the first attempt, since it was not designed to benefit
from repetitions. The resulting word-recognition rates are
shown in Fig. 5 (Top). Notice that now the participant number
indicates the person that was pronouncing the sentences as
the recognition is always performed by the system. Thus, this
figure provides information about how well the system was
able to lip-read each of the participants. The system produced
the highest recognition rates for participants 1, 8, 17 and 21.
Interestingly, these participants had good pronunciation and
visibility of the tongue and teeth.

We are interested in comparing the performance of humans
lip-reading and a VASR system. Focusing on Fig. 6 (Top)



Fig. 5. Top: System performance in terms of word recognition rate for each
participant. Bottom: Phoneme accuracy recognized by the VASR system for
each participant.

Fig. 6. Top: Average word recognition for each participant for human
observers (Repetition 1) and for the VASR system; Bottom: Phoneme
accuracy recognized by the VASR system for each participant.

we can observe how the word recognition rates are lower
for the system in most of the cases. However, we have to
take into account that the system does not use the context
into the sentence. Indeed, the system is not even targeting
words but phonemes, which are later merged to form words.
In contrast, people directly search for correlated words with
the lip movements of the speaker. Thus, it is reasonable to
expect a considerable gap between human and automatic
performance, which will be shown to reduce considerably
if the comparison is done in terms of phonemes.

In the same figure (Fig. 6) we can observe a direct
comparison of the mean recognition rates of each participant
identified by humans and by the automatic system. The
system gives an unbiased measure about the facility to lip-
read participants because it evaluates each of them in the
same manner. In contrast, human lip-reading was performed
in couples (couples are organized in successive order, e.g.
participants 1 and 2, 3 and 4, etc), hence each participant
was only lip-read by its corresponding partner. Analyzing
Fig. 6 we can identify which users were good lip-readers
and also good speakers. For example, participant 7 was
lip-read by participant 8 with high word recognition rate.

Fig. 7. Top: Number of wrong detected phonemes. The red columns
represent the false negatives phonemes and the green ones the false
positives.; Bottom: Precision and Recall of each phoneme.

Then, in the curve corresponding to human performance,
we observe a high value for participant 8, meaning that
he/she was very successful at lip-reading. When we look
at system’s performance, however, the value assigned to
participant 8 corresponds to the rate obtained by the system
and is therefore a measure related to how participant 8 spoke
rather than how he/she lip-read. For this specific participant,
the figure shows that system performance was also high,
hence he/she is a candidate to be good lip-reader and speaker.

The word recognition rates reported by our system are
rather low compared to those obtained by human observers.
However, as stated earlier, our system is trying to recognize
phonemes and convert them to words, so it is also interesting
to analyze its performance in terms of phoneme recognition.
The phoneme recognition rates obtained by the system
are between 40% and 60%, as shown in Fig. 5 (Bottom)
and Fig. 6 (Bottom). It is interesting to note that system
performance was much more stable across participants than
human performance. In addition, in terms of phoneme units,
the global mean of the automatic system was 51.25%, very
close to the global mean of 52.20% obtained by humans.

There are several factors that help understanding why
the system achieves significantly higher rates in terms of
phonemes than in terms of words: 1) Phoneme accuracy is
computed at frame level because that is the output rate of
the system. Thus, the temporal resolution used for phonemes
is much higher than that of words and correctly recognizing
a word implies the correct match of a rather long sequence
of contiguous phonemes. Any phoneme mismatch, even if in
a single frame, results in the whole word being wrong. 2)
The automatic system finds it easier to recognize concrete
phonemes (e.g: vowels) with high appearance rates in terms
of frames (vowels are usually longer than consonants). This
implies that a high phoneme recognition rate does not
necessarily mean that the message is correctly decoded. To
analyze this, system performance is displayed in Fig. 7.
Specifically, in Fig. 7 (Top) we can observe the number
of phonemes that were wrongly detected, distinguishing
false negatives (in red color) and false positives (in green),



while Fig. 7 (Bottom) shows the corresponding values of
precision and recall. Most of the consonants have very high
precision, but many samples are not detected, deriving in a
low recall. In contrast, vowels have an intermediate precision
and recall because they are assigned more times than their
actual occurrence. Close inspection of our data suggests that
this effect is partially explained by the difficulty in correctly
identifying the temporal limits of phonemes.

