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Abstract

Facial expressions play an important role in such areas as human com-
munication or medical state evaluation. For machine learning tasks
in those areas, it would be beneficial to have a representation of facial
expressions which corresponds to human similarity perception.

In this work, the data-driven approach to representation learning of
facial expressions is taken. The methodology is built upon Variational
Autoencoders and eliminates the appearance-related features from the
latent space by using neutral facial expressions as additional inputs. In
order to improve the quality of the learned representation, we modify
the prior distribution of the latent variable to impose the structure on
the latent space that is consistent with human perception of facial ex-
pressions.

We conduct the experiments on two datasets and the additionally col-
lected similarity data, show that the human-like topology in the latent
representation helps to improve the performance on the stereotypi-
cal emotion classification task and demonstrate the benefits of using a
probabilistic generative model in exploring the roles of latent dimen-
sions through the generative process.
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Sammanfattning

Ansiktsuttryck spelar en viktig roll i områden som mänsklig kommu-
nikation eller vid utvärdering av medicinska tillstånd. För att tillämpa
maskininlärning i dessa områden skulle det vara fördelaktigt att ha en
representation av ansiktsuttryck som bevarar människors uppfattning
av likhet.

I det här arbetet används ett data-drivet angreppssätt till representa-
tionsinlärning av ansiktsuttryck. Metodologin bygger på s. k. Varia-
tional Autoencoders och eliminerar utseende-relaterade drag från den
latenta rymden genom att använda neutrala ansiktsuttryck som extra
input-data. För att förbättra kvaliteten på den inlärda representationen
så modifierar vi a priori-distributionen för den latenta variabeln för att
ålägga den struktur på den latenta rymden som är överensstämmande
med mänsklig perception av ansiktsuttryck.

Vi utför experiment på två dataset och även insamlad likhets-data och
visar att den människolika topologin i den latenta representationen
hjälper till att förbättra prestandan på en typisk emotionsklassifice-
ringsuppgift samt fördelarna med att använda en probabilistisk gene-
rativ modell när man undersöker latenta dimensioners roll i den gene-
rativa processen.
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Notations

X 2 IR

D - input data

Y 2 IR

D - additional input (neutral faces)

Z 2 IR

K - latent space

D - input data dimensionality

K - latent dimensionality

N - size of a data set

T - size of a triplet data set

B - batch size

V - triplet batch size

L - number of samples

M - number of samples (for the triplet part)

1



Chapter 1

Introduction

Any machine learning or data analysis method highly depends on the
quality of the input data. The quality does not only concern noise or
missing data, but also, and often, more importantly, the representa-
tion. Representation includes the dimensionality of the data, type of
the features (discrete, continuous, ordinal, etc.), redundancy, proper-
ties of the input space, such as a correlation between the features, the
manifold of the data within the space and so on. It is often benefi-
cial to transform the input data into a different representation before
feeding it as input for a model (e.g classifier). The class of methods
used to learn this preliminary transformation is called "representation
learning". The resulting representation is usually lower-dimensional
than the original one and tries to capture the underlying structure in
the original data.

Facial expressions play an important role in such areas as human com-
munication or medical state evaluation. For machine learning tasks
in those areas, it would be beneficial to have a representation of fa-
cial expression that corresponds to human perception, i.e. similarity
measures of those latent representations should cohere with similar-
ity evaluation of facial expressions by a human. In this project, we
are interested in finding this useful representation of facial expres-
sions.

Raw input data are usually high-dimensional (images, videos, geo-
metric facial features) for the applications where facial expressions are
of interest. Such dimensionality is clearly redundant. Facial Action

2
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Coding System (FACS) is a commonly used representation of facial
expressions, that is based on manually selected features correspond-
ing to facial muscle activations (for more details see section 2.1). As
feature engineering might not result in an optimal representation, in
this work we take a different path to learning latent representation
and use a fully data-driven approach to learn a low-dimensional rep-
resentation that would capture all major variations in data while also
giving some desirable properties to the latent embeddings.

1.1 Research question

In facial expressions, geometric distances often do not directly corre-
spond to how humans perceive those expressions, e.g. two smiling
faces with different degree of smiling convey much more similar feel-
ings than a sarcastic smile and a genuine smile even if the two latter
are closer geometrically. It is our hypothesis, that incorporating hu-
man expertise in our model as a prior knowledge for the latent space
can guide latent representation to be more similar to that of a human
and therefore allow for easier interpretation and potentially higher ef-
ficiency in further usage.

The main contribution of this work is a model that incorporates hu-
man knowledge into the topology of the latent representation. An
additional contribution is the collected data set of partial similarity
rankings in the form of triplets (see 5.2).

In this project, we use facial landmarks already available in the data
set as initial facial expression feature vectors. Methods for extracting
facial landmarks lie outside of the scope of this project and are not
discussed.

1.2 Ethics, societal aspects and sustainabil-
ity

This particular work is quite technical and concerns representation
learning of facial expression. Nevertheless, the purpose of any rep-
resentation learning is to further use it as a building block in a possi-
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bly wide range of tasks. In the case of facial expressions, those tasks
include facial expression recognition and classification, mood detec-
tion, health state assessment, non-verbal communication and much
more.

Some of the target tasks may be highly beneficial for society, for ex-
ample, detection of depression, stroke or other diseases. At the same
time, we should be aware that systems with such functionality would
require a lot of data with high privacy concerns (mostly video), which
should be handled and stored with great care since it can not be fully
anonymized.

Another ethical consideration is that the data collected for a different
reason can be used to detect people’s emotions and reactions without
their knowledge or consent (e.g. a security camera in a supermarket
could be used to detect how people react to a specific product).

A more controversial area that relies on facial recognition concerns
monitoring and tracking systems. Those systems can be of a great
value for the police in enforcing the law (e.g. when searching for the
suspect). At the same time, there is a danger of abuse of such a pow-
erful instrument and a clear privacy concern.

In our opinion, sustainable use of technologies based on facial fea-
tures can have positive societal impact. However, to ensure long-term
sustainability and the continuous improvement of the methods the
right balance should be reached between privacy and potential ben-
efits.

1.3 Overview of the thesis

The structure of the thesis is as follows. We begin with the overview
of the related work including state of the art research in Chapter 2
and choose the primary method for our task, Variational Autoencoder
(VAE). Chapter 3 starts with some necessary background information
on neural networks and autoencoders, and, finally, a thorough intro-
duction to VAE is given. The developed methodology built upon VAE
is presented in Chapter 4. We describe the two data sets used in the
training and the process of additional data collection (to acquire per-
ceptual similarity data using crowd-sourcing) in Chapter 5. All the
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experiments, including the evaluation metrics, parameters and config-
urations used for training, and the results on both data sets are pre-
sented in Chapter 6. In Chapter 7 we summarise the results and dis-
cuss future work.



Chapter 2

Related Work

The classic approach to feature extraction for facial expression related
applications (e.g. automatic classification) used to be feature engineer-
ing with the most common one being action unit detection based on fa-
cial geometry (Facial Action Coding System) [10], [23]. Lately with the
increasing popularity of deep neural networks there appeared some
research using convolutional neural networks for the task of facial ex-
pression recognition [21]. The main goal of this project is to find a
facial representation with similar properties as that of a human in a
fully data-driven manner using latest advances in deep representation
learning, therefore, if successfully completed, combining best prop-
erties of the two approaches, i.e. human-like (possibly interpretable)
features without explicit feature engineering.

2.1 Facial Action Coding System

Facial Action Coding System (FACS) is a system that taxonomizes hu-
man facial movements, developed by Ekman and Friesen [10]. Us-
ing this system facial expression can be described using a set of fa-
cial action units (AU), where each action unit corresponds to some
muscle movement (e.g. "Inner Brow Raiser", "Upper Lip Raiser", etc.).
There are 28 main action units, but the full list is about 100 includ-
ing head and eye movement. The intensity of activations is measured
on a discrete 5-level scale (A-E). Nowadays FACS is a commonly ac-

6
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cepted standard to represent and further physical expression of emo-
tion.

This approach to representation falls into the category of feature engi-
neering because all the features (action units in this case) were man-
ually chosen to represent facial expressions. Automatic detection of
AUs is possible and some systems for detection from videos have been
developed (usually ruled-based on facial geometry), but they often
only detect a subset of action units.

The FACS representation is manually engineered and might not be the
optimal one, it is also discrete which might not be ideal for some tasks.
In this work, we want to take another approach, a fully data-driven
one, and using unsupervised machine learning techniques for repre-
sentation learning find a continuous representation with the similarity
measure on latent space coherent with human perception of facial ex-
pressions.

2.2 Data-driven approach

The simplest methods for representation learning include linear di-
mensionality reduction methods, such as Principal Component Anal-
ysis (PCA). However, the representation power of simple linear meth-
ods is very limited and often is not enough to get latent representa-
tion with desirable properties such as smoothness, temporal and spa-
tial coherence, disentanglement, sparsity, high-level abstract features
[2].

With the popularity of deep learning methods, the two major tracks in
representation learning research have been: the one based on prob-
abilistic models and the one based on neural networks. The main
difference is whether the deep layered architecture is interpreted as
a computational graph or a probabilistic graphical model. The neural
network approach has been mostly represented by a different varia-
tions of autoencoders (sparse, denoising, etc.) [13], [27]. Main exam-
ples of the probabilistic approach are Restricted Boltzmann Machines,
Gaussian process latent variables models (gp-lvm) and Deep Gaussian
processes (stacked bayesian GP-LVMs) [25], [7].

Lately, as the models get deeper and the inference in probabilistic mod-
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els becomes increasingly more complicated and usually even intractable,
there seems to be a trend to merge those two approaches by using neu-
ral networks as an approximation mechanism for the inference.

