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Abstract—In this paper, we propose a cooperative model 

combined the multi-task reverse sparse representation model 

(MTRSR) and the AdaBoost classifier, which were used to cope 

with the disturbing of target gradient information caused by 

motion blur or target serious occlusion, and a descriptive 

dictionary were used to estimate the weights of each candidates. 

First, we use the MTRSR model to get the blur kernel which 

were used to get the blur target template set, meanwhile the 

confidence of the candidates is also obtained by the 

reconstruction error. Then we use the HOG features of the target 

templates to get the descriptive dictionary to calculate the 

weights of the candidates, and a AdaBoost classifier is used to 

calculate the confidences of all candidates. Finally, the best target 

is retrieved by the sum of production of weight value and the two 

confidences. The experimental data show that the proposed 

algorithm can fully cope with the target’s information change 

which were caused by motion blur and target occlusion in the 

complex scene, and our algorithm can further improve the 

accuracy and robustness in visual tracking. 

 
 Keywords—Visual tracking; AdaBoost classifier; sparse 
representation; collaborative model 

 

 

I. INTRODUCTION 

Visual tracking plays an important role in computer vision 

and image processing, since it has been widely applied to 

vision navigation, intelligent transportation and video 

surveillance. In recent years, more research have been 

obtained such as: [1],[2],[3],[4],[5],[6],[7],[8],[9],[10]. But the 

visual tracking still faces many challenges: 1) The videos 

sometimes introduce the motion blur which can change the 

structure information of the target area with pixel intensity and 

the gradient that makes it impossible to accurately identify the 

best candidates, and leads to the tracking drift or losing. 2) 

When the target was seriously occluded or the occlusion is 

similar with the target. The algorithm may keep the occlusion 

as the best target which cause the target losing.  

Therefore, Bao et al. proposed an Accelerated Proximal 

Gradient L1 tracking algorithm (L1APG)[11], which can 

effectively and quickly solve the minimization problem of L1 

normal constraints and ensure quadratic convergence of its 

solution. However, the algorithm cannot effectively cope with 

the serious occlusion of candidates and the change of gradient 

information caused by motion blur in video sequences, 

therefore, the tracking results are sometimes not stable when 

the information of the target area is changed. Zhang et al. 

proposed a Continuous Low Rank Sparse Tracking algorithm 

(CLRST) [12], which uses time consistency and adaptively 

select candidate particles. To some extent, the algorithm can 

deal with the deformation and partial occlusion problem of 

target more robust. However, when the target and background 

are very similar and the motion blur or serious target occlusion 

occurred, especially when the occlusion and the target have 

similar appearance, it will produce very similar target 

information. These situations cause the algorithm cope with it 

ineffectively. Ma, B., et al. proposed a Multi-task Reverse 

Sparse Representation model (MTRSR)[13], which combines 

the estimation of blur kernel and the sparse representation of 

targets in a joint framework. To avoid introducing noise and 

ringing effects in the process of deblurring, the blur kernel is 

not used to restore targets, but convoluted with the clear 

templates to get the blur target template set. Specifically, the 

blur target template set is sparsely matched with the 

candidates, and then the sparse coding matrix C is obtained. 

The number of candidates is more than the target template set 

T, so the obtained C can eliminate the candidates that are not 

related to the target templates which can reduce the 

computational cost when matching the target. It is the first 

time to combine the blur kernel estimation and sparse 

representation model in a multi-task manner to deal with the 

problem of motion blur in video sequences. The combination 

strategy can get a single blur kernel k and sparse matrix C 

which can effectively and quickly eliminate candidates that 

are not related to the targets by iterative optimization. But 

when the object is seriously occluded and the edge gradient 

changes dramatically which keep it difficult to track targets 

effectively and robustness will lead the tracking drifting or 

target losing. Therefore, this paper proposes a visual tracking 

algorithm based on descriptive dictionary combined 

generative and discriminative method for handling the change 

of gradient information and object occlusion in target area. 

