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3D Hand-Object Pose Estimation from Depth with Convolutional
Neural Networks

Duncan Goudie and Aphrodite Galata
Advanced Interfaces Group, School of Computer Science, University of Manchester,

Manchester, United Kingdom

Abstract— Estimating the 3D pose of a hand interacting
with an object is a challenging task, harder than hand-only
pose estimation as the object can cause heavy occlusion on
the hand. We present a two stage discriminative approach
using convolutional neural networks (CNN). The first stage
classifies and segments the object pixels from a depth image
containing the hand and object. This processed image is used
to aid the second stage in estimating hand-object pose as it
contains information regarding the object location and object
occlusion. To the best of our knowledge, this is the first attempt
at discriminative one shot hand-object pose estimation. We
show that this approach outperforms the current state-of-the-
art and that the inclusion of a segmentation stage to learned
discriminative single stage systems improves their performance.

I. INTRODUCTION

The human hand is a remarkably complex body part to
analyse, yet almost the entire global human population finds
them vital for communication purposes and for completing
everyday tasks. We use them to manipulate objects and
to work with tools. This work investigates the problem of
estimating the pose of the joints of the hand and the object
it is interacting with, ie hand-object pose estimation. Hand-
object pose estimation has applications ranging from robotics
(teaching a robot hand how to use a tool) to human computer
interaction; with a recent surge in popularity for virtual real-
ity devices, the capability to use hands and handheld props
as controllers would greatly enhance the user experience.

The related field of hand-only pose estimation has in
recent years made use of depth sensors, which provide
2.5D information, to eliminate many of the field’s problems
including variance in lighting conditions and texture and
in background separation. However, despite the advantages
that come with depth information, the hand is prone to self
occlusion from fingers. Introducing an object for the hand
to interact with makes the occlusion problem worse; entire
fingers can potentially become occluded from a large object.
Given such occlusion, a viable hand-object pose estimation
method would need to be capable of estimating 3D joint
positions behind the object. Previous solutions to the hand-
object pose estimation problem that have this capability
include [19], [20], [1], [24], which produce good results, but
are reliant on the previous frame’s pose estimate being close
to the current frame’s true pose; catastrophic error can occur
if the difference in both frame’s poses are too large. Many
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Fig. 1: We present a new two stage discriminative system
for estimating the joint and object locations of the hand
interacting with an object from the depth image. In this
image, the index finger is almost completely occluded by
the ball.

of these solutions use a multi-camera setup rather than a
monocular sensor to avoid the problem of objects completely
obstructing the view of a joint.

In this paper, we present a two stage system which can
perform one shot hand-object pose estimation without the
need for prior pose information from previous frames. Our
system requires only the depth image from a single depth
camera and is capable of inferring 3D finger joint positions
that have been occluded by the object (see figure 1 for
an example result). The first stage segments the object
from the hand to provide prior information regarding object
positioning and object occlusion to the second stage, which
performs the 3D joint position prediction. Our experiments
show that our proposed system outperforms the state-of-
the-art and also that the inclusion of a segmentation stage
can improve the performance of suitably adapted hand-only
single stage systems such as DeepPrior [16] to the task
of hand-object pose estimation. Our contributions can be
summarised as follows:

• To the best of our knowledge, this is the first attempt
at discriminative one shot hand-object pose estimation.

• We use an accurate learned hand-object segmentor to
aid and improve the performance of the hand-object
joint localiser.

• We present two new fully labelled datasets for hand-
object pixel segmentation and for hand-object pose
estimation, which we will make publicly available. They
contain a hand manipulating a spheroidal object.978-1-5090-4023-0/17/$31.00 c©2017 IEEE



Fig. 2: System overview showing our 2 stage system. The first stage segments and sets the object pixels to zero. A 2 channel
image containing both the input depth map and the processed depth map from stage one is sent into the second stage to
perform the 3D joint position prediction.