2.2.1 Variational autoencoders

Variational autoencoder framework is the prime example of this emerg-
ing trend [16], [9]. Even though it is called an "autoencoder", funda-
mentally it is a probabilistic directed graphical model with latent ran-
dom variables and observed random variables. Generating process is
modelled as a function of latent variable z via a neural network with
added Gaussian noise:

x ⇠ N (f(z; ✓), �

2
)

where f is a neural network with parameters ✓. Prior over latent space
is usually chosen to be a spherical Gaussian, but in principle, a differ-
ent distribution can be chosen if satisfies some constraints (for more
details see [16]).

The exact inference over latent variables in such model is intractable
and the classic approach is a variational inference that allows find-
ing an analytical approximation to the posterior distribution of latent
variables. VAE framework uses a neural network to approximate pa-
rameters of a posterior, e.g. in case of a Gaussian posterior mean and
variance are computed.

p(z|x) ⇡ q(z|x) ⇠ N (g(x;�))

where g is a neural network. In contrast to Gaussian Process mod-
els (e.g. gp-lvm, deepGP) where the number of variational parameters
grows with the number of data points, approximating posterior as a
function of observed variables has a clear advantage in scalability. The
model is trained jointly (both generating and inference network) by
maximizing evidence lower bound (ELBO) on the whole data set

log p(X) � L(X) = E

Z⇠q(Z|X)[log p(X|Z)]�KL(q(Z|X)||p(Z))

via backpropagation. The name of the model is therefore based on the
fact that it has inference and generating networks similar to encoding
and decoding networks in classic autoencoders.
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The variational autoencoder framework has become a foundation for
much other related research. The adversarial autoencoder is using
an additional adversarial network rather than a Kullback–Leibler di-
vergence to incorporate a prior on the latent space [18]. Importance
weighted autoencoder modifies the model objective to get a tighter
lower bound [4]. Ladder variational autoencoder uses an improved
inference mechanism for models with more than one layer of latent
random variables [24]. Even the Gaussian Processes research com-
munity came up with a modification of deep GPs that uses a neural
network as inference mechanism [6].

Another recent line of research that the VAE can benefit from is ad-
dressing the problem of using simple posterior distributions for varia-
tional inference by specifying more flexible, complex and scalable ap-
proximate posterior distributions using normalizing flow and inverse
autoregressive flow [15], [22]. In contrast, Higgins et al. [12] are ad-
vocating for the importance of disentanglement and modify the VAE
force the approximated posterior to be closer to prior by putting much
more weight on the KL-divergence term.

2.2.2 Topology

Naturally, for many applications there is some prior knowledge about
the topology (e.g. smoothness or similarity preservation), and it would
be clearly beneficial to incorporate this knowledge into the model. Ur-
tasun et al. [26] do this for the modelling of human motion tasks with
Gaussian processes by putting explicit constraints on the embedding,
more specifically they formulate the prior in the form of

p(Z) / e

� 1
��(Z)

where �(Z) is the energy function modelling specific topological con-
straints.

In the neural network approach to representation learning it is also
possible to impose such constraints by modifying the objective (adding
penalizing term for violation of the constraints), but often the most
challenging part is to modify a network with minimum loss in com-
putational capacity. For the case of partial similarity measure con-
straints in the form of triplets (exactly the case in this project) Hoffer
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and Ailon [14] propose a "triplet network", that has a three part of the
network sharing weights and then additional layer for distance com-
parison (figure 2.1).

Figure 2.1: "Triplet network" architecture (from [14]).

Based on the literature study shortly summarized above, Variational
Autoencoder Framework (VAE) has been chosen to be the primary
class of methods to focus on in this project. There has not been any
work on incorporating topological constraints in the VAE framework,
but combining the two described approaches seems feasible.



Chapter 3

Background

After conducting the literature study (see chapter 2) variational au-
toencoder (VAE) was chosen as a primary method for learning a la-
tent representation of facial expressions. VAE is a probabilistic model,
but similar in spirit to standard non-probabilistic autoencoder. Both
models use neural networks as their encoders and decoders. With
those connections in mind, a short introduction to neural networks
and autoencoders will be given in this chapter before more detailed
description of VAE on which the methodology for this project is build
upon.

3.1 Neural networks

The feed-forward neural network is a model that can be described as a
series of functional transformations. First, the M linear combinations
of the input vector x = (x1, x2, ..., xD

) constructed:

a

(1)
j

=

D

X

i=1

w

(1)
j,i

x

i

+ w

(1)
j,0 , 8j = 1, ..,M

(3.1)

where the superscript (1) denotes the first layer of the network.

Then each activation a

j

is transformed using a differentiable, non-
linear transformation function z

j

= h(a

j

), the resulting vector z =

11
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(z1, ..., zM) is called a "hidden" layer (as opposed to the observed in-
put and output layers). Components of that hidden vector are further
used to create K linear combinations, where K is the dimensionality
of the output vector y = (y1, ..., yK):

a

k

=

M

X

j=1

w

(2)
k,j

z

j

+ w

(2)
k,0, 8k = 1, .., K (3.2)

That is the the predicted output for the regression task by = a and the
objective function we need to minimize to fit the model is the squared
prediction error over the whole data set loss =

P

N

i=1(yi � by

i

)

2. The
objective function is minimised using gradient descent. The neural
network described is shown in figure 3.1.

Figure 3.1: Neural network with 1 hidden layer. From Bishop [3]

It is possible to include multiple hidden layers in exactly the same way
as the first one chaining them together. This increases the model com-
plexity. Neural networks that have many of those hidden layer (typi-
cally more than 3) are called "deep neural networks".

3.2 Autoencoder

Autoencoder is an unsupervised learning algorithm, the aim of which
is to find a latent representation of the data, typically with the purpose
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of dimensionality reduction. The model is based on two symmetri-
cal neural networks: one mapping from the input x = (x1, ..., xD

) to a
latent output z = (z1, ..., zK) called encoder, and second network (de-
coder) mapping from the latent vector back the input.

The idea behind an autoencoder is to map input data back to itself
but to do so through the bottleneck in the network, the lower dimen-
sional representation in the middle layer. This capacity limit forces
the model to capture in the learned representation the most important
feature variations of the original data so that it is possible to map the
latent code back to the original data with minimum loss. The whole
combined network is trained jointly with the objective function being
the reconstruction loss - the difference between the original input and
the reconstructed version.

In the simplest case, the autoencoder can have a single hidden layer
that is the latent representation. But most commonly encoder (and
symmetrical decoders) with more layers are used. Autoencoders with
a large (relatively speaking) number of hidden layers are commonly
referred to as deep autoencoders.

An example of an autoencoder with 5 hidden layers (2 in the encoder,
2 in the decoder and a latent representation in the middle layer) is
shown in figure 3.2.

x z

x̂

Latent representation

Encoder Decoder

Figure 3.2: Autoencoder with 5 hidden layers.
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3.3 Variational autoencoder

Variational autoencoder (VAE) is a probabilistic generative model. It
is similar in spirit to standard autoencoder model described in sec-
tion 3.2, but here input and latent representation are treated as ran-
dom variables characterised by some probability distributions. Main
advantages as compared to the non-probabilistic version include prior
distribution on the latent space allowing to incorporate our beliefs of
preferences about latent representation in a Bayesian way and the abil-
ity to generate new samples by drawing samples from the prior and
applying the generative function (decoder).

The problem formulation for the VAE model is as follows. There is a
data set X = {x(i)}N

i=1 of N i.i.d. samples of an observed random vari-
able x (continuous or discrete). The assumed generative process, in-
volving a hidden continuous random variable z, is presented in figure
3.3 (solid lines) in the form of a probabilistic graphical model (PGM).
This PGM corresponds to the following factorization:

p

✓

(x, z) = p

✓

(x|z)p(z) (3.3)

z

x

✓

�

Figure 3.3: Graphical model. Solid lines show the generative process,
dashed line show the inference process.

According to the PGM each data point is generated by first sampling
a value z

(i) from some prior distribution p(z) and than sampling x

(i)

from some conditional distribution p

✓

(x|z). Both the prior and the
likelihood are assumed to be from parametric families of distributions
differentiable w.r.t. z and ✓.

The prior distribution over the hidden variable z is usually taken to be
an isotropic Gaussian p(z) = N (z|0, I), but in principle can be different
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(with some constraint that will be discussed below). The likelihood is
also a Gaussian:

p

✓

(x|z) = N (x|f(z, ✓), �2
I) (3.4)

where f(z, ✓) is a neural network.

To be able to infer the latent variable values for the observed data we
need the posterior distribution p

✓

(z|x). The posterior is intractable,
which is common for a complicated likelihood like the one we use
involving a neural network.

The common solution to this problem is to approximate the true in-
tractable posterior with a simpler distribution. This approach is the
base of the Variational Bayesian Inference methods. That is where the
"variational" in the VAE comes from.

The approximate posterior distribution is chosen to be a Gaussian with
a diagonal structure:

q

�

(z|x) = N (z|µ(x,�),�2

(x,�)I) (3.5)

where the mean and the variance are computed using neural networks.

The model is trained by maximizing the evidence lower bound (ELBO),
which is derived below. The marginal likelihood factorizes as fol-
lows:

log p

✓

(X) = log

N

Y

i=1

p

✓

(x

(i)
) =

N

X

i=1

log p

✓

(x

(i)
)

(3.6)

Then the usual variational inference trick, multiplying and dividing
by the approximate posterior, is used to get an expectation under the
approximate distribution:

log p

✓

(x

(i)
) = log

Z

p

✓

(x

(i)
, z)dz

= log

Z

q

�

(z|x(i)
)p

✓

(x

(i)
, z)

q

�

(z|x(i)
)

dz

= logE

z⇠q�(z|x(i))

h

p

✓

(x

(i)
, z)

q

�

(z|x(i)
)

i

(3.7)
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Then the Jensen’s inequality (equation 3.8) is applied to obtain a lower
bound:

 (E[x]) � E[ (x)], if  is a concave function (3.8)

logE

z⇠q�(z|x(i))

h

p

✓

(x

(i)
, z)

q

�

(z|x(i)
)

i

� E

z⇠q�(z|x(i))

h

log

p

✓

(x

(i)
, z)

q

�

(z|x(i)
)

i

(3.9)

The expression under the expectation can be rewritten as follows:

L(x(i)
) = E

z⇠q�(z|x(i))

h

log

p

✓

(x

(i)
, z)

q

�

(z|x(i)
)

i

= E

z⇠q�(z|x(i))

h

log

p

✓

(x

(i)|z)p(z)
q

�

(z|x(i)
)

i

= E

z⇠q�(z|x(i))

h

log p

✓

(x

(i)|z) + log p(z)� log q

�

(z|x(i)
)

i

= E

z⇠q�(z|x(i))

h

log p

✓

(x

(i)|z)
i

�KL
⇣

q

�

(z|x(i)
)||p(z)

⌘

(3.10)

where KL is the Kullback–Leibler divergence.