V. DISCUSSION AND CONCLUSIONS

In this work we explore visual speech reading with the
aim to estimate the recognition rates achievable by human
observers and by an automatic system under optimal and
directly comparable conditions. To this end, we recorded
the VLRF database, appropriately designed to be visually
informative of the spoken message. For this purpose we
recruited 9 hearing-impaired and 15 normal-hearing sub-
jects. Overall, the word recognition rate achieved by the
24 human observers ranged from 44% (when the sentence
was pronounced only once) to 73% (when allowing up to
3 repetitions). These results are compatible to those from
Duchnowski et al. [31], who stated that even under the most
favorable conditions (including repetitions) ”speech-readers
typically miss more than one third of the words spoken”.

We also tested the performance of participants grouped by
their hearing condition to compare their lip-reading abilities
and verify if these are superior for hearing-impaired subjects,
as suggested in some studies. Concretely, we found that
hearing-impaired participants outperformed normal-hearing
participants on the lip-reading task, but without statistical
significance. The performance difference, which averaged
20%, was not sufficient to conclude significance with the
current number of subjects. Hence, future work will address
the extension of the VLRF database so that it includes
sufficient subjects to reach a clearer conclusion.

The participation of hearing-impaired people was very
important given their daily experience in lip-reading. During
the recording sessions they explained that lip-reading in our
database was a challenge because they did not known the
context of the sentence beforehand. For them, it is easier
to lip-read when they know the context of the conversation.
The conversation topic constrains the vocabulary that can
appear in the talk. Furthermore, we mentioned before that
lip-reading is related to the intelligence and the language
knowledge. During the recording sessions we noticed that
sentences directly related to daily life were easier to un-
derstand than sentences with words not used in colloquial
language.

Another important aspect to consider is how easy or diffi-
cult is to lip-read different speakers. As explained in Section
III, participants were instructed to use their own criterion
to facilitate lip-reading. It is difficult to objectively judge
the effectiveness of the techniques that were used, but we
observed some interesting tendencies during the recordings.
Firstly, facial expressions help decoding the spoken message
adding context to the sentence (e.g: sad expression if you
are speaking about something unfortunate); hearing-impaired

participants used this technique more often than normal-
hearing subjects. Secondly, it is more useful to separate
clearly between words than to exaggerate pronunciation. That
is because the human system is searching words that fit the
lip movements. We noticed that when pronunciation was
exaggerated the separation between words was not clear or
even lost considerably increasing the difficulty of lip-reading.

The above is important when interpreting the results of
human observers, as they are conditioned both by the lip-
reading abilities of the lip-reader and by the pronunciation
abilities of the speaker. Recall that, in our experiments,
each participant only lip-read his/her corresponding partner.
It would be interesting to separate these factors, which
could be done by randomizing the combinations of speakers
and lip-readers on a per-sentence basis. In particular, the
most interesting aspect would be to estimate the level of
difficulty to lip-read each of the speakers, which could be
done by having several subjects lip-reading the same speaker.
There would be several advantages in doing so: 1) it would
allow a more direct comparison to the performance of the
system, as speaker performance will not be conditioned to a
single human reader; 2) speakers that are too difficult could
be excluded from the analysis, at least when seeking for
the theoretical limit of lip-reading in optimal conditions;
3) it would help understand which are the best speaking
techniques to use to facilitate lip-reading understanding.

As just explained, in our experiments, human observers
reached word accuracy of 44% in the first attempt while
our visual-only automatic system achieved 20% of word
recognition rate. However, if we repeat the comparison in
terms of phonemes, the automatic system achieves recog-
nition rates quite similar to human observers, just above
50%. These results are comparable with those reported by
Almajai et al. [54] who tested in the RM corpus, using 12
speakers and 6 expert lip-readers. Concretely, their human
lip-readers reached 52.63% viseme accuracy (in our case
52.20% phoneme accuracy) and their system obtained 46%
viseme accuracy (our system 51.25% phoneme accuracy).
Therefore, in terms of viseme/phoneme accuracy, both Al-
majais and our system reach near-human performance. But
this does not happen in terms of word accuracy: Almajai et
al. reported human word accuracy of 21% (ours 44%) and
system word accuracy of 14% (ours 20%).

When trying to explain the above, we found that the low
word recognition rates were related to: 1) the fact that it is
quite easy to make mistakes at frame level and a mistake in
a single frame results in the whole word being wrong; 2) the
imbalance in the occurrence frequencies of phonemes. The
latter is especially important because it highlights that the
system, while achieving similar phoneme rates to those from
humans, does not actually perform equally well. In other
words, the phoneme sequences returned by humans always
make some sense, which is not generally true for the system
as it does not include higher-level constraints (e.g. at the
word- or phrase-level). Hence, future directions should focus
on introducing constraints related to bigger speech structures
such as connected phonemes, syllables or words.
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