II. RELATED WORK

The literature on the closely related topic of hand-only
pose estimation from depth images can be broadly cate-
gorised into two categories: generative and discriminative.
Generative approaches make reference to a hand model
whereas discriminative approaches perform pose estimation
from just the given image alone. Supancic et al. [31] pro-
duced a comprehensive literature review on hand-only pose
estimation from depth. However, the related work on hand-
object pose estimation can so far only fall into the generative
category.

Generative hand-only pose estimation schemes often make
use of an articulated hand model, usually either consisting
of simple geometric shapes [18], [23], quadrics [29], a mesh
[25], [2], [1] or with gaussians [28]. Oikonomidis et al. [18]
made a significant advance with the application of Particle
Swarm Optimisation [8] to minimising a cost function with
an inherent hand pose hypothesis. This approach is easily
extended to also estimate the pose of hands and objects [19]
and extra hands [20]. We use a variation on this approach to
find the groundtruth joint locations for our new hand-object
pose estimation dataset (see section IV-A for more details).
Other cost functions and optimisation schemes have been
proposed within the generative approach to hand-only pose
estimation [23], [28], [14], [25], [10]. Generative approaches
tend to offer wide flexibility in the range of poses they
can estimate, but due to the high dimensional nature of this
problem, the search space has to be narrowed to make this
approach feasible. A common approach to restricting the
search space is to initialise the system with the previous
frame’s pose estimate, creating a dependency on the result
of the previous frame. Systems which produce renderings of
the hand model as part of their cost function require large
computational resources to satisfy realtime pose estimation.

Convolutional neural networks (CNN) are increasingly
being used in discriminative hand-only pose estimation [16],
[15], [5], [27], [34], [3]. Supancic et al. [31] ran extensive
tests on a large number of discriminative depth based hand-
only pose estimation methods and CNNs were found to
outperform competing methods such as random decision
forests (RDF). Tompson et al. [34] used CNNs to create
heat map predictions for the joint locations. This method
was reliant on using the surface depth values for estimat-
ing the joint positions in 3D and as such would not be

suitable for inference behind the object. Oberweger et al.
[16] proposed a set of CNN architectures for use in hand-
only pose estimation, including DeepPrior. DeepPrior makes
use of a bottleneck within the densely connected layers to
force the CNN to learn a lower dimensional representation
of the hand pose. CNNs have also been applied to the closely
related problem of human body pose estimation [36], [35],
[33]. RDFs have been used as an alternative to body pose
estimation [26], [4] and for hand-only pose estimation [37],
[9].

The topic of this paper is on hand-object pose estimation
and a large majority of the work in this field falls within the
generative category of pose esimation, where a multi-camera
setup was used to help with the object occlusion problem
[19], [1] or a 2.5D monocular depth sensor [6], [12], [21],
[22]. These methods are quite effective, but suffer from the
disadvantages that come from a generative approach. Romero
et al. [24] describe a discriminative approach to hand-
object pose estimation for monocular RGB images, using
(approximate) nearest neighbours and hashing to reduce the
number of lookups within their pose database. However, their
approach is not one-shot as they use the previous frame’s
estimate to improve pose lookup performance.

Hybrid approaches, the combination of discriminative and
generative systems, attempt to utilise the advantages that
come from both systems. A discriminative system is often
used to initialise the search space for the generative system
[25], [10]. A learned method has been used to improve the
performance of a generative scheme by trying to localise
the position of salient points (finger nails) [1]. A hybrid
approach, using CNNs, has been suggested by Oberweger
et al. [17]. They use CNNs to synthesise hand models
where a reference is then made to, along with an original
discriminative pose estimate, by an updater CNN. Our one-
shot discriminative approach could potentially be applied to
a future hybrid system.

III. HAND-OBJECT POSE ESTIMATION

In this section we describe our contribution to hand-object
pose estimation.