The ELBO for the whole data set is then:

L(X) =

N

X

i=1



E

z⇠q�(z|x(i))

h

log p

✓

(x

(i)|z)
i

�KL
⇣

q

�

(z|x(i)
)||p(z)

⌘

�

(3.11)

To maximize the objective function the gradients are needed, but it
is not possible to take derivatives of a distribution with respect to its
parameters. To tackle this problem Kingma and Welling [16] suggested
a "reparameterization trick". The approximate posterior ez = q

�

(z|x) is
reparameterized using a differentiable transformation of an auxiliary
noise variable ✏

e

z = g

�

(✏,x) = µ(x,�) + �(x,�)✏,

where ✏ ⇠ N (0,1)

(3.12)
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Now the expectation can be taken using Monte Carlo estimates:

eL(X) =

N

X

i=1



1

L

L

X

l=1

h

log p

✓

(x

(i)|z(i,l))
i

�KL
⇣

q

�

(z|x(i)
)||p(z)

⌘

�

,

where z

(i,l)
= µ(x

(i)
,�) + �(x

(i)
,�)✏

(i,l)

(3.13)

The KL-divergence term can be computed analytically when both dis-
tributions are Gaussian:

KL
⇣

q

�

(z|x(i)
)||p(z)

⌘

= �1

2

K

X

k=1

✓

1 + log

⇣

(�(x

(i)
,�)(k))

2
⌘

� (µ(x

(i)
,�)(k))

2

� (�(x

(i)
,�)(k))

2

◆

(3.14)

For the Gaussian likelihood reconstruction term has the following form:

log p

✓

(x

(i)|z(i,l)) = � 1

2�

2

⇣

x

(i) � f(z

(i,l)
, ✓)

⌘2

+ constant

(3.15)

The objective is optimized using stochastic gradient descend. The es-
timation of the EBLO from a random data batch of size B is :

L(X) ⇡ eL(XB

) =

N

B

B

X

i=1

eL(x(i)
)

(3.16)

The computational graph is shown in figure 3.4. To compute the value
of the objective function, the approximate posterior distribution is com-
puted, then the latent variable is sampled exploiting the reparameter-
ization trick, and used to compute the mean of the output via the gen-
erative neural network. The loss function consists of two terms: the
reconstruction loss and the KL-divergence of the approximate poste-
rior from the prior. The procedure very much resembles the standard
autoencoder (see section 3.2), with the reconstruction part (the approx-
imate posterior) and the generative part playing the roles of encoder
and decoder respectively. That is why the model is called Variational
Autoencoder.
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x

Encoder Q

µ(x) �(x)

⇤

+

✏l ⇠ N (0,1)

Sample z

l

Decoder P

f(zl) l = 1, .., L

KL divergence

1
L

PL
l=1 ||x� f(zl)||2

Figure 3.4: Architecture of Variational Autoencoder



Chapter 4

Method

Variational autoencoder has been chosen as a primary framework mostly
due to its elegant construction combining Bayesian approach (allow-
ing priors) with neural networks for fast and easy inference. We will
begin with the standard variational autoencoder and gradually build
on that.

To begin with, in section 4.1 we put standard Variational Autoencoder
(described in section 3.3) in the context of our task of facial expression
representation learning (Model 1). We proceed by incorporating a neu-
tral face as an additional input to the model to remove the appearance-
related features from the latent space in section 4.2 (Model 2). In order
to force the topology of the latent space to be consistent with human
perception, the latter model is further extended by imposing topolog-
ical constraints in the form of an additional component in the prior
(section 4.3, Model 3).

4.1 Model 1: Standard VAE

We will start with the standard Variational Autoencoder (VAE, see sec-
tion 3.3). In the context of our problem the input data set X = {x(i)}N

i=1

consists of data points each of which is a set of 83 3-dimensional fa-
cial landmarks. So, the dimensionality of the observed variable x is
83 ⇤ 3 = 249. The dimensionality K of the latent variable z is not fixed
at this point and will be explored during the experiments.

19
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We use the isotropic Gaussian prior on the latent space. The likelihood
and the approximate posterior distribution are also Gaussian with the
parameters computed via neural networks. The model is trained using
Stochastic Gradient Variational Bayes (SGVB) on mini-batches of data
with Adam optimizer [17]. The loss function approximation (based on
a mini-batch of size B ) we need to minimize in order to fit the model
has the following form:

Loss(X) ⇡ Loss(X

B

) = � eL(XB

) = �N

B

B

X

i=1

eL(x(i)
)

=

N

B

B

X
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

� 1

L

L

X

l=1

h

log p

✓

(x

(i)|z(i,l))
i

+KL
⇣

q

�

(z|x(i)
)||p(z)

⌘
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=
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B

X
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

1
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2
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L

X

l=1

h⇣

x

(i) � f(z

(i,l)
, ✓)

⌘2i

� 1

2

K

X

k=1

✓

1 + log

⇣

(�(x

(i)
,�)(k))

2
⌘

� (µ(x

(i)
,�)(k))

2 � (�(x

(i)
,�)(k))

2

◆�

,

where z

(i,l)
= µ(x

(i)
,�) + �(x

(i)
,�)✏

(i,l)

(4.1)

The computational graph is the standard VAE (figure 3.4 in section
3.3).

4.2 Model 2: VAE with neutral facial expres-
sions

The main problem of the standard autoencoder model for this applica-
tion is that the whole face is generated from the latent space, i.e. latent
representation contain information not only about facial expression
(which is of interest to us) but also about individual features (shape
of the person’s nose, eyes, etc.).

To eliminate the effect of individual facial characteristics one possible
solution could be splitting latent space into individual features and
expression-related features, but there is not enough variability in ap-
pearances in the data set. We propose a different approach - using
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a neutral facial expression of a person as an additional input to the
model and therefore modelling only the difference or rather transfor-
mation of the neutral face into any other expression of the same per-
son.

The corresponding probabilistic graphical model is shown in figure
4.1, where solid lines show the generative process and the dashed lines
show the inference process. There z as previously denotes the hidden
variable of dimensionality K, (X,Y) = {(x(i)

,y

(i)
)}N

i=1 is a data set
of facial expressions, where y

(i) is a neutral face of a person and x

(i)

is any facial expression of the same person. Both x and y have the
dimensionality D = 249.

z

y

x

✓

�

Figure 4.1: The graphical representation of Model 2. Solid lines show
the generative process, dashed line show the inference process.

The model factorizes as follows :

p

✓

(x, z|y) = p

✓

(x|y, z)p(z) (4.2)

The prior over the latent variable is the same isotropic Gaussian as
before p(z) = N (z|0, I), but the likelihood now also depends on the
neutral face:

p

✓

(x|y, z) = N (x|f(y, z, ✓), �2
I) (4.3)

where f(y, z, ✓) is a neural network.

From the PGM (figure 4.1) we can see that y and z are connected
through a "V-structure" and therefore not independent given z. The
posterior distribution over the latent variable is p

✓

(z|x,y), which is in-
tractable. As previously, we approximate it with a different distribu-
tion, which now also depends on the neutral face y:
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q

�

(z|x,y) = N (z|µ(x,y,�),�2

(x,y,�)I) (4.4)

where the mean and the variance are computed using neural networks.

The computational graph for this model is shown in figure 4.2. As we
can see, the only difference from the Model 1 (standard VAE, figure 3.3)
is the corresponding neutral face, that is an additional input to both the
reconstruction (encoding) network and the generative network.

For this model evidence lower bound (EBLO) on the whole data set
has the following form:

L(X,Y) =

N

X

i=1



E

z⇠q�(z|x(i)
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(i))

h

log p
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�KL
⇣

q

�

(z|x(i)
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(i)
)||p(z)

⌘

�

(4.5)

The loss function approximation based on a mini-batch of size B is:

Loss(X,Y) ⇡ Loss(X
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(4.6)
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Figure 4.2: Computational graph for Model 2
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4.3 Model 3: VAE with neutral facial expres-
sions and topology

Our hypothesis is that imposing human-like topological constraints
on the latent space will result in learning a better representation. We
combine ideas of Urtasun et al. [26] and Hoffer and Ailon [14] on how
to impose a topology on latent representation, and propose a new
model based on the previous one with modified prior on the latent
space.

Topological constraints on the latent space are represented as a set of
T triplets, where each triplet consists of a reference face and two other
faces with one of those faces marked as being more similar to the ref-
erence one based on a human opinion. The resulting triplet data set
is

S =

n

(s

(t,ref)
, s

(t,+)
, s

(t,�)
) : d(h

(sreft )
,h

(s+t )
)  d(h

(sreft )
,h

(s�t )
)

o

T

t=1
(4.7)

where each of s(t,ref), s(t,+)
, s

(t,�) corresponds to some index i 2 {1, ..N}
in the original data set of facial expression, d is the Euclidean distance
and h

(i) is some (human-like) representation of the facial expression
x

(i).