The main contributions of this paper are as follows: 
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In this paper, we use the method considering the 

generative and discriminative method to track the target which 

is more robustness and accurate in cope with the change of the 

target information and the serious target occlusion in video 

sequence. We simultaneously use two dictionaries for visual 

tracking, the one of which was set up by extract the vectored 

local patches from the target area is named as D1. In our 

method, we use it to matching with the candidates for getting 

the sparse coding coefficients to training the AdaBoost 

classifier, while. the another is a descriptive dictionary, 

namely, D2, which was obtained from the HOG features of the 

target templates that can preferably determine the weights of 

the candidates based on the information of the appearance 

gradient in target area. 

By solving the HOG features of the target templates, we 

can obtain a descriptive dictionary D2, and calculate the HOG 

features Y
H
 of candidates Y. Meanwhile, the weights of the 

candidates are obtained according to the reconstruction errors 

of the candidates Y
H
 and dictionary D2. 

By solving the MTRSR model, we can get the blur kernel 

k and the blur target template set T
*
 to calculate the 

reconstruction error which were used to get the confidences of 

each candidate. The AdaBoost classifier is trained by the 

extracting positive and negative samples according the tracked 

targets. We can get the best target by the sum of production of 

weight and two confidences. 

 

II. PROPOSED TRACKING ALGORITHM 

Firstly, we can get the tracking result as the initial target 

template set Ti (i=1, 2 ,.., m), where m = 8 represents the 

number of the target templates, by the method of real-time 

compressive tracking[14] which size is 32×32 pixel. 

 

A. Solution of the Blur Kernel k 

Ma,B. et al. proposed a multi-task reversal sparse 

representation model (MTRSR)[13] to solve the blur kernel k 

and sparse representation of the target by: 
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where k is the blur kernel, Y denotes the candidates, and T 

means the target template set, *represents the convolution 

operator, C is the sparse coding matrix. As this model includes 

two variables, it can be transformed into two optimal solutions 

of the sub problem. The sparse coding matrix C is initialized 

by: 
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where C can be solved by Accelerated Proximal Gradient 

method[15]. 

 

The solution of k in sub problem 1: Fix C to solve the 

blur kernel k: 
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This problem can be regarded as the least square problem 

with Tikhonov regularization, and it’s closed-form solution 

is[16]: 
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where F(.) represents the Fast Fourier Transform, 

)(1- F denotes inverse Fast Fourier Transform, )(F denotes 

the complex conjugate of F(.),  denotes element-wise 

multiplication, and I is an identity matrix. 

 

The solution of C in sub problem 2: Given the blur 

kernel k, the sparse matrix C is obtained by: 
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where C can be solved by Accelerated Proximal Gradient 

method[15].  

 

Algorithm 1[13]: Solve the blur kernel k and sparse matrix 

C 

Input: target template set T, candidates Y, parameter ν and λ 

Output: blur kernel k and sparse coding matrix C 

       Initialize sparse coding matrix C by (2) 

       For  i= 1,2, …, n  do 

            Solve blur kernel k by (4) 

     Solve sparse coding matrix C by (5) 

       end 

 

B. Design and Training of AdaBoost Classifier 

In the first eight frames, 9 positive samples are obtained 

by pixel perturbation which sampling near the target that were 

tracked in each frame, and 150 negative samples are obtained 

through pixel perturbation in the eighth frame (each patch is 

resized in 32×32 pixels). These positive and negative 

examples are extracted by 16×16 patches with 8 pixels as the 

step length, and the all local patches are vectored. So we can 

get each training sample X={xi∣i=1,2, …,n}∈R
d×n

, and each 

of the xi is a vectored local patch, where n represents the 

number of local patches. To get the training dictionary 

D1={d1,d2,…,dn×m}(∈R
d×(n×m)

), we extract local patches from 



the target template set T (={T1,T2,…,Tm}) by the same method. 

Therefore, the sub patch xi of each training sample X is 

encoded by dictionary D1: 
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where αi∈R
(n×m)×1

 is the sparse coding coefficient for training 

the classifier. As we extract n sub patches from training 

sample X, and select k sparse coding coefficient with its sub 

patches to training the classifier, C
k 

n  weak classifier can be 

trained by different sub patches, and the best classifier is 

selected by the minimum classification error. In our 

implementation, we train 60 weak classifiers, and then we 

select 45 of them as the final strong classifier H(x) (each weak 

classifier is a naive Bias classifier).  