A. Problem Formulation

Our goal is to estimate the hand-object joint locations
J = {ji}Ji=1 where ji is a vector, [xi, yi, zi], representing
the 3D position of a single joint or object. J = 21 in our



(a) Stage 1: Hand-Object Segmentor

(b) Stage 2: Hand-Object Joint Localiser

Fig. 3: Architectures for both stages in our system.

formulation, where we allocate 3D position vectors for: 4
joints in each finger (including tip), upper most 3 joints
(including tip) of the thumb, wrist center and object center;
from now on, we will refer to each of these as a joint.
Systems such as [16] can localise hand joints from a single
depth image, I , of a hand isolated from the background. A
CNN regressor can be trained to learn a regression function
Ĵ = f(I) to predict the joint locations.

We propose a two stage system (see figure 2). Stage one
is a segmentor which classifies pixels as belonging either to
a hand or object class. The object classified pixels are set
to zero, leaving only the depth values for the hand classified
pixels from I to produce I∗. Stage two performs hand-object
joint prediction given a two channel image from I and I∗,

Ĵ = f(I, I∗) (1)

We describe these stages in further detail in the following
sections.

B. Convolutional Neural Networks

CNNs have been shown to produce state-of-the-art results
in many computer vision problems such as image classifi-
cation [11]. The typical CNN architecture is composed of
multiple stacked convolutional layers, with max-pooling in
between them to both reduce the computational load and
increase robustness. The last few layers are often (dense)
fully connected neurons which perform decision making
given the activations of the previous convolutional layers.
Training is done using batches of ground truth labelled im-
ages with stochastic gradient descent attempting to minimise
a designated loss term.

CNNs have been shown by [31] to produce the current
best performing discriminative systems for hand-only pose
estimation, outperforming alternative methods such as RDFs
and nearest neighbours. It is for this reason that we use
CNNs to learn our regressor functions for stage one and
two. For all stages in our system we use ReLU activation
functions and we use euclidean distance as our loss term in
training. Stages one and two take as input a depth image,
I or {I, I∗}, respectively, of size 96× 96. The background
pixels have been set to 0 and the depth values normalised to
be within 0 and 1, where the values closer to 0 denote the
pixel being closer to the camera. In training the CNNs we
augment our dataset by rotating it between −90◦ and +90◦

and with translations of up to 15 pixels in either direction.
The artificial rotations allow our system to cope with in-plane
rotation of the hand and the translations improve robustness
as it forces the system to learn to cope with differently
centred images.

C. Stage One: Hand-Object Segmentation

The objective of this stage is to segment the object pixels
from a given depth map, I , of the hand-object. For the related
area of segmenting the hand from the background in hand-
only pose estimation, RDFs have been shown to be reliable
[34]. However, we found that CNNs outperform RDFs when
applied to the problem of hand-object segmentation (see
section IV-B.3 for more details), especially when configured
as a fully convolutional network (FCN) [13]. FCNs replace
the fully connected layers with deconvolutional layers, essen-
tially making the entire network a learned nonlinear filter.

Our network architecture for stage one is described in



figure 3a. We use convolution filters of size 7×7. We found
that keeping the filtered images to a high resolution led to
the best segmentation performance, so for that reason we
kept max-pooling to a minimum by setting them to have a
size 2 and a stride of 2. Removing the max-pooling layer
did not improve results. After the convolutional layers, the
deconvolutional layers had to be designed in a way that
would take the multiple filtered images they receive and to
output a single channel image; hence why we used a single
deconvolutional filter in the final layer. The deconvolutional
filter sizes had to be chosen carefully so that the output image
of this network matched the size of the input image, I . We
achieved this using a first set of deconvolutional filters of
size 8× 8 and a second deconvolutional filter of size 6× 6
with a stride of 2. After systematic testing of different values,
the values we use for this system were the values we found
to produce the best results.

We use our hand-object segmentation dataset for training
this stage. Each image is of size 96×96 and are accompanied
with per-pixel class labels with values of: 0.0, 0.5 and 1.0
to represent the background, hand and object class pixel
respectively. The output image from this network contain
pixels of continuous values between 0 and 1 and so to
perform a classification decision on each pixel we use
thresholding. We found that using a threshold of 0.05 and
0.75 to separate the background and hand classes, and the
hand and object classes, respectively to work best, to produce
a label map. Finally, to create I∗, we correlate the predicted
object classified pixels from the label map with I and set
the corresponding depth values to zero, leaving just the hand
depth pixels.