To fulfil these topological constraints over triplets on the latent repre-
sentation z we want to minimize the following expression:

�(Z,S) =

T

X

i=1

max

�

0; d(z

(sreft )
, z

(s+t )
)� d(z

(sreft )
, z

(s�t )
)

�

(4.8)

Instead of using f(x) = max(0; x) to penalize incorrect distances we
will use its smooth approximation f(x) = ln(1+e

x

) called "softplus" to
force a little margin on the distance difference. For additional flexibil-
ity each triplet can have a weigh w

t

(e.g. corresponding to a reliability
level for each triplet if the triplets are collected from people).

�(Z,S) =

T

X

i=1

w

t

ln

�

1 + exp(d(z

(sreft )
, z

(s+t )
)� d(z
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, z

(s�t )
))

�

(4.9)
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This can be interpreted as a prior [26] that forces to fulfil as many con-
straints as possible:

p

T

(Z|S) / e

� 1
��(Z,S) (4.10)

where � is a "topological variance" and the smaller the value, the larger
the penalty for incorrect topology.

This topological prior can be factorised over triplets:
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The topological prior on latent variable z can be added to the standard
Gaussian prior we used in the previous models:
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Given that now the prior is not factorizable over the data points, we
derive evidence lower bound on the whole data set.
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(4.13)

where the last line (ELBO) is the result of applying Jensen’s inequality
(equation 3.8).
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We further write the exact density functions and use the reparameter-
ization trick to derive a differentiable lower bound:
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where z

(i,l)
= µ(x

(i)
,y

(i)
,�) + �(x

(i)
,y

(i)
,�) · ✏, ✏ ⇠ N (0, I),



CHAPTER 4. METHOD 27

f(y, z) - the generative neural network.

To maximize the evidence lower bound with batch-wise stochastic gra-
dient descend the objective is reformulated. We use separate data
batches and batches of triplets. The approximation of the loss func-
tion based on a data batch of size B and a batch of triplets of size V

can be computed in the following way:
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(4.16)

Note, that in fact the batch-wise objective also depends on the data
corresponding to the triplet batch.

The architecture of the computational graph for this model is a combi-
nation of the one used in the previous model (figure 4.2 in section 4.2)
and the part shown in figure 4.3, which is responsible for the triplet
term in the loss function and was inspired by the "triplet network" of
Hoffer and Ailon [14]. All the parts of the loss function are shown in
red in the pictures.



28 CHAPTER 4. METHOD

y+

x+

concat(y+,x+)

y

r

x

r

concat(y

r

,x

r

)

y� x�

concat(y�,x�)

Encoder QEncoder Q Encoder Q

µ(y

r

,x

r

) �(y

r

,x

r

)µ(y+,x+) �(y+,x+) µ(y�,x�) �(y�,x�)

Sample z

r

m

Sample z

+
m

Sample z

�
m

d

�
m = ||zrm � z

�
m||2d

+
m = ||zrm � z

+
m||2

lossm = ln(1 + exp(d

+
m � d

�
m)) m = 1, ..,M

w
M

PM
m=1 lossm

Figure 4.3: Architecture of the "triplet" part of the model 3



Chapter 5

Data

The models described in chapter 4 require facial expression data as
input. Models 2 and 3 also require neutral expressions as additional
input. Model 3 imposes the human-like similarity metric on the latent
space needs triplet data to constrain the latent space. Two data sets will
be used in this work, one containing posed static facial expressions and
the second containing dynamic spontaneous expressions. Triplet data
will be collected using crowd-sourcing service (Amazon Mechanical
Turk).

5.1 Data sets

5.1.1 Static posed data set with stereotypical facial
expressions

This is a dataset with 3d facial landmarks (83 points for each face) con-
sisting of 100 individuals, each posed with stereotypical facial expres-
sions: "neutral", "angry", "disgust", "sad", "happy", "surprised", "fear"
[29]. All expressions except neutral have 4 degrees, so in total each
person has 25 data points and the total size of the dataset is 2 500 facial
expressions with dimensionality 83 ⇤ 3 = 249. This data set is quite
small and don’t have enough variability, but have labels which can be
useful for evaluation. Examples from this data set are shown in figure

29



30 CHAPTER 5. DATA

5.1. The data set is split into training, validation and test as specified
in table 5.1.

Train Validation Test All

Number of people 80 10 10 100
Data set size 2000 250 250 2500

Table 5.1: Posed data set statistics

(a) Image (example 1) (b) 3D landmarks (example 1)

(c) Image (example 2) (d) 3D landmarks (example 2)

Figure 5.1: Examples of data from the static dataset (images and corre-
sponding 3D facial landmarks

5.1.2 Dynamic spontaneous data set

For this data set 41 individuals were asked to participate in 8 tasks,
each task has an intended emotion (e.g. "sing a song" for "embarrass-
ment") [30]. Only the most emotional part if saved for each sequence
and the rest is discarded. Each time frame has 83 3D facial landmarks.



CHAPTER 5. DATA 31

There are totally 367 492 facial expressions (time frames). This data set
is much larger than the first one and has more variability and smooth-
ness. Examples of images and the corresponding 3D facial landmark
can be seen in figure 5.2.

(a) Image (example 1) (b) 3D landmarks (example 1)

(c) Image (example 2) (d) 3D landmarks (example 2)

Figure 5.2: Examples of data from spontaneous dataset (images and
corresponding 3D facial landmarks

We split the data set into 3 subsets person-wise: train, validation, test
(table 5.2).

In this dataset for each sequence, 20 seconds were manually annotated
with action units (AU) by specialists. Not all possible AUs are labeled,
and some AUs are extremely rare, so we decided to only use action
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Train Validation Test All

Number of people 25 8 8 41
Data set size 223 883 72 173 71 436 367 492
Labeled size 88 570 29 450 28 632 146 652

Table 5.2: Spontaneous data set statistics

units that are present in reasonable amounts in each train, validation,
test data set, 12 in total (AU 1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, 24). For
the detailed class balance of action units see table 5.3.

AU FACS code Train Validation Test All

1 1 0.216 0.227 0.18 0.221
2 2 0.179 0.154 0.161 0.17
3 4 0.217 0.173 0.185 0.201
4 6 0.479 0.396 0.472 0.448
5 7 0.54 0.473 0.657 0.516
6 10 0.633 0.567 0.502 0.61
7 12 0.582 0.515 0.548 0.558
8 14 0.503 0.395 0.425 0.462
9 15 0.16 0.135 0.233 0.151
10 17 0.353 0.256 0.404 0.3162
11 23 0.165 0.092 0.244 0.137
12 24 0.169 0.08 0.17 0.135

Table 5.3: AU class balance (share of positive occurrences) in the spon-
taneous data set

5.2 Triplets

Model 3 uses our hypothesis that incorporating knowledge about hu-
man perception of facial expression will help to learn a better latent
representation. In order to formalise this knowledge we collect triplet
data, where people choose which facial expressions are more simi-
lar.
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5.2.1 Artificial triplets

As a preparation for the collection of real triplets and a proof of con-
cept, we conduct experiments on the "fake" (artificial) triplets. Only
the first data set is used.

These triplets are generated from the true labels of the posed data set
using the following rules:

• Expressions from the same class are closer than from different
classes.

• Within the same class: the closer the degree of expression the
smaller the distance.

• A neutral expression is closer than an expression from a different
class.

For the train data set (2000 data points), 8000 triplets were generated.
For the validation and test sets (250 data points each) - 1000 triplets
per set. Every data point is present in at least one triplet.

5.2.2 Design choices for data set of triplets

Triplets are collected using Amazon Mechanical Turk. Participants are
asked to chose which of the 2 facial expressions A or B looks more sim-
ilar to the reference one (5.3). They are provided with pictures rather
than a set of 3D points. Those triplets are collected only on the second
data set (spontaneous).

During preliminary tests (on ourselves) it was noticed, that in cases
where the reference image and one of the possible answers belong to
the same person there is a tendency to chose similar appearance rather
than expression. To eliminate this bias, it was decided to use only
either triplets where all images are from the same person or all images
are from different persons.

The number of triplets to collect depends on several factors such as
the number of facial expressions, desired connectivity in the resulting
graph and financial restrictions.
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Figure 5.3: Example of a question for the triplet collection with Ama-
zon Mechanical Turk

Selection of images

The dataset we use for triplets contains sequences of video frames with
spontaneous reactions. Size of the data set is quite large and we would
need too many triplets to cover it. At the same time, it is often the
case that a person has the same expression for several seconds (espe-
cially neutral expression) and using all those expressions for triplet
collection is unnecessary. Another thing to consider is that some of
the images have a blinking person. Blinking does not matter much in
videos, but in a static image, it makes understanding facial expression
harder.

Therefore we have a task of selecting a subset of the data that have
a reasonable size and ideally cover the true latent space evenly. We
exploit the fact that the most expressive part of each sequence was
annotated with AUs. The number of images is further minimized by
removing blinking based on the distances between lower and upper
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eyelids in the corresponding 3D point cloud of facial landmarks.

For the final subset of images for each person, we select images with
unique vectors of action units occurrences. In total 5602 images were
selected.

Selected images were brightened (the original images are a bit too
dark), resized and uploaded to Amazon S3.

Selection of triplet connections

For each subset of data (train, validation and test) separate sets of
triplets were generated in such a way that each image is in 3 triplets
with the same person and in 3 multi-person triplets. This produces
quite densely connected graph. The selection was performed for each
data set separately in a greedy fashion with a restart if some con-
straints were hit before all the triplets were selected. The total number
of triplets is 5602 ⇤ 6/3 = 11204.

Redundancy

Given that data we are collecting are not the ground truth but rather
opinions, and often there is no obviously correct answer (e.g. in cases
where all 3 facial expressions are completely different) we decided to
collect 5 answers from different people in order to get statistics for
the trustworthiness of each triplet. An odd number (5) was chosen so
that we can always get a majority vote and therefore use all the data.
Possible results for the majority answer are 5� 0, 4� 1, 3� 2, and can
be equivalently summarized as the difference in the number of votes
for each answer (5, 3 and 1 respectively).