 

C. The Selection of the Best Targets and Calculation of the 

Weights about the Candidates 

We use the algorithm which combined the generative and 

discriminative method in tracking, and the blur kernel k were 

used to convolved with the target template set T to get the blur 

target template set T
*
. The dictionary D

* 

1 can be extracted by 

the same method like the construction of dictionary D1, and 

each candidate Yi  can extract local patches as Yi ={yk | 

k=1,2,…,n}. The patch yk is coded with D1 and D
* 

1 by: 
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where ξ
* 

k ∈R
n×m×1 

is the sparse coding coefficient of the local 

patch yk with dictionary D
* 

1 , and ξk∈R
n×m×1

 is the sparse 

coding coefficient of the local patch yk with dictionary D1. The 

reconstruction error can get by: 

 

η
* 

k  = ‖yk–D
* 

1 ξ
* 

k ‖
2 

2 ,      ηk = ‖yk– D1ξk‖
2 

2  (8) 

 

where η
* 

k  and ηk is the reconstruction error about the local 

patch yk∈R
d×1

 of the candidate Yi with dictionary D
* 

1 and D1. 

Therefore, the confidence of the candidate Yi is: 
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On the other hand, we solve the HOG features of the 

target template set T to get the descriptive dictionary D2∈R
e×m

. 

In detail, for the candidate Yi, i=1,2,…,N., the corresponding 

HOG feature Y
H 

i ∈R
e×1 

is obtained. The HOG feature of the 

candidate Yi is coded by dictionary D2 as followed: 
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where βi∈R
m×1 

denotes the sparse coding coefficient of 

candidate Y
H 

i with dictionary D2. Therefore, the reconstruction 

error of the candidate Y
H 

i  with dictionary D2 is formulated as 

followed: 

2

2
2 i

H
ii DY   . (11) 

 

According to formula 11, the weight of the candidate Yi is 

calculated by using the followed method: 

 

Wi = exp(-5εi). (12) 

 

Therefore, the best candidate is calculated by: 

 

  jjjj
j
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D.  Update Strategy of Template Set and the Classifier 

Templates update: In order to enable the algorithm to 

effectively cope with the changes in the target pose and scene, 

we need to dynamic updating the target template set T, and at 

the same time, we collect the positive and negative samples in 

the current frame as training data set which were used to 

training the classifier to reduce the classification error. The 

error of the selected candidate Yj and the target template set T 

is defined as followed: 
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When δ<δ0, it indicates that the tracked target area is not 

highly polluted. So we can use the candidate Yj to update the 

target template set T by Occlusion-Aware Update  strategy 

[17]. 

Classifier update: when δ<δ0, we update the classifier. 

According to the target location we tracked, we collect the 

positive samples (9 samples per frame) by pixel perturbation, 

and update the negative samples every 5 frames (150 samples 

at the last frame) to train the classifier. 

 

The pseudocode of the algorithm are as follows: 

 

Algorithm 2：The proposed tracking method 

Input：The tracking result o1, o2, …, om in the front m 

frames achieved by real-time compressive tracking 

algorithm[14] which were used to get the blur target 

template set T; the number of templates m; update 

frequency Φ;  

Output：tracking results st, t= m+1, m+2, …, M 

Initialization of the classifier： 

  1：72 positive samples Np from the first m frames (9 



samples per frame), 150 negative samples Nq form the 

mth frame; target set ψ=0.     

  2：extract the local descriptors from the samples [Np, Nq]. 

  3：Training the strong classifier H(x) by the local 

descriptors. 

  4: While  t= m+1, …,M   do 

      5: get the candidates Y = [Y1, Y2, …, YN]. 

      6: get the blur kernel k by Algorithm 1. 

7: get the blur target template set T
*
 by the blur 

kernel k which were used to convolved with target 

template set T. 

8: calculate the reconstruction error of the candidate 

Yi with dictionary D1 and D
* 

1 by the (8). 

      9: get the confidences of each candidates by (9).  

      10: extract the local descriptors from the sparse 

coding coefficients of the candidates Y, and use it to 

calculate the classification values of each candidate. 

      11: get the weights Wi for each candidates by (12). 

      12: get the best target st by the (13). 