D. Stage Two: Hand-Object Localisation

Stage two performs the regression function in equation 1
to predict the 3D hand-object joint locations. We tried many
CNN architectures, configurations and parameters for this
stage and found that the simple 2 convolutional layer CNN
which took as input a combined 2-channel image, {I, I∗}, to
perform best. The architecture parameters used in this system
are described in figure 3b.

In training this stage, the ground truth labels, which consist
of J with J = 21 for each image, have been flattened to form
a single vector of length 63. The xi and yi positions have
been projected to ui and vi, respectively to present position
in terms of pixel location within the image with values
normalised to be between 0 and 1. zi has been converted
to z̃i to represent the z component as a ratio between the
smallest and largest depth values present within the image.
The images within the training set of the hand-object pose
estimation dataset were processed by stage one, already

trained on the hand-object segmentation dataset, to create
the processed training images, I∗, for this stage. In testing,
the CNN makes a prediction in the form of [ui, vi, z̃i]. We
apply these transforms in reverse to get Ĵ .

IV. EXPERIMENTS AND RESULTS

A. Dataset

In this paper we present two new datasets1, one for each
of the two stages, which were created using the Microsoft
Xbox One Kinect depth camera and we make these two
datasets publicly available. These cameras produce a depth
map and an RGB registered image pair of size 512 × 424.
The hand-object segmentation dataset consists of 5635 image
pairs for training and 1042 for testing. The hand-object pose
estimation dataset consists of 3986 image pairs for training
and 745 for testing. For both datasets, the background pixels
have been set to zero. All training and testing datasets
consists of a hand interacting with a tennis ball, with the
exception of the hand-object pose estimation test dataset
which has a mixture of objects: tennis ball, orange and
lemon.

In creating the joint label dataset, we use a method similar
to the one employed by [34], which uses a generative hand-
only pose estimation method [18]: using a hand model
and Particle Swarm Optimisation (PSO) [8] to estimate the
ground truth labels. We use two cameras, one facing the
front of the hand and the other facing the back to ensure all
hand joints and object positions were always present in at
least one camera. To improve accuracy and to encourage
faster convergence, we manually label the joints to get
surface positions and use this generative method to refine
the joint positions and to ensure they fit within a hand
model’s constraints. We use the fitness function from [18]
and include an extra term, the euclidean distance between
manual labelling and hand model labelling. For full details
on this generative method we refer the reader to [18] and
[19].

B. Empirical Evaluation

1) Evaluation Metrics: For evaluating the overall system,
we use two well established evaluation metrics [31], [16],
[32] and [30]: the per-joint euclidean error averaged over
all frames and the proportion of frames that has a mean
and max euclidean error of less than a threshold, εmean
and εmax respectively. Evaluating systems agaisnt the max
euclidean error metric is regarded within the community
as a very challenging metric. Under the latter metric, the
better performing system would have a greater area under

1Available at http://www.cs.man.ac.uk/%7egoudied/



the curve plot. For evaluating the segmentation system, we
work out the proportion of frames that has the total number
of misclassified pixels below a threshold, εpixels.

2) Experimental Details: We used Caffe [7], an efficient
CUDA parallelised solver for CNNs using back-propagation.
We used RMSprop, a stochastic gradient descent method
with an adaptive learning rate, to train our networks. We
set the RMS decay to 0.02 and the weight decay to 0.0005.
We use a batch size of 128. We set the learning rate to 0.001
and 0.005 for stages one and two respectively and decreased
it by factor 0.7071 and 0.316 respectively twice over a total
of 70 and 50 epochs respectively.