The reliability statistic can be used in two conceptual ways:

• use majority vote as a ground truth in triplets with the desired
reliability level (e.g only 3 and 5)

• use the difference as a weighting coefficient

The second option will be used for training because it utilizes all the
collected data. The first one, however, can be useful for the evaluating
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the results in terms of the number of "satisfied" triplets in the learned
latent space.

5.2.3 Data collection with Amazon Mechanical Turk

Triplets were randomly split into sets of 19. In each set, we also added
one of the 17 test triplets manually chosen so that one of the options is
obviously correct. The total number of human intelligence tasks (HITs,
Mturk terminology) is 589. The example of HIT is shown in figure 5.3.
Each HIT is assigned to 5 different workers.

As workers tend to do multiple HIT of the same type, it is possible to
collect accuracy statistics on the test questions. We only use data from
workers who have at least 75% accuracy and post new HITs until the
desired number of sufficient quality answers is achieved.

5.2.4 Statistics of the collected data

Total number of collected triplets is 11191, 5 answers for each.

Data subset

Difference

Total

5 3 1

Train: 2 426 2 364 2 206 6 996

one person 1 299 1 181 1 016 3 496
different persons 1 127 1 183 1 190 3 500

Validation: 652 686 643 1 981

one person 364 328 298 990
different persons 288 358 345 991

Test: 728 767 719 2 214

one person 418 367 322 1 107
different persons 310 400 397 1 107

All subsets: 3 806 3 817 3 568 11 191

one person 2 081 1 876 1 636 5 593
different persons 1 725 1 941 1 932 5 598

Table 5.4: Agreement statistics for collected triplets

The distribution of differences between two possible answers in the
collected data is shown in table 5.4. As we can see, results are split in
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almost equal proportions between levels of agreement in all data sets
(train, validation and test). In triplets where all images belong to the
same person the distribution is slightly skewed towards higher agree-
ment and the opposite is true for triplets with all different persons.
This is expected because even though people are able to abstract fa-
cial expression from an image of a face, it is easier to make the correct
decision when the only difference is the facial expression itself.



Chapter 6

Experiments

We have developed the methodology for the given task of represen-
tation learning of facial expressions (see chapter 4) and collected ad-
ditional data necessary for the imposing human-like topological con-
straints onto the latent space (see chapter 5). In this chapter all the
models are trained on the two data sets, posed and spontaneous, to
test our methods and hypotheses.

6.1 Software

All the code for this project is written in Python. Tensorflow frame-
work [1] is used for the main training of the models. Scikit-learn frame-
work [20] is used for the principal component analysis (PCA) and sup-
port vector machines (SVM).

6.2 Preprocessing

The comparison of the data points from the two data sets has shown,
that even though the dimensionality is the same, the placement of the
facial landmarks is slightly different between the data sets in the chin
and nose areas. This moves the original idea of enhancing the results
by combining posed and spontaneous expressions into the domain of
the knowledge transfer, which falls out of the scope of this project. It

38
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was therefore decided to conduct the experiments separately on each
data set.

In the spontaneous data set, there is naturally a head tilt present in
some data points. While it can be useful for detecting emotions, there
is not much head pose variation in the data set. Therefore it was de-
cided to rotate all data points to straight positions using the estimation
of the angle of pitch, yaw and roll provided in the dataset.

In the posed data set the head pose relatively straight throughout the
data set and no rotation is performed on these data.

The preliminary exploratory analysis of the data showed that the scale
and shift are not consistent throughout the datasets. The preprocessing
pipeline to make the data points comparable includes:

• rotating the point cloud to a straight position (only for the spon-
taneous data set),

• shifting the point cloud so that the point between eyes coincide
with the origin,

• scaling the point cloud so that the distance between the eyes is 1.

The position of each eye was computed as a centre of points corre-
sponding only to the lower eyelid to avoid shifting due to blinking.

For the training procedure, the data is further centred using the mean
of the training portion of the corresponding data along each dimension
for the purpose of numerical stability of the neural network.

Choosing neutral faces for the spontaneous data set

As we try to eliminate the effect of appearance an only encode facial
expressions in the latent representation, the neutral facial expression
is needed for each individual (sections 4.2, 4.3). Each individual in
the posed data set has a corresponding neutral face. The spontaneous
dataset contains no specifically marked neutral facial expressions. We
decided to leverage the action units labelling available in the dataset
to select one neutral face for each person. For each person, we se-
lected time frames which have AU labels, but all AU are marked as
non-present. We further select a single face with the minimal sum of
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distances to the other neutral faces for each individual. Therefore ac-
tual data points are selected and there is no averaging.

6.3 Evaluation

Since "usefulness" of the latent representation is not clearly defined,
the evaluation is a bit tricky. We decided to use classification as the
target task for evaluation mostly due to its interpretability and avail-
ability of the labels in the data sets.

The two data sets have different labelling. Labels in the posed data are
facial expressions (emotion) and the task is a multi-class classification.
In the spontaneous data, each labelled data point has an associated
binary vector where each component shows presence or absence of
the corresponding facial action unit (AU) and the task is, therefore, a
multi-label classification.

Another evaluation technique that will be used is the number of satis-
fied triplets. This measure will reflect the topological coherency of the
representation space.

6.3.1 Baseline

Our methods fall into the category of nonlinear dimensionality re-
duction techniques. One natural baseline in a representation learn-
ing is the original 249-dimensional data with no transformation. As a
comparison, the most common dimensionality reduction method, lin-
ear Principal Component Analysis (for the method details see 12.1 in
Bishop [3]), is also used with 50, 40, 30, and 20 dimensions.

The method of choice for the classification tasks is the Support Vector
Machines with linear kernel (for the method details see 7.1 in Bishop
[3]). On the one hand, in the original high-dimensional space every-
thing is far away and often linearly separable and the results are rea-
sonably good, on the other hand, to satisfy the topological constraints
the representation should probably be linearly separable in the latent
space (especially for the expression classification) and the nonlinear
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transformation should ideally eliminate the need for additional non-
linear transformation during the classification step.

To summarize, the compared representation are:

• no dimensionality reduction;

• linear dimensionality reduction using linear PCA;

• nonlinear dimensionality reduction using encoding part of our
trained model (mapping from the original data-space to the learned
latent representation);

6.3.2 Classification of stereotypical facial expressions
on the posed data set

The posed data set contains 4 degrees of all 6 stereotypical facial ex-
pressions ("angry", "disgust", "sad", "happy", "surprised", "fear") and a
neutral expression. The task of classifying these facial expressions will
be one of the evaluation methods for the learned representation. In a
multi-class setting, the SVM classifier is usually implemented as a set
of one-vs-rest classifiers, one for each class.

Since the classes are relatively balanced in this data set, the standard
accuracy will be used as a performance measure:

accuracy =

Number of correctly classified instances
Total number of instances

The facial expression classification performance on the static posed
data set for the original data and linear dimensionality reduction using
Principal Component Analysis (linear PCA) is presented in table 6.1.
As we can see, the performance has not decreased substantially for the
dimensionality of 50 compared to the original 249-dimensional data
space. But further lowering the number of dimensions leads to a no-
ticeable performance drop. So even with the linear reduction method,
it is possible to keep the majority of relevant characteristics in a much
lower dimensional representation.
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Dimensionality reduction Dim Train Val Test

None 249 0.874 0.684 0.72

Linear PCA

50 0.871 0.648 0.724

40 0.769 0.652 0.708
30 0.743 0.636 0.676
20 0.701 0.548 0.676

Table 6.1: Facial expression classification accuracy on the posed data
set

6.3.3 Classification of Action Units on spontaneous
data set

Part of the data is labelled with facial action units (see 2.1). These data
can be used as an additional evaluation tool. Only 12 AUs with the
number of positive examples at least 10 % of the labelled data will
be used. This is a multi-label binary classification task which is com-
monly addressed by training a separate classifier for each label (action
unit in our case). We use linear Support Vector Machines (SVM) clas-
sifier.

The classes (1 - "present" or 0 - "absent" for each action unit) are un-
balanced for most of the action units (for the detailed class balance see
table 5.3). Therefore we use the "balanced" version of the SVM that
put weights proportionally to the number of class occurrences. Also,
the standard accuracy of classification is not an appropriate measure
in this case, because always classifying AUs as absent results in a quite
high accuracy. The F1 score is a much more informative measure. It
is a harmonic mean of accuracy and precision, which is calculated as
follows:

Precision =
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are the number of true positive, false positive and false
negative predictions respectively.
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The intuition is that accuracy is the ability not to classify positive ex-
ample as a negative and precision is the ability to find all positive ex-
amples. The F1 score ties them together, ranging from 0 to 1 (the worst
and the best value correspondingly). The metrics above are computed
for each label (facial action unit) separately. To combine them in a
single metric summarizing performance over all labels the weighted
averages of precision and recall are computed over the labels. The
weights proportional to the positive instances for each label to elim-
inate imbalance between different action units. Then the F1 score is
computed.

Another commonly used metric for binary classifiers based on preci-
sion and recall is Area Under the Curve (AUC), which is computed
based on different thresholds of the classifier. The weighted version
summarizing all individual classifiers will be reported.

The F1 score and AUC for the baseline is summarized in table 6.2. We
can see the substantial drop in classification quality only appears on
the train data set, while validation and test data sets have almost no
change in performance. Therefore the dimensionality of the original
data can be substantially reduced with almost no loss in terms of the
performed classification and topology tests even with a linear trans-
formation.

Dimensionality

Dim

Train Val Test

reduction F1 AUC F1 AUC F1 AUC

None 249 0.782 0.898 0.598 0.766 0.633 0.766

Linear PCA

50 0.727 0.848 0.584 0.762 0.627 0.77
40 0.72 0.839 0.574 0.76 0.627 0.771

30 0.708 0.824 0.588 0.766 0.646 0.771

20 0.694 0.808 0.59 0.756 0.635 0.757

Table 6.2: F1 score and AUC for the AU classification on the sponta-
neous data set

6.3.4 Distance preservation

Given the hypothesis about topology another test we will use is the
number of satisfied triplets. It indicates the degree of similarity of the
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learned latent space topology and that of an assumed internal human
representation, which can be useful for a number of applications. This
evaluation will be conducted on both data sets (the generated "artifi-
cial" triplets will be used on the posed data set).