      13: If the error is less than the predefined       

threshold (δ<δ0). 
14: use the occlusion-aware update strategy 

[17] to update the template set T. 

15: extract 9 positive samples from the tracked 

target pN . 

16: update the target set ψ = [ψ, st]. 

          17: if  size(ψ)== Φ 

                18: update the target set ψ = 0. 

                19: get 150 negative samples qN  

                20: extract the local descriptors from the 

sparse coding coefficients of the 

samples [Np, Nq]. 

                21: retrain the classifier H(X).  

            22: end if          

    23: end while 

 

 

III. EXPERIMENTS AND PERFORMANCE 

Our algorithm maintains 8 templates in the tracking 

process, and 800 candidates are collected in each frame which 

means the number of the particles is 800. All target template 

set, training samples and candidates are 32×32 pixels. We 

choose 8 pixels as a step length and select 9 overlapped local 

blocks with 16×16 pixels in the target area, and use these local 

sparse coding coefficients to form descriptors. To construct 

the descriptors, we select 3 from 9 local sparse coding 

coefficients to perform connect operation which were used to 

training the classifier. The parameters are fixed as: 

ν=λ=λ2=λ3=λ4=0.01, θ=0.1, δ0=0.5, k=3, n=40. To evaluate the 

performance of the algorithm, our algorithm compared with 6 

kinds of representative algorithms: Motion Blur Tracking 

(MBT)[13], Accelerated Proximal Gradient L1 tracker 

(L1APG)[11], Least Soft-Threshold Squares Tracking 

(LSST)[18], Fast Compression Tracking (FCT)[19], Strong 

Classifier Tracking (SCT)[17], Consistent Low-Rank Sparse 

Tracking (CLRST)[12]. 

 

Table 1.  6 video sequence features 

 

Sequence name Characteristics of the sequence 

Walking2 Scale Variation，Occlusion，Low Resolution 

BlurCar4 Motion Blur，Fast Motion 

BlurCar2 Scale Variation，Motion Blur，Fast Motion 

FaceOcc2 
Illumination Variation，Occlusion，In-Plane 

Rotation，Out-of-Plane Rotation 
Subway Scale Variation，Occlusion，Low Resolution 

Trans 
Illumination Variation, Scale Variation , 

Occlusion, Deformation 

 

In order to ensure the reliability of the experimental 

results, the codes of the above-mentioned algorithms are 

provided by their authors, and all the parameters of the 

algorithms also use the initial value. The video used in the 

experiment is taken from OTB-100[20]. 

 

A. Qualitative Analysis 

Figure 1 shows the partial tracking results of seven 

tracking algorithms on six public videos (named Walking2, 

BlurCar4, BlurCar2, FaceOcc2, Subway, Trans). The red box 

in the figure shows the tracking results of our algorithm. 

Comparing with other visual tracking algorithms, it is found 

that the compared algorithms failed to detect the target in the 

videos. The results shows that the proposed algorithm can well 

cope with the motion blur and severe target occlusion in video 

sequences. Motion blur is the most important factor which 

affects the video quality in the sequences of BlurCar2 and 

BlurCar4. Our algorithm and L1-APG have more stable 

tracking results against motion blur. The visual tracking 

results of algorithm CLRST on BlurCar4 were accurate, but it 

loses the target in the seventy-ninth frame in BlurCar2, and the 

other algorithms also appear the phenomenon that losing the 

target in two videos. It shows that our algorithm is effective in 

dealing with the problems of motion blur and fast moving of 

targets in video sequences.  

Some challenging problems such as deformation, 

occlusion and low resolution occurred in Walking2 and 

Subway. It is found that our algorithm works better than other 

algorithms in terms of average overlap rate or average center 

location error.  

In FaceOcc2, the factors which influence the quality of 

the video are target occlusion, in-plane rotation and 

out-of-plane rotation, our algorithm can also well cope with it. 

In the video sequence Trans, there are serious factors 

influence the video quality such as: deformation, occlusion, 

scale variation and illumination variation. Under the influence 

of many comprehensive factors, our algorithm has some drift 

and deviation.  

Through the above 7 algorithms in 6 video sequences 

shows that our algorithm can effectively deal with the problem 



of motion blur, scale variation and occlusion in video 

sequence. And compared with other algorithms our algorithm 

get the best tracking result in different application scenarios. 