3) Hand-Object Segmentor: As the goal of this stage is
to zero out the object classified pixels from the image, we
only performed pixel classification as an object class vs non-
object class problem. We compare this solution with two
alternatives: replacing the deconvolutional layers with dense
fully-connected (FC) layers and with RDFs. We found the
best FC layer arrangement was 128-64-9216 neurons, where
each neuron in the last FC layer corresponds to a pixel in the
original 96 × 96 depth map and used (3,3) pooling layers
instead of (2,2). We used a similar approach to [26] with
setting up our RDFs; we trained 10 trees to a maximum
depth of 20 and evaluated 5000 candidate tests at each node.

Figure 4 shows the quantitative evaluation of our hand-
object pixel segmentor. It is clear that our proposed system
with deconvolutional layers massively outperforms the use
of FC layers and the RDFs. The number of learnable param-
eters within the FC model is of several magnitudes greater
than that of the deconvolutional model and as such makes
the model harder to generalise. Both systems qualitatively
performed quite well (see figure 6) when the tennis ball had
minimal occlusion. When there was heavy occlusion with
several fingers covering portions of the object, the proposed
system was able to classify the object pixels with good
semantic accuracy (from a human perspective) whereas the
dense FC system struggled.

We evaluated our proposed system, using deconvolutional
layers, with different raw pixel threshold values for hand-
object pixel classification (ie a raw pixel value above T
would classify that pixel as belonging to the object class).
A T value of 0.75 was found to create the best overall
performance, performing better than T = 0.80 for all test
images and with an average classification error of 64.0 pixels
against 73.5 pixels taken over all frames. Comparing against
the system with FC layers, this error comes to around 123.7
pixels or 209.6 pixels for RDFs.

4) Hand-Object Localiser: We evaluate our proposed
system and compare against DeepPrior [16], a state-of-the-
art hand-only pose estimation method that can be adapted

Fig. 4: Evaluation of stage one, the hand-object segmentor.

to our problem. We implement DeepPrior ourselves on our
hand-object pose estimation dataset using the same hyper
parameters and details discussed in section IV-B.2. We use
the same CNN architectural parameters for DeepPrior as
described in [16], including the use of 30 FC neurons in
the FC ”Prior” layer.

To show that the inclusion of a hand-object segmentation
stage improves results, we also add and remove this stage
from these two systems as appropriate. All charts in figure
5 show that the inclusion of a segmentation stage improves
performance, with both mean-error (top left) and max-error
(top right) plots for the with segmentation system (solid line)
containing a greater area under the curve as opposed to those
without (dashed line). The bar chart (bottom left) shows the
average max-error for selected joints (wrist, finger and thumb
tips, ball and mean over all of them); we only show the finger
tips as they had the largest error out of any joint within a
finger joint chain. This chart supports our hypothesis that the
inclusion of a segmentation stage improves performance for
all joints. The ring and little fingertip joints appear to perform
less well than the index and middle finger; the testset includes
poses where the ball completely occludes the ring and little
fingers, making these appendaces difficult to estimate and it
might also be a characteristic on what the training dataset is
capable of.

We performed segmentation noise tests on the localiser
stage by adding synthetic noise to the tennis ball images
within the hand-object pose estimation test dataset. We ex-
cluded orange and lemon images as to test noise we required
comparisons with the exact objects seen in the training
dataset. To add noise, we first subtracted random circles
around the outline of the groundtruth segmentation and then



performed erosion on the remaining segmentation. Although
hard to approximate true noise from a CNN segmentor, visu-
ally this produced acceptable noisy segmentations. We then
treated these noisy images as if they were I∗. Throughout
these tests we trained the localiser on groundtruth segmented
I∗. In the bottom right chart of figure 5, we found that our
system was sensitive to around 10-15% synthetic noise, ie
we found that with any more noise it would be better to
use a single stage localiser instead. This is a reasonable
allowance for our system as we have shown that with stage
one processed I∗ (depicted by bold red line in bot. right
Fig. 5), the localiser performs almost as well as if I∗ were
groundtruth test images (bold blue line).