The number of satisfied triplets is the number of triplets where the
Euclidean distance from the reference facial expression to the more
similar one is smaller than the distance to the other expression in the
triplet:

sat((i

ref

, i+, i�)) = I(||z
iref

� z

i+ ||2  ||z
iref

� z

i� ||2) (6.4)

The collected triplet data for the spontaneous data set have 3 levels of
"confidence" (see "Redundancy" section in 5.2.2), and the number of
satisfied triplets will be reported separately for each confidence level.
Since the triplets for the posed data set were generated according to
the reasonable rules (see 5.2.1), they all considered having the 100%

reliability level (all the weights are 1).

The baseline performance on this test for the posed and spontaneous
data sets are presented in tables 6.3 ,6.4. As we can see, there is no drop
in the number of satisfied triplets with the decreased dimensionality.

Dimensionality reduction Dim Train Val Test

None 249 0.614 0.564 0.593

Linear PCA

50 0.613 0.566 0.593
40 0.613 0.564 0.594
30 0.613 0.566 0.592
20 0.612 0.564 0.591

Table 6.3: The share of satisfied triplets on the posed data set

6.4 Training

Architecture

Both the encoding (reconstruction) and the decoding (generative) parts
of the model are approximated with neural networks. All the lay-
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Dimensionality None Linear PCA
reduction

Dimensions 249 50 40 30 20

Train

5 0.724 0.727 0.727 0.725 0.724
3 0.611 0.609 0.612 0.611 0.613
1 0.539 0.541 0.54 0.543 0.537

Validation

5 0.678 0.678 0.678 0.678 0.675
3 0.605 0.608 0.606 0.608 0.608
1 0.487 0.488 0.49 0.501 0.51

Test

5 0.747 0.747 0.751 0.743 0.751

3 0.615 0.618 0.618 0.608 0.614
1 0.549 0.545 0.549 0.549 0.548

Table 6.4: The share of satisfied triplets on the spontaneous data set

ers are fully connected with exponential linear unit (ELU, [5]) non-
linearity. During training a fixed dropout is used (table 6.5). Different
layer configurations are used during training, the details are reported
in the corresponding sections. For the model 1 the encoding and de-
coding part is symmetrical, for the model 2 and model 3 it is not possi-
ble as the additional neutral face is added to both encoder and decoder
input.

Annealing of the divergence term

It is typical for the VAE-model to "over-regularize", more specifically,
the KL-divergence loss is closer in the network to the input data (the
gradient chain is shorter) than reconstruction loss and as a result dur-
ing training the network first learns to map input to prior and only
then slowly tries to reconstruct from that encoded values. This be-
haviour results in turning off some latent dimensions early so that the
model does not use the full allowed capacity.

Most common way to improve the learning is to use a modified objec-
tive function [28]:

L(X) = �E

q�(Z|X)

h

log p

✓

(X|Z)
i

+ � ⇤KL(q

�

(Z|X)||p(Z)) (6.5)

and slowly increase � from 0 to 1 over a number of iterations. When
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� = 0 the objective is the maximum likelihood estimation and equiva-
lent to that of the standard autoencoder model (see 3.2). � = 1 corre-
sponds to the normal VAE objective.

In all experiments, � is increased linearly with the number of itera-
tions.

The usage of each dimension is monitored with:

• the KL divergence (both prior and approximated posterior is fac-
torizable over dimensions);

• the norm of the corresponding part of weights of the first decod-
ing layer.

Small KL divergence indicates the posterior is very close to the prior
and we will see, it is always the case that the weight norm is also close
to zero meaning the dimension is not used in the reconstruction (or the
generative process).

Parameters

The Adam algorithm is used for optimization [17]. The training pa-
rameters that do not change during training and there fixed values are
listed in table 6.5.

Parameter Notation Posed Spontaneous

learning rate 1e-4 1e-4
dropout 0.9 0.9
batch size B 200 250
triplet batch size V 10 10
sample size L 3 3
triplet sample size M 10 10

Table 6.5: Fixed training parameters

The batch size is chosen to be 200/250, preliminary experiments showed
that the number of iterations is more important than the number of
epochs, e.g. the number of iterations to convergence and quality of
the results for 500 sized batches are the same as for 200 sized batches
but each iteration is more computationally expensive and takes longer.
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Authors of the original VAE paper [16] say one sample from the poste-
rior distribution is enough as long as the batch size is at least 100. We
use 3 samples.

For the model 3 with triplets, we use batches of 10 triplets with the
latent representation sampled 10 times from the posterior.

All models are trained for 100 000 iterations. Each 2500 iterations the
model is evaluated by computing evidence lower bound (ELBO) on
the validation data set. After the training is finished a saved model
with the highest validation ELBO is considered the final model and
used for further evaluations.

The values of EBLO are not reported because some hyper parameters,
namely the reconstruction variance and the topological prior variance,
affect ELBO and make it conceptually incomparable between different
settings of those hyper parameters. So it is only used to select the best
iteration during training.

6.5 Results on the static posed data set

We begin by training all the models on the posed data set of stereotyp-
ical facial expressions. This data set has some disadvantages, namely
small size and the fact that the expressions are not natural or sponta-
neous. Nevertheless, all the data are labelled with emotion types (sad,
happy, etc.) which can be used for evaluating the representation qual-
ity and visualization of the latent space.

6.5.1 Model 1

The first model we conduct experiments on is the standard variational
autoencoder model (section 4.2) applied to the posed data set. We vary
the layer architecture, reconstruction variance and the number of an-
nealing iterations (iterations it takes for the objective to change from
maximum likelihood to the normal VAE objective). "No" annealing
iterations means � = 1 from the start.

The parameter configurations are listed in table 6.6. The results are
shown in table 6.7 (the first row corresponds to the results on original
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#

Architecture Reconstr Anneal

Encoding Decoding variance iter

1 [249, 120, 60, 30] symmetrical 0.0001 no
2 [249, 120, 60, 30] symmetrical 0.0001 50 000
3 [249, 120, 60, 30] symmetrical 0.0001 100 000
4 [249, 240, 120, 60, 30] symmetrical 0.0001 no
5 [249, 240, 120, 60, 30] symmetrical 0.0001 50 000
6 [249, 240, 120, 60, 30] symmetrical 0.0001 100 000
7 [249, 120, 60, 30] symmetrical 0.001 no
8 [249, 120, 60, 30] symmetrical 0.001 50 000
9 [249, 120, 60, 30] symmetrical 0.001 100 000
10 [249, 240, 120, 60, 30] symmetrical 0.001 no
11 [249, 240, 120, 60, 30] symmetrical 0.001 50 000
12 [249, 240, 120, 60, 30] symmetrical 0.001 100 000

Table 6.6: Parameter configurations for the model 1

Dimensionality

Dim Accuracy Triplets

reduction

None 249 0.684 0.564
config 1 30 0.544 0.563
config 2 30 0.52 0.571
config 3 30 0.544 0.565
config 4 30 0.544 0.565
config 5 30 0.556 0.575

config 6 30 0.536 0.572
config 7 20 0.536 0.572
config 8 25 0.544 0.557
config 9 29 0.544 0.56
config 10 17 0.512 0.556
config 11 21 0.524 0.554
config 12 27 0.516 0.557

Table 6.7: Results for the model 1 on the validation data set
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data with no dimensionality reduction). The dimensionality reported
in the results is the number of active dimensions used by the genera-
tive part of the model.

As we can see from the results 6.7, small reconstruction variance leads
to all dimensions being active. When the variance is higher slower
annealing results in higher effective latent dimensionality. In the clas-
sification accuracy is lower than the baseline models, the number of
satisfied triplets is similar to the baseline.

6.5.2 Model 2

The latent space in model 1 tries to model not only the features rel-
evant to facial expressions but also the appearance-related features
(e.g. round face, wide nose, etc.), because the latent representation is
further used to reconstruct the original face as close as possible to the
original. In the model 2 (see 4.2) we try to eliminate the individual
(appearance-related) features from the latent space by providing an
additional input in the form of a neutral facial expression for each per-
son. The idea is that the model does not have to encode all the details
to successfully reconstruct a face, only the difference between an ex-
pression and a corresponding neutral face.

The configurations of parameters and the corresponding results are
presented in tables 6.8 and 6.9.

#

Architecture Reconstr Anneal

Encoding Decoding variance iter

1 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0001 no
2 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0001 50 000
3 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0001 100 000
4 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0005 no
5 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0005 50 000
6 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0005 100 000
7 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 no
8 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 50 000
9 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 100 000

Table 6.8: Parameter configurations for the model 2
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Dimensionality

Dim Accuracy Triplets

reduction

None 249 0.684 0.564
config 1 30 0.62 0.594
config 2 30 0.628 0.598
config 3 30 0.664 0.595
config 4 16 0.616 0.593
config 5 21 0.636 0.58
config 6 25 0.624 0.572
config 7 13 0.592 0.606

config 8 15 0.616 0.581
config 9 17 0.62 0.572

Table 6.9: Results for the model 2 on the validation data set

As we can see from the result, both performance measures, classifi-
cation accuracy and the number of satisfied triplets, improved. The
improvement in accuracy is about 10 %, but it is still worse than the
baseline, the topology performance metric has also increased and is
higher than the baseline.

6.5.3 Model 3

We try to further improve the quality of the latent representation by
enforcing a specific topology based on the triplets (in the posed data
set they were "artificially" generated, for more detail see 5.2.1). The
intuition behind this adjustment is that the latent space with human-
like similarity measure will also help to improve on other tasks, e.g. the
facial expression classification.

In this model, there is an additional parameter, the topological vari-
ance. The smaller this parameter the higher the penalty for not satis-
fying the triplets in the latent space.