The tracking results are as Fig.1. 

 

 

 

      

      

      

      

      

      

 
 

Fig1. Visual tracking result 

 

B. Quantitative Analysis 

We use the average center location error and average 

overlap rate to evaluate the performance of each algorithm. If 

the average center location error of the algorithm is small, and 

the higher average overlap rate means that the performance of 

the algorithm is better, and the tracking result is more precise 

and reliable, (Our algorithm’s average overlap rate is 12.2% 

higher than the second L1-APG). 

 

The center location error can be calculated by: 
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2
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where (x, y) is the tracked center location coordinate, and 

(x0, y0) is the labeled center location coordinate. 
 

The overlap rate can be calculated by: 
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where RG means the manual marks of the tracking results, and 

RT means the tracking results obtained by each algorithms. 

The greater the overlap rate is, the closer the tracking results 

are to the real results, and Table 2 gives the average overlap 

rate of the 7 algorithms. In Table 3, the average center location 

error of the 7 algorithms is given. And the smaller the value is, 

the more precise the algorithm is. The algorithm reduces the 

average center location error of 26 pixels by second algorithm 

L1-APG. 

Table 2 and table 3 show that our algorithm gets the best 

performance in sequences Walking2, Subway and BlurCar2. 

Our algorithm has the largest average overlap rate and the 

average center location error is the smallest. The average 

overlap rate of our algorithm is 60.4, and it is superior to the 

second algorithm L1-APG which is 48.2. The average center 

location error of our algorithm is 23.7, which is better than 

49.7 of second algorithm L1-APG. The experimental results 



show that our algorithm can achieve a more stable tracking 

results and get high robustness to complex scenes. 

 

Table 2   Average overlap rate (%) 

 

Video MBT L1APG LSST FCT SCT CLRST Ours 

Walking2 50.9 72.3  34.9 28.6 4.8 36.0 75.0 

BlurCar4 15.9 71.5 53.4 4.9 33.1 69.1 52.1 

BlurCar2 11.0 57.3 9.7 9.5 31.3 12.0 59.5 

FaceOcc2 35.7 22.7 41.5 65.2 24.7 74.0 67.8 

Subway 15.0 15.5 18.7 62.1 54.2 18.1 64.5 

Trans 33.9 50.0 36.7 51.0 29.1 49.4 43.7 

Average 27.1 48.2 32.5 36.9 29.5 43.1 60.4 

 

Table 3   Average center location error (unit: pixel). 

 

Video MBT L1APG LSST FCT SCT CLRST Ours 

Walking2 12.7 4.1 39.7 59.3 102.6 38.9 2.8 

BlurCar4 177.5 23.3 40.1 200.7 76.7 21.6 47.8 

BlurCar2 169.2 31.0 224.3 260.2 67.1 161.9 28.4 

FaceOcc2 61.4 19.5 13.4 15.9 72.4 8.3 14.7 

Subway 140.2 146.4 101.8 9.4 11.7 141.2 5.3 

Trans 108.1 74.0 96.9 23.9 122.3 35.4 43.3 

Average 111.5 49.7 86.0 94.9 75.5 67.9 23.7 

 

 

   

   

   

 
 

Fig2.   Center location error (unit: pixel) 

 

IV. CONCLUSION 

In this paper, we propose the tracking algorithm 

combined the generative and discriminative method which 

was aiming at coping with the interference factors such as 

motion blur, occlusion and scale variation under complex 

scenes. At the same time, the weight of the target is taking into 

consideration when we select the best target. And the sum of 

production of the weight and two confidences were used to 

select the best target. Even if the target was polluted, it can 

also be robust in visual tracking. Combined with the pollution 

degree of the target area, when the pollution level is higher 



than the given threshold, the target template set and classifier 

cannot be updated by the tracking target of the frame, so as to 

prevent the error accumulation which cause the losing of the 

target. By comparing the results of visual tracking in different 

scenes with different algorithms, the average overlap rate and 

the average center location error indicate that our algorithm 

has good effect and stability which can better deal with the 

unfavorable factors in video sequence, and it has higher 

accuracy and robustness in visual tracking. 
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