The average max joint error for our proposed system was
found to be 23.15mm. This rises to 25.01mm for if the
segmentor stage was removed, showing a 7.4% improvement
with segmentor included. Similarly, we find with using this
metric, there is a 4.0% improvement when the segmentor
is included for the DeepPrior system. Our proposed full
system with both stages performs marginally better than
DeepPrior with segmentor. Overall, our complete system
performs better than DeepPrior, with a 7.2% improvement.
We performed t-tests on these systems and found that the
use of a segmentor did provide a statistically significant
improvement. It took on average 0.95ms to feedforward 1
image through our stage two CNN and 1.14ms for our stage
one CNN (Intel i7 and Nvidia GeForce 780Ti).

Qualitative results can be seen in figure 7 where we
compare our system directly with DeepPrior. Both systems
appear to cope well against the occlusion caused by the ball.
For the finger joints that are visible, we can see that our
system qualitatively appears to perform better than DeepPrior
with a smaller max-joint error.

V. CONCLUSIONS

In this paper we present a two stage system for hand-object
pose estimation, using the first stage to segment the object
pixels to provide prior information regarding the object’s
positioning to the second stage 3D joint localiser. We show
that the use of a hand-object segmentation stage improves
performance over learned single stage systems and that our
system outperforms the state-of-the-art. To the best of our
knowledge, this is the first attempt at discriminative one
shot hand-object pose estimation. As future work, we plan to
use our method within a hybrid hand-object pose estmation
system.
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[9] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun. Real time hand
pose estimation using depth sensors. In Consumer Depth Cameras for
Computer Vision, pages 119–137. Springer, 2013.

[10] P. Krejov, A. Gilbert, and R. Bowden. Combining discriminative
and model based approaches for hand pose estimation. In Automatic
Face and Gesture Recognition (FG), 2015 11th IEEE International
Conference and Workshops on, volume 1, pages 1–7. IEEE, 2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[12] N. Kyriazis and A. A. Argyros. Scalable 3d tracking of multiple
interacting objects. In Computer Vision and Pattern Recognition, 2014.

[13] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[14] S. Melax, L. Keselman, and S. Orsten. Dynamics based 3d skeletal
hand tracking. In Proceedings of Graphics Interface 2013, pages 63–
70. Canadian Information Processing Society, 2013.

[15] N. Neverova, C. Wolf, G. W. Taylor, and F. Nebout. Hand segmenta-
tion with structured convolutional learning. In Computer Vision–ACCV
2014, pages 687–702. Springer, 2014.

[16] M. Oberweger, P. Wohlhart, and V. Lepetit. Hands deep in deep
learning for hand pose estimation. In Computer Vision Winter
Workshop, 2015.

[17] M. Oberweger, P. Wohlhart, and V. Lepetit. Training a feedback loop
for hand pose estimation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3316–3324, 2015.

[18] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Efficient model-based
3d tracking of hand articulations using kinect. In British Machine
Vision Conference, 2011.

[19] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Full dof tracking of
a hand interacting with an object by modeling occlusions and physical
constraints. In International Conference on Computer Vision, 2011.

[20] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Tracking the
articulated motion of two strongly interacting hands. In Computer
Vision and Pattern Recognition, 2012.

[21] P. Panteleris, N. Kyriazis, and A. A. Argyros. 3d tracking of human
hands in interaction with unknown objects. In Mark W. Jones
Xianghua Xie and Gary K. L. Tam, editors, Proceedings of the British
Machine Vision Conference (BMVC), pages 123.1–123.12. BMVA
Press, September 2015.

[22] T. Pham, A. Kheddar, A. Qammaz, and A. A. Argyros. Towards
force sensing from vision: Observing hand-object interactions to infer
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convolutional network results and (d) ground truth segmentation images. The white regions represent the segmented object.



Fig. 7: Example qualitative results showing (a) the RGB image, (b) the depth image, (c) DeepPrior, (d) Ours and (e) ground
truth. (Best viewed in colour)
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