There are to possible ways to modify the objective function to perform
the annealing (6.4):

• only anneal the KL-divergence term,

• anneal the whole prior, i.e. sum of the KL-divergence term and
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the topology term.

We try both options to compare.

Anneal only the KL-divergence

The tested parameter configurations are listed in the table 6.10 and
the corresponding results on the validation data set are shown in table
6.11.

#

Architecture Variance Anneal

Encoding Decoding Reconstr Topology iter

1 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.01 no
2 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.01 50 000
3 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.01 100 000
4 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 no
5 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 50 000
6 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 100 000
7 [498, 480, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 100 000
8 [498, 480, 240, 120, 60, 30] [279, 300, 500, 300, 249] 0.001 0.04 100 000
9 [498, 600, 400, 200, 100, 50] [299, 300, 400, 300, 249] 0.001 0.04 100 000
10 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0005 0.04 100 000
11 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0001 0.04 100 000

Table 6.10: Parameter configurations for the model 3 with annealing
only the KL-divergence

Anneal the KL-divergence and the topology term

The tested parameter configurations are listed in the table 6.12 and
the corresponding results on the validation data set are shown in table
6.13.

The is no definite answer to which annealing scheme is the best. In
general, the second option seems better.

The number of satisfied triplets increased, with is expected since it was
introduced as a part of the loss function. The classification accuracy is
also increased substantially compared to the previous model and is
now higher than the baseline.
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Dimensionality

Dim Accuracy Triplets

reduction

None 249 0.684 0.564
config 1 30 0.62 0.742
config 2 30 0.636 0.748
config 3 30 0.644 0.754
config 4 24 0.66 0.741
config 5 22 0.604 0.734
config 6 30 0.664 0.75
config 7 30 0.724 0.761

config 8 30 0.676 0.751
config 9 39 0.708 0.76
config 10 30 0.68 0.75
config 11 30 0.656 0.693

Table 6.11: Results for the model 3 with annealing only the KL-
divergence on the validation data set

#

Architecture Variance Anneal

Encoding Decoding Reconstr Topology iter

1 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 50 000
2 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 100 000
3 [498, 480, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 50 000
4 [498, 600, 400, 200, 100, 50] [299, 300, 400, 300, 249] 0.001 0.04 50 000
5 [498, 400, 200, 100, 50] [299, 300, 400, 300, 249] 0.001 0.04 50 000
6 [498, 480, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 100 000
7 [498, 480, 240, 120, 60, 30] [279, 300, 500, 300, 249] 0.001 0.04 100 000
8 [498, 600, 400, 200, 100, 50] [299, 300, 400, 300, 249] 0.001 0.04 100 000
9 [498, 480, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.04 100 000
10 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0005 0.04 100 000
11 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0001 0.04 100 000

Table 6.12: Parameter configurations for the model 3 with annealing
the KL-divergence and the topology term
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Dimensionality

Dim Accuracy Triplets

reduction

None 249 0.684 0.564
config 1 22 0.676 0.747
config 2 27 0.68 0.73
config 3 25 0.676 0.746
config 4 22 0.704 0.729
config 5 26 0.7 0.725
config 6 25 0.708 0.76

config 7 27 0.704 0.748
config 8 33 0.696 0.74
config 9 27 0.696 0.745
config 10 30 0.656 0.714
config 11 30 0.648 0.674

Table 6.13: Results for the model 3 with annealing the KL-divergence
and the topology term on the validation data set

6.5.4 Selection and analysis of the best model

The best model on validation data set is the model 3 with annealing
only the KL-divergence term with the following configuration (config
7): encoding [498, 480, 240, 120, 60, 30], decoding [279, 300, 400, 300,
249], reconstruction variance 0.001, topological variance 0.04, anneal-
ing over 100 000 iterations.

As we can see in the comparison in table 6.14, our model outperforms
both baselines (the original data and linear PCA).

Dimensionality

Dim Accuracy Triplets

reduction

None 249 0.72 0.593
PCA 30 0.676 0.592
Our best model 1 30 0.64 0.592
Our best model 2 30 0.72 0.67
Our best model 3 30 0.736 0.798

Table 6.14: Performance comparison on the test data set. Best perform-
ing models are taken from tables 6.1, 6.3, 6.7, 6.9, 6.11
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(a) Latent space (b) Neutral face

Figure 6.1: KL-divergence and weight norm for the first decoding layer

We explore the learned latent representation by plotting the KL-divergence
and the norms of the first layer of the generative (decoding) part of the
model (figure 6.1). As we can see all the dimensions of neutral faces
is used to reconstruct a face. In the latent space, some dimensions
are used more heavily with higher divergence from the prior, but the
model used the full allowed capacity. Example of a reconstructed face
is shown in figure 6.2. The resulting reconstruction is more smooth
than the original face since the model assumes Gaussian noise in the
output.

Figure 6.2: Reconstruction example on a test data point of the posed
data set
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(a) Original data (b) Our best model

Figure 6.3: Visualization in 2D using linear PCA

Figure 6.4: Classes of stereotypical facial expressions on the posed data
set

Figure 6.3 compares the original data and the learned representation
on the train part of the posed data set. Both representations were trans-
formed using linear PCA, the colors correspond to the stereotypical
facial expressions (figure 6.4). We already can see that our model pro-
vides a good linear separation between classes while the original data
does not. This representation is further explored in 3d in figure 6.5,
where the 3 principal components of the latent space are shown from
4 with different view angles with rotation around the 3rd component
(z-axis in the picture).

One of the main advantages of using a generative model is the pos-
sibility to explore the role of each dimension by varying one latent
dimension at a time generating new data points. The 2 dimensions
with the clearest influence on the different part of a face are shown in
figure 6.6 along with the neutral face (one of the train persons). The
reconstructed neutral face (with the latent vector set to zeros) looks
very similar to the original, one dimension is clearly responsible for
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(a) Rotation 1 (b) Rotation 2

(c) Rotation 3 (d) Rotation 4

Figure 6.5: Visualization of our model on the train data set in 3D using
linear PCA (every 90

�)
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the mouth opening and the other for eyes opening.

(a) Generated faces

(b) Neutral input face

Figure 6.6: Generation of a new facial expressions given one neutral
face on the posed data set, z16, z2 are changing along horizontal and
vertical axes respectively, the grid is [�5,�2.5, 0, 2.5, 5] for both, all
other latent dimensions are set to 0
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6.6 Results on spontaneous data set

Our models are also trained on the spontaneous data set. To learn a
disentangled representation it is important to have data with varia-
tions along the assumed disentangles latent dimensions. For example,
if in the whole data set very few blinking expressions occur, the model
less likely to learn blinking as a separate independent dimension. The
main advantage of these spontaneous data is the more natural vari-
ations in facial expressions as opposed to the stereotypical and static
expressions in the posed data set. For this data set, we collected the
triplet data from real people using crowd-sourcing (see 5.2.2).

6.6.1 Model 1

All the experiments presented in this section correspond to the stan-
dard VAE model applied to the spontaneous data set(4.1).

Since the VAE can potentially "turn off" some dimensions (in which
case the posterior for those dimensions is the same as the prior and the
corresponding decoding weights are almost 0), the number of "active"
dimensions is reported for all the models.

The tested parameter configurations are listed in the table 6.17 and
the corresponding results on the validation data set are shown in table
6.18. The results are worse than the baseline.

#

Architecture Reconstruction Anneal

Encoding Decoding variance iterations

1 [249, 120, 60, 30] symmetrical 0.0001 no
2 [249, 120, 60, 30] symmetrical 0.0001 50 000
3 [249, 120, 60, 30] symmetrical 0.0001 100 000
4 [249, 240, 120, 60, 30] symmetrical 0.0001 no
5 [249, 240, 120, 60, 30] symmetrical 0.0001 50 000
6 [249, 240, 120, 60, 30] symmetrical 0.0001 100 000
7 [249, 300, 200, 100, 50] symmetrical 0.0001 no
8 [249, 300, 200, 100, 50] symmetrical 0.0001 50 000
9 [249, 300, 200, 100, 50] symmetrical 0.0001 100 000

Table 6.15: Parameter configurations for the model 1
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Dimensionality

Dim F1 AUC

Triplets

reduction 5 3 1

None 249 0.598 0.766 0.678 0.605 0.487
config 1 30 0.576 0.748 0.667 0.592 0.524
config 2 30 0.591 0.758 0.672 0.589 0.499
config 3 30 0.594 0.759 0.672 0.585 0.512
config 4 30 0.584 0.75 0.652 0.586 0.519
config 5 30 0.589 0.765 0.667 0.595 0.51
config 6 30 0.597 0.769 0.655 0.582 0.505
config 7 50 0.58 0.746 0.67 0.576 0.512
config 8 50 0.588 0.75 0.663 0.59 0.507
config 9 50 0.586 0.753 0.667 0.567 0.521

Table 6.16: Results for the model 1 on the validation data set

6.6.2 Model 2

All the experiments presented in this section correspond to the model
with neutral faces as an additional input (4.2).

We see that the additional input in the form of a neutral face is used
by the model. The typical norm per dimension graph of the weights
of the first decoding layer is shown in figure 6.7. The graph has a very
similar appearance for all trained models with neutral faces (model 2
and model 3).

#

Architecture Reconstruction Anneal

Encoding Decoding variance iterations

1 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.0001 no
2 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.01 no
3 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.01 50 000
4 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.01 100 000
5 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 no
6 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 50 000
7 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 100 000

Table 6.17: Parameter configurations for the model 2

The tested parameter configurations are listed in the table 6.17 and
the corresponding results on the validation data set are shown in ta-
ble 6.18. As we can see in general smaller variance results in larger
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Figure 6.7: Typical weights norms of the first decoding layer from neu-
tral face

Dimensionality

Dim F1 AUC

Triplets

reduction 5 3 1

None 249 0.598 0.766 0.678 0.605 0.487
config 1 30 0.603 0.746 0.635 0.59 0.502
config 2 5 0.576 0.691 0.637 0.598 0.505
config 3 9 0.588 0.715 0.63 0.57 0.526
config 4 11 0.587 0.728 0.626 0.573 0.527
config 5 13 0.602 0.736 0.613 0.564 0.502
config 6 16 0.594 0.73 0.601 0.582 0.498
config 7 19 0.596 0.734 0.609 0.574 0.501

Table 6.18: Results for the model 2 on the validation data set
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number of active dimension, annealing has a similar effect.

The does not seem to be an improvement compared to the previous
model. This might be due to the fact, that the neutral faces were chosen
automatically and their quality is lower than that of posed neutral ex-
pressions. Therefore the help provided for the model by a low-quality
"neutral" face is much smaller.

6.6.3 Model 3

All the experiments presented in this section correspond to the model
with neutral faces as additional input and an additional topological
prior with triplets (4.3).

There are two possible ways to modify the objective function to per-
form the annealing (6.4):

• only anneal the KL-divergence term,

• anneal the whole prior, i.e. sum of the KL-divergence term and
the topology term.

We try both options to compare.

Anneal only the KL-divergence

The tested parameter configurations are listed in the table 6.19 and
the corresponding results on the validation data set are shown in table
6.20.

#

Architecture Variance Anneal

Encoding Decoding Reconstr Topology iterations

1 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.001 no
2 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.001 50 000
3 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.001 100 000
4 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.0001 no
5 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.0001 50 000
6 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.0001 100 000

Table 6.19: Parameter configurations for the model 3 with annealing
only the KL-divergence
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Dimensionality

Dim F1 AUC

Triplets

reduction 5 3 1

None 249 0.598 0.766 0.678 0.605 0.487
config 1 17 0.624 0.759 0.758 0.655 0.518
config 2 20 0.61 0.754 0.741 0.659 0.512
config 3 24 0.618 0.752 0.762 0.65 0.523
config 4 28 0.622 0.765 0.837 0.729 0.544
config 5 30 0.618 0.768 0.834 0.742 0.566
config 6 30 0.614 0.753 0.848 0.736 0.543

Table 6.20: Results for the model 3 with annealing only the KL-
divergence on the validation data set

Anneal the KL-divergence and the topology term

The tested parameter configurations are listed in the table 6.21 and
the corresponding results on the validation data set are shown in table
6.22.

#

Architecture Variance Anneal

Encoding Decoding Reconstr Topology iterations

1 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.001 50 000
2 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.001 100 000
3 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.0001 50 000
4 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.0001 100 000
5 [498, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.0005 50 000
6 [498, 480, 240, 120, 60, 30] [279, 300, 400, 300, 249] 0.001 0.0005 50 000
7 [498, 600, 400, 200, 100, 50] [299, 300, 400, 300, 249] 0.001 0.0005 50 000
8 [498, 400, 200, 100, 50] [299, 300, 400, 300, 249] 0.001 0.0005 50 000

Table 6.21: Parameter configurations for the model 3 with annealing
the whole prior

As we can see from the results, additional topological constraints help
improve performance on the action units classification task, and also
naturally increase the topological coherence measure which, as we saw
on the posed data set, connected to the facial expression classifica-
tion performance given that the triplets are consistent with the rules
we used to generate the artificial triplets on the posed data set (see
5.2.1).
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Dimensionality

Dim F1 AUC

Triplets

reduction 5 3 1

None 249 0.598 0.766 0.678 0.605 0.487
config 1 16 0.605 0.749 0.73 0.65 0.519
config 2 22 0.606 0.749 0.736 0.649 0.527
config 3 30 0.627 0.764 0.839 0.726 0.544
config 4 28 0.62 0.763 0.839 0.727 0.555
config 5 19 0.621 0.759 0.779 0.682 0.526
config 6 25 0.603 0.75 0.767 0.695 0.543
config 7 21 0.618 0.755 0.756 0.687 0.516
config 8 22 0.62 0.763 0.779 0.678 0.529

Table 6.22: Results for the model 3 with annealing the whole prior on
the validation data set

6.6.4 Selection and analysis of the best model

The best model on validation data set is the model 3 with annealing
the whole prior and the following configuration: encoding [498, 240,
120, 60, 30], decoding [279, 300, 400, 300, 249], reconstruction vari-
ance 0.001, topological variance 0.0001, annealing over 50 000 itera-
tions.

The performance comparison with the baseline models on the test part
of the spontaneous data set is given in the table 6.23. On the AU classi-
fication task, our model outperforms the baselines on the F1 score, but
the Area Under the Curve measure is slightly lower than that of the
PCA. The triplet coherency is much higher than the baseline for the
high and medium confidence triplets.

Figure 6.9 shows an example of facial reconstruction of a test data
point. As we can see, the reconstructed facial expression is very simi-
lar to the original one. Since the reconstructed face is the mean of the
Gaussian in the generative process, i.e. the original data is assumed to
have Gaussian noise, the reconstructed facial landmarks are smoother
than true data.

We explore the latent dimensionality via the generative process in the
same manner as for the posed data set in 6.5.4. Figure 6.10 shows faces
generated by changing the values of two latent dimensions while all
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Dimensionality

Dim F1 AUC

Triplets

reduction 5 3 1

None 249 0.633 0.766 0.747 0.615 0.549
PCA 30 0.646 0.771 0.743 0.608 0.549
Our model 1 30 0.637 0.753 0.706 0.593 0.494
Our model 2 30 0.644 0.752 0.647 0.584 0.495
Our model 3 30 0.658 0.764 0.849 0.716 0.556

Table 6.23: Performance comparison on the test data set. Best perform-
ing models are taken from tables 6.2, 6.4, 6.16, 6.18, 6.22

(a) Latent space (b) Neutral face

Figure 6.8: KL-divergence and weight norm for the first decoding layer

other dimensions are fixed (zeros). We can see, that the vertical axis
corresponds to smiling and the horizontal axis to lowering/raising
eyebrows. Those dimensions were chosen for visibility purposes, as
many other dimensions correspond to subtle changes in facial expres-
sions.
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Figure 6.9: Reconstruction example on a test data point of the posed
data set
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(a) Generated faces

(b) Neutral input face

Figure 6.10: Generation of a new facial expressions given one neutral
face on the spontaneous data set, z15, z2 are changing along horizontal
and vertical axes respectively, the grid is [�5,�2.5, 0, 2.5, 5] for both,
all other latent dimensions are set to 0
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Conclusions

7.1 Summary

The goal of this works was to find a data-driven latent representation
for the human facial expressions and to test the hypothesis that im-
posing a topological structure on the latent space similar to that of an
assumed internal human representation would be beneficial on differ-
ent tasks, such as classification of facial expressions.

The methodology was iteratively built on the basis of variational au-
toencoder. To eliminate the individual features classic VAE was mod-
ified to include neutral faces so that the model can focus on learning
only the deviation of a facial expression from a neutral one. We incor-
porated the topological constraints as an additional component in the
prior distribution of the latent variable. The original representation
and linear PCA were used as baseline models.

The models were trained and tested on two data sets. While the data
formats in the data sets are the same, the size, the labelling, and the
variation in the data are different. On the posed data we saw that the
standard VAE was performing worse than the baselines, but adding a
neutral face increased the classification accuracy up to the baseline lev-
els. Including the topological prior helped structure the latent space in
a way that is coherent with a human similarity assessment and raised
the classification accuracy above the baseline.

The latent representation of the posed data set showed clear linear

67
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separation between classes of stereotypical facial expressions. Even
though the triplets for that data set were artificially generated based
on labels, the assumptions were very mild and did not concern the
global ordering of classes.

In the spontaneous data set, the only labels were facial action units. On
this data set, the action unit classification performance of our model
was very similar to the baseline. This probably can be explained by the
fact that humans consider the holistic facial expression when making
similarity comparison and therefore the number of satisfied triplets
correlates much stronger with the emotion classification performance,
rather than with the more granular action units.

On the both data sets including the topological component in the latent
prior increased the number of satisfied triplets on the test part of the
data (unseen during training). This fact indicates that the model does
not just overfit the training triplets, but rather uses them to structure
the latent space in a way that is more consistent with human similarity
assessments.

One of the benefits of the generative probabilistic model is the ability
to explore the role of each dimension through generations of new sam-
ples. As we saw on both data sets it is possible to identify dimensions
responsible for very specific facial actions, such as closing and opening
the mouth, smiling, blinking.

The best learned representations perform better of the same on clas-
sification tasks, are nicely structured in the latent space and are inter-
pretable through the means of the generative process.

7.2 Future work

Even though the result seem to be quite interesting in itself, where is
a number of possibilities for the future work. So far we only worked
with static facial expressions (even when using the dynamic data set)
while they are dynamic by natural. Therefore incorporating tempo-
ral dynamics in the model is the most obvious next step that can help
learning a temporally consistent representations (with smooth trajec-
tories in the latent space). Possible ways to enforce smoothness in the
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latent space include using a temporal prior on the latent space [26] and
using Variational recurrent autoencoders [11].

Another option to explore is different prior on the latent space. For
example, each latent dimension could have an independent Beta dis-
tribution (variable in the range [0,1]) as a prior to mimic action unit
activations. The main limitation here is that the distribution should be
reparameterizable as a differentiable transformation of the distribution
parameters and an auxiliary noise variable to allow backpropagation.
Beta distribution can not be reparameterized in this way, neverthe-
less it can be approximated by the Kumaraswamy distribution which
will allow easy sampling and a closed-form approximation of its KL-
divergence from the Beta distribution. This property is exploited in
the work of Nalisnick and Smyth [19] on Stick-Breaking Variational
Autoencoder (SB-VAE). Another possibility is using a Gaussian Mix-
ture Model as a prior distribution on the latent space [8].

This work can also be improved by finding more evaluation tasks to
test on and compare the learned latent representation. For example,
the spontaneous data set does not have labels for stereotypical facial
expressions (emotions), which would give an interesting insight into
the latent space. Those labels can be collected using crowd sourc-
ing